禽呼肠孤病毒检测方法的建立及病毒分离鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
呼肠孤病毒(reovirus)可分为两个主要的群,即哺乳动物来源呼肠孤病毒(MRV)和禽类来源呼肠孤病毒(ARV)。ARV属于呼肠孤病毒科中的正呼肠孤病毒属(Orthoreovirus genus)。ARV感染可引起多种疾病,常见的有病毒性关节炎/腱鞘炎、吸收障碍综合征(MAS)、免疫抑制等。近年来,随着ARV感染的增加、流行趋势和临床疾病表现形式的多样化,ARV的防制难度不断增大。由于本病主要是早期感染,而且多数情况感染症状不明显,因此对本病的早期确诊就显得尤为重要。为了快速有效的检测ARV的感染情况,分析其在国内的流行情况,本研究分别建立了检测抗原和抗体的两种检测方法,并且分离了2株ARV病毒。
     根据GenBank中发布的ARV S1基因序列设计1对针对σC基因的引物和1条特异性TaqMan探针,建立了检测ARV病毒载量的Real-time RT-PCR方法。该方法具有良好的敏感性、特异性和重复性,可用于ARV的定量检测,为该病的诊断及基础性研究提供了技术手段。利用建立的Real-time RT-PCR方法分析了ARV病毒在体内的复制情况。结果表明:在肝、脾、肾、胸腺、胰腺等器官中均可检测到病毒,各器官病毒载量并无明显差异,在攻毒后5d体内病毒量达到最高峰,随后开始下降。
     利用pET-30a原核表达系统成功表达了ARV σC蛋白,将纯化后的重组σC蛋白作为包被抗原,建立检测ARV抗体的间接ELISA方法。经过对反应条件的优化,确定了最佳反应条件:蛋白最佳包被浓度为7.2μg/mL、包被条件为4℃过夜、最佳封闭液为3%脱脂乳、一抗最佳稀释度为1:400、作用条件为室温作用60min、二抗最佳稀释度为1:2000、作用条件为室温作用60min、显色时间为室温15min。阳性判断标准为:OD_(450)>0.314判定为阳性。该方法特异性、重复性、符合性良好,具有较高的临床使用价值,为试剂盒的研发奠定了基础。
     采用鸡胚接种及鸡胚成纤维细胞接种两种方式从病料中分离出两株ARV毒株,并通过电镜观察、RT-PCR、测序及间接免疫荧光试验等方法对其进行鉴定。对分离毒株的S1基因全长进行了测序,序列分析结果显示:两株病毒(命名为ARV11-01株和ARV11-02株)S1核苷酸同源性为99.7%,与大部分的引起关节炎的ARV毒株核苷酸同源性性较高(90%以上),与分离自美国的发育障碍的AVS-B毒株同源性较低,核苷酸为62.8%和62.7%,与国际标准毒株S1133的核苷酸同源性较高,为99.1%和99.2%,表明这两株分离毒株可能源自S1133株。动物回归实验表明,两株病毒的致死率分别为18.2%和72.7%。
     本研究建立了基于S1基因的Real-time RT-PCR方法,该方法不仅可以用于ARV临床样品的检测,也可以应用与该病毒的基础性研究。利用大肠杆菌表达了能够诱导产生中和抗体的σC蛋白,纯化后,做为包被抗原,建立了检测ARV抗体的间接ELISA方法,该方法特异性、重复性、符合性良好,具有较高的临床使用价值,可进一步开发为诊断试剂盒。此外,分离鉴定了2株ARV,对其S1基因序列进行了测序,丰富了ARV的基因组序列。
Reovirus can be divided into two main groups: mammalian reovirus (MRV) and avian reovirus(ARV). ARV belongs to the family Reoviridae of the genus Orthoreovirus. ARV causes many diseasessuch as viral arthritis/tenosynovitis, malabsorption syndrome, and immune suppression in chickens.Due to increasing of ARV infection and diversification of clinical disease, the controlling of ARV isbecoming more difficulty. Because the infection is in earlier period and the symptom is unobviously,the early diagnosis of ARV is looked to be more important. In this study, two detection methods fordetecting of antigens and antibodies were established, which can be used for detecting the infection ofARV more efficiently and analysising the prevalence in China. Besides, two strains of ARVwereisolated and identified.
     The S1gene of ARV was chosen as the target region. The real-time RT-PCR method wasdeveloped for detecting of ARV using a pair of primers and a specific TaqMan probe. This method issensitivitive, specific and reproducible and can be used to detect ARV quantificationally, whichprovides the technical means for ARV diagnosis and basic research. By using the method, replication ofARV in the SPF chickens was determined. The results showed that the ARV could be detected in theliver, spleen, kidney, thymus, pancreas and other organs and no obviously difference of the viral loadsin these organs.What’s more, the viral loads reached a peak in5days post-infection and then decreased.
     The σC gene was cloned into pET-30a vector and was expressed in E.coli. An indirect ELISAmethod was developed based on purified σC protein as detecting antigen. The optimum reactionconditions were determined: the protein concentration is7.2μg/mL; the coating condition is4°Covernight; the confining liquid is3%skim milk; the serum dilution is1:400and the working conditionis room temperature for60min; the HRP-labeled IgG dilutions1:2000and the working condition isroom temperature for60min; the TMB reaction time is15min. The cut-off value is OD_(450)>0.31. Thismethod was specific, reproducible and has good correlation with other commercial ELISA kit, whichcan be used for clinical survey of ARV infection and immunization.
     Two ARV strains were isolated from chicken’s samples of arthritis symptom by SPF chickenembryos and chicken embryo fibroblast (CEF) cells, and identified by RT-PCR, sequences analysis,IFA and electron microscope. The whole S1genes were sequenced of two ARV isolates (namedARV11-01and ARV11-02). The results suggested that the S1nucleotide homology was99.7%betweenthe two strains. The homologies are62.8%and62.7%with the American isolate (AVS-B strain).However, the homology is more than90%with those of most ARV caused arthritis symptom and thehomology with the S1133strain are99.1%and99.2%. It implied that the two isolates may come fromthe S1133strain. Animal regression results show that the mortality of the two viruses were18.2%and72.7%。
     In this study, a real-time RT-PCR method was developed and this method not only can be usedfor the detection ARV from clinical samples but also can be applied in basic research. Using therecombination σC protein as detecting antigen an indirect ELISA method were established for detection the ARV antibody which can be used for clinical survey of ARV infection and immunization. Besides,two ARV strains were isolated and identified and the S1gene were sequenced and analyzed which mayhelp to enrich the ARV genome sequence information.
引文
1.陈士友.一株分离自外观正常鸡胚的禽呼肠孤病毒的鉴定.畜牧兽医学报,1993,24(3):243-247.
    2.崔洪超.鸡病毒性关节炎研究进展.吉林畜牧兽医,1995,17(5):34-35.
    3.方勤,朱作言.呼肠孤病毒结构与功能研究进展.病毒学报,2003,19(4):381-384.
    4.廖敏,李康然,谢芝勋,等.禽呼肠孤病毒分子生物学研究进展.广西农业生物科学,2000,(2):116-120.
    5.廖敏,谢芝勋,谢志勤,等.一步法RT-PCR检测禽呼肠孤病毒的研究.中国预防兽医学报,2003,25(1):53-55.
    6.刘文兴.禽呼肠孤病毒感染.畜牧兽医科技信息,2003,19(9):8-11.
    7.童桂香.禽呼肠孤病毒M1,M2基因克隆序列分析与病毒受体的确定及荧光定量RT-PCR检测方法的建立.[童桂香硕士学位论文],广西,广西大学,2008.
    8.童桂香,谢芝勋,黄琦,等.禽呼肠孤病毒实时荧光定量RT-PCR检测方法的建立.中国兽医科学,2007,37(09):767-771.
    9.王锡坤,唐秀英,张庆祥,等.应用琼扩试验检查鸡病毒性关节炎.家畜传染病,1985,20(3):26-27.
    10.塞弗Y. M.主编《禽病学》(苏敬良,高福,索勋等主译),中国农业出版社,2012:355-365.
    11.吴孔兴,郭磊,陈峰,等.不同代次种鸡场病毒性关节炎血清学调查.养禽与禽病防治,2004,(11):4-5.
    12.谢芝勋,廖敏,刘加波,等.禽呼肠孤病毒地高辛探针的制备及应用.中国预防兽医学报,2001,11:407-410.
    13.谢芝勋,刘加波,廖敏,等.反转录聚合酶链式反应和核酸探针检测禽呼肠孤病毒研究的概述.广西畜牧兽医,2003,19(5):195-98.
    14.谢芝勋,刘加波,庞耀珊,等.应用半套式聚合酶链反应检测禽呼肠孤病毒S1基因的研究.中国兽医杂志,2001,37(3):6-8.
    15.殷震,刘景华.《动物病毒学》(第二版).科学出版社,1997.
    16.张云,刘明,童光志,等.正呼肠孤病毒及其分类学依据研究进展.动物医学进展,2004,25(6):46-49.
    17.赵月兰,秦建华.鸡病毒性关节炎研究概况.养禽与禽病防治,1995,(3):13-14.
    18.朱万光,杜元钊,刘佩兰,等.鸡病毒性关节炎病毒的分离与鉴定.中国兽医科技,1996,2(62):3-4.
    19. Adair B. M., Burns K., McKillop E. R., Serological studies with reoviruses in chickens, turkeysand ducks. J. Comp. Pathol.1987,97:495–501.
    20. Benavente J., Martinez-Costas J., Avian reovirus: Structure and biology. Virus Researeh.2007,123(2):105-119.
    21. Benavente J. and Martinez-Costas J., Early steps in avian reovirus morphogenesis. Curr TopMicrobiol Immunol.2006,309:67-85.
    22. Bodelon G., Labrada L., Martinez-Costas J., et al. The avian reovirus genome segment S1is afunctionally tricistronic gene that expresses one structural and two nonstructural proteins ininfected cells.Virology.2001,290(2):181-191.
    23. Brigati D. J., Myerson D. and Leary J. J., Detection of viral genomes in cultured cells andparaffin-embedded tissue sections using biotin-labelled hybridization probes. Virology.1983,126(1):32-50.
    24. Bruhn S., Bruckner L., Ottiger H. P., Application of RT-PCR for the detection of avian reoviruscontamination in avian viral vaccines. J. Virol. Methods,2005,123:179–186.
    25. Chen P. N., Liu H. J., Shien J. H., et al. Antibody responses against avian reovirus nonstructuralprotein σNS in experimentally virus-infected chickens monitored by a monoclonal antibodycapture enzyme-linked immunosorbent assay. Res Vet Sci,2004,76(3):219–225.
    26. Dale R., Pedro K. H., Kleven S., Characteristies and Pathogenieity of two avian reovirus lsolatedfrom chickens with leg problems. Avian Dis,1983,27(l):255-660.
    27. Dobson K. N., Glisson J. R., Economic impact of a documented case of reovirus infection inbroiler breeders. Avian Dis,1992,36(3):788-791.
    28. Duncan R., Sullivan K., Characterization of two avian reoviruses that exhibit strain-specificquantitative differences in their syncytium-inducing and pathogenic capabilities. Virology,1998,250:263–272.
    29. Dunean R., Sullivan K., Characterization of two avian reoviruses that exhibit strain-specificquantitative differences in their syneytium-inducing and pathogenic capabilities. Virology,1998,250:263-272.
    30. Ellis M. N., Eidson C. S., Fletcher O. J., et al. Viral tissue tropisms and interferon production inWhite Leghorn chickens infected with two avian reovirus strains. Avian Dis,1983,27(3):644-651.
    31. Gouvea V. S., Schnitzer T. J., Polymorphism of the genomic RNAs among the avian reovirus.J GenVirol,1982,61:87-91.
    32. Grande A., Costas C, Benavenie, Subunit composition and conformational stability of theoligomeric form of the avian reovirus cell-attachment protein sigmaC. J Gen Virol,2002,83(1):131-139.
    33. Grande A., Rodriguez E., Costas C., et al. Oligomerization and cell-binding properties of the avianreovirus cell-attachment protein sigmaC. Virology,2000,274:367–377.
    34. Guo K., Teresa V. and Ou S. H., et al. Development of TaqMan real-time RT-PCR for detection ofavian reoviruses. J Virol Methods,2011,177(1):75–79.
    35. Hayward A. L., Oefner P. J., Sabatini S., et al. Modeling and analysis of competitive RT-PCR.Nucleic Acids Res.1998,26(11):2511-2518.
    36. Heid C. A., Stevens J., Livak K. J., et al. Real time quantitative PCR. Genome Res,1996,6(10):986-994.
    37. Hsiao J. Martinez-Costas J. Benavente J., et al. Cloning, expression and characterization of avianreovirus guanylyltransferase. Virology.2002,296(2):288-299.
    38. Huang P. H., Li Y. J., Su Y. P., et al. Epitope mapping and functional analysis of sigmaA andsigmaNS proteins of avian reovirus. Virology,2005,332(2):584-595.
    39. Hung J., Liu A., Liam C., et al. Development of an ELISA for detection of antibodies to avianreovirus in chickens. J Virol Methods,2002,102(1-2):129-138.
    40. Ide P. R., Avian reovirus antibody assay by indirect immunofluorescence using plastic microcultureplates. Can J Comp Med,1982,46(1):39-42.
    41. Jones R. C., Al-Afaleq A., Savage C.E., et al. Early pathogenesis in chicks of infection with atrypsin-sensitive avian reovirus.Avian Pathol,1994,23:683-692.
    42. Jones R. C., Kibenge F. S., Reovirus-induced tenosynovitis in chickens: the effect of breed. AvianPathol,1984,13(3):511-528.
    43. Kibenge F.S.B., Wilcox G.E., Tenosynovitis in chickens. Vet. Bull,1983,53:431–443.
    44. Liu H. J., Lee L. H., Hsu H. W., et al. Molecular evolution of avian reovirus: evidence for geneticdiversity and reassortment of the S-class genome segments and multiple cocirculating lineages.Virology.2003,314(1):336-349.
    45. Liu H. J., Lee L.H., Shih W. L. et al. Rapid Characterzation of avian reoviruses using phylogeneticanalysis, reverse transcription-polymerase chain reaction and restriction enzyme fragment lengthpolymorphism. Avian Pathol,2004,33(2):171-180.
    46. Mackay I. M., Arden K. E., Nitsche A., Real-time PCR in virology. Nucleic Acids Res,2002,30(6):1292-1305.
    47. Martinez-Costas J., Grande A., Varel R., Protein architecture of avian reovirus S1133andidentification of the cell attachment protein. J Virol,1997,71(1):59–64.
    48. Martinez-Costas J. C., Gonzalez-Lopez V. N., Vakharia, et al. Possible involvement of thedouble-stranded RNA-binding core protein sigmaA in the resistance of avian reovirus to interferon.J Virol,2000,74(3):1124-1131.
    49. Mathews R. E. F., Classification and nomenclature of viruses. Intervirology,1982,17(1-3):1-199.
    50. Maya S., Jayme S., Roy Duncan., Palmitoylation membrane-proximal basic residues andtransmembrane glycine residues in the reovirus p10protein are essential for syncytium formation.Journal of Virology,2003,77(18):9769-9779.
    51. McNeilly F., Smyth J. A., Adair B.M., et al. Synergism between chicken anemia virus (CAV) andavian reovirus following dual infection of1-day-old chicks by a natural route.Avian Dis,1995,39(3):32-537.
    52. Meanger J., Wockramasinghe R., Enrique C. E., et al. Type-specific antigenicity of avianreoviruses. Avian Pathol,1995,24(1):121-134.
    53. Menendez N. A., Calnek B. W., Cowen B. S., Localization of avian reovirus (FDO isolant) intissues of mature chickens. Avian Dis,1975,19:112–117.
    54. Mertens P., The dsRNA viruses. Virus Res,2004,101:3–13.
    55. Ni Y., Kemp M. C., A comparative study of avian reovirus pathogenicity: virus spread andreplication and induction or lesion. Avian Dis,1995,39(3):554-566.
    56. Ni Y., Ramig R. F., Characterization of avian reovirus-induced cell fusion: the role of viralstructural proteins. Virology,1993,194:705-714.
    57. Neighbor N. K., Newberry L.A., Baygori G. R., et al. The effect of microaerosolized hydrogenperoxide on bacterial and viral poultry pathogens.Poult Sci,1994,73(10):1511-1516.
    58. Nibert M.L., Structure of mammalian orthoreovirus particles, reoviruses I.Structure, proteins andgenetics. Curr. Top. Microbiol,1998,233:2–30.
    59. Nwajei B. N., Alafaleq A., Jones R. C., Comparison of chick embryo liver and vero cell culturesfor the isolation and growth of avian reoviruses. Avian Pathol, l988, l7(4):759-766.
    60. Robertson M. D., Wilcox G. E., Avian reovirus. Vet. Bull,1986,56:726–733.
    61. Ruff M. D., Rosenberger J. K., Concurrent infections with reoviruses and coccidia in broilers.Avian Dis,1985,29(2):465-478.
    62. Savage C. E., Jones R. C., The survival of avian reoviruses on materials associated with the poultryhouse. Avian Pathol,2003,32(4):419-425.
    63. Schnitzer T. J., Protein coding assignment of the S genes of the avian reovirus S1133. Virology,1985,141:167–170.
    64. Schnitzer T. J., Ramos T., Gouvea V., Avian reovirus polypeptides: analysis of intracellularvirus-specified products, virions, top component and cores. J Virol.1982,43(3),1006-1014.
    65. Schwartz L. D., Gentry R. F., Rothenbacher H., et al. Infectious tenosynovitis in commercial whiteleghorn chickens. Avian Dis,1976,20(4):769-773.
    66. Shapouri, M. R. S., Frentte D., Laroehelle R., et al. Characterization of monoclonal antibodiesagainst avian reovirus strain S1133. Avian Pathol,1996,25(1):57-67.
    67. Shmuleritz M., Yamean Z., Dawe S., et al. Sequential partially overlapping gene arrangement inthe tricistronic S1genomes segments of avianreovirus and Nelson Bay reovirus: implications fortranslation initiation. J. Virol,2002,76:609–618.
    68. Slaght S. S., Yang T J., Van der heide L., et al. An enzyme-linked immunosorbent assay (ELISA)for detecting chicken anti-reovirus antibody at high sensitivity.Avian Dis,1978,22(4):802-805.
    69. Spandidos D. A., Graham A. F., Physical and chemical characterization of an avian reovirus. JVirol,1976,19(3):968-976.
    70. Springer W. T., Olson N. O., Kerr K. M., et al. Responses of specific-pathogen-free chicks toconcomitant infections of reovirus (WVU-2937) and infectious bursal disease virus. Avian Dis,1983,27(4):911-917.
    71. Sterner F. J., Rosenberger J. K., Margolin A., In vitro and in vivo characterization of avianretrovirus. Ⅱ Clinicalevaluation of chickens infected with two avian reovirus pathotypes. Avian Dis,1989,33(3):545-554.
    72. Takase K., Nonaka F., Yamamoto M., et al. Serologic and pathogenic studies on avian reovirusesisolated in Japan. Avian Dis,1987,31(3):464-469.
    73. Van der Heide L., Kalbac M., Brustolon M., et al. Pathogenicity for chickens of a reovirusisolated from turkeys. Avian Dis,1980,24(4):989-997.
    74. Van der Heide L., The History of Avian Reovirus. Avian Dis,2000,44(3):638-641.
    75. Van der Heide L., Viral arthritis/tenosynovitis: a review. Avian Pathol,1977,6(4):271-284.
    76. Varela R., Benavente J., Protein coding assignment of avian reovirus strain S1133. J.Virol,1994,68:6775–6777.
    77. Wileox G. E., Robertson M. D., Lines A. D., Adaptation and eharaeteristics of replieation of astrain avian reovirus in Vero cells. Avian Pathology,1985,13:321-328.
    78. Wu W. Y., Shien J. H., Lee H. K., Analysis of the double-stranded genome segments amounts amogavian reovirus field isolate. Virol. Methods,1994,48:119-122.
    79. Xie Z. X., Qin C. X., Xie L. J., et al. Recombinant protein-based ELISA for detection anddifferentiation of antibodies against avian reovirus in vaccinated and non-vaccinated chickens.Journal of Virological Methods,2010,165(1):108–111.
    80. Yang Z. J., Wang C. Y., Lee L. H., et al. Development of ELISA kits for antibodies against avianreovirus using the σC and σB proteins expressed in the methyltropic yeast Pichia pastoris. J VirolMethods,2010,163(2):169–174.
    81. Yin H. S., Lee L. H., Development and characterization of a nucleic acid probe for avain reovirus.Avian Pathol,1998,27(4):423-426.
    82. Zhang X., Tang J., Walker S.B., et al. Structure of avian Orthoreovirus virion by electroncryomicroscopy and image reconstruction. Virology,2005,343:25–35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700