猪弓形虫体内诱导抗原的鉴定及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弓形虫(Toxoplasma gondii)是能够感染真核细胞的顶器门寄生原虫,呈世界性分布,宿主范围广,传播途径多样,生活史复杂。可导致孕妇流产,新生儿先天性疾病,以及继发免疫抑制患者致死性疾病。弓形虫可致家畜流产和生长发育不良,给畜牧业带来巨大的经济损失。通过摄食被弓形虫污染的肉类可使人感染弓形虫病。猪肉是人类主要的肉食来源之一,猪的弓形虫感染严重威胁人类的生命健康。弄清弓形虫的致病机理和开发安全有效的疫苗是预防和控制人类和动物弓形虫病的基础和重要手段。
     为此,本研究构建了RH株弓形虫速殖子cDNA表达文库,利用体内诱导抗原技术(IVIAT),鉴定出14个猪弓形虫体内诱导抗原;利用实时荧光定量PCR(Real-time PCR)对其中5个抗原基因进行了体内、外表达差异的验证和体外原核表达;对弓形虫钙调蛋白(CaM)基因进行了RNA干扰(RNAi),评价其表达下调对弓形虫速殖子滑行运动、细胞粘附、入侵和溢出及胞内繁殖等表型的影响;以弓形虫体内诱导抗原微线体蛋白11(MIC11)α链构建了DNA疫苗,并在BALB/c鼠模型中检测到保护性免疫应答的产生。(1)猪弓形虫体内诱导抗原基因的筛选与鉴定
     大量收集并纯化RH株弓形虫速殖子,提取总RNA,利用商业化SMARTTM技术构建以噬菌体为载体的cDNA表达文库。构建的文库重组率达到98%以上,初始文库和扩增文库滴度分别为2.1x106pfu/mL和1.6x109pfu/mL,文库容量为3.2×1011个重组子。混合10份猪弓形虫阳性血清并通过逐级吸附弓形虫速殖子全细胞、超声破碎裂解液和热裂解物,去除血清中体外弓形虫抗体。运用吸附后血清对表达文库的3264个克隆进行免疫筛选,得到14个阳性克隆。对筛选得到的体内诱导抗原进行EST序列分析和功能预测,14个抗原中包括涉及离子/蛋白结合、信号转导、蛋白折叠、细胞入侵和生物合成与代谢等8个功能蛋白,同时包括6个未知功能的假定蛋白。
     (2)体内诱导抗原体内外表达差异的验证及原核表达
     选择其中5个体内诱导抗原基因,即CaM、致密颗粒蛋白5(GRA5)、MIC11、18KDa亲环蛋白(C-18)和丝氨酸蛋白酶抑制剂(PI),针对各自的ORF设计引物,real-time PCR检测感染BALB/c鼠72h和在BHK细胞中培养72h的速殖子中,5个基因mRNA相对表达水平的差别。结果显示,宿主体内速殖子中5个基因mRNA表达量均高于体外培养速殖子中表达量,统计学分析差异显著(p<0.05)。其中CaM基因体内、外mRNA相对表达量差异最大,可达15.04倍。利用5个基因全长CDS序列设计原核表达引物,分别克隆各自ORF片段,连接原核表达载体pGEX-6p-1,形成重组GST融合表达质粒。除pGEX-6p-1/GRA5表达失败以外,其余4个重组质粒均可在E. coli BL21系统中高效表达。分别利用弓形虫阳性猪血清和商业化GST一抗血清对表达产物进行Western-blot分析,4个体内诱导抗原均具有良好抗原性,且CaM和C-18抗原性较强。
     (3)弓形虫CaM的下调表达对速殖子表型的影响
     针对弓形虫CaM基因序列不同位点设计3对siRNA (siRNA707, siRNA865, siRNA900),对CaM的表达进行体外干扰。利用real-time PCR检测转录水平干扰效果,结果显示,3对siRNA对弓形虫CaM的表达均有一定程度的干扰,对其他与弓形虫CaM有同源性的基因无干扰作用,表明干扰特异性强,无脱靶效应。确定siRNA最优作用时间为24h,最佳工作浓度为200nmol/L。用鼠抗弓形虫CaM多克隆抗体对干扰前后速殖子进行Western-blot,检测蛋白质水平干扰效果。三对siRNA中,siRNA900在转录和蛋白表达水平上干扰效果最显著。在BHK细胞模型中,观察CaM被干扰后弓形虫速殖子表型的变化。结果显示,弓形虫CaM的表达下调显著降低速殖子的细胞粘附、入侵和溢出能力(p<0.05),但对其胞内繁殖无影响(p>0.05)。
     (4)体内诱导抗原MIC11免疫原性的研究
     将弓形虫MIC11-a链基因片段与真核表达载体pcDNA3.1连接,构建DNA疫苗pcDNA3.1/MIC11。间接免疫荧光(IFA)证明重组质粒在BHK细胞中可高效表达,并能被弓形虫多克隆抗血清特异性识别。重组质粒100μg免疫BALB/c小鼠,同时,设相同剂量pcDNA3.1空载体和100μL PBS阳性对照组。首次免疫后两周,利用TLA-ELISA可在pcDNA3.1/MIC11免疫鼠血清中检测到特异性TLA抗体,随免疫时间延长,抗体水平持续升高,对照组无抗体产生。细胞因子ELISA结果证明,构建的DNA疫苗可有效刺激机体产生高水平的IL-2、IL-12及IFN-y,但对IL-4无刺激作用。淋巴细胞增殖实验显示,pcDNA3.1/MIC11免疫鼠淋巴细胞增殖水平显著高于空载体组(p<0.05)和PBS对照组(p<0.05)。免疫后第8周,小鼠腹腔接种RH株弓形虫速殖子,对照组小鼠在10天内全部死亡,而疫苗组小鼠在攻虫后15天仍有17%的存活率。以上结果表明,DNA疫苗pcDNA3.1/MIC11可有效诱导机体产生特异性弓形虫抗体和Thl型细胞免疫反应,同时产生一定保护力。
     本研究通过利用IVIAT对弓形虫体内诱导抗原的鉴定及功能分析,深化了人们对弓形虫病致病机制的理解,并为弓形虫疫苗的研究提供了理论基础。
Toxoplasma gondii (T. gondii) is an intracellular protozoan parasite infecting all kinds of eukaryocyte. The parasite has a complex life cycle and distributes worldwide due to the extensive host rang and the various routs of transmission. T. gondii usually causes abortion in pregnant women and congenital diseases in neonates, it also causes life-threatening diseases in immune-compromised individuals. Toxoplasmosis in livestock always results in abortion and mal-development which brings serious economic losses. People become infection with T. gondii by ingesting the undercooked meat contaminated with cysts. Pork is one of main meat sources for human, thus, toxoplasmosis in pigs is thought to be a threat for human health. Understanding the pathogenic mechanism and development of vaccine are important for preventing and controlling T. gondii.
     In the present study, a cDNA expression library of T. gondii RH strain tachyzoites was constructed. Then in vivo induced antigen technology (TVIAT) was used for screening the constructed library by anti-T. gondii convalescence sera from pigs and yielded14in vivo induced antigens of T. gondii in pigs. The differential expressions of five of the identified antigens between in vivo and in vitro were confirmed using real-time PCR. Prokaryotic expression of the five antigens was also performed. RNA interference (RNAi) was carried out on T. gondii calmodulin (CaM) to evaluate the function in cell events of tachyzoites such as gliding movement, cell attachment, invasion, egress and intracellular replication. Finally, a DNA vaccine against T. gondii encoding micromene protein11(MIC11) was constructed and the protective immunity was detected in BALB/c mice model.(1) Screening and identification of in vivo induced antigens of T. gondii in pigs
     T. gondii RH strain tachyzoites were collected and purified, and then total RNA was extracted. A cDNA expression library was constructed based on a phage vector using SMARTTM technology. The titers of initial and amplified library were2.1x106pfu/mL and1.6x109pfu/mL, respectively. The recombinant rate was more than98%. Equal amounts of the positive sera from the infected pigs were pooled and successively adsorbed against the in vitro-grown tachyzoites, ultrasonic lysates and heat-denatured lysates of the in vitro-grown tachyzoites.3264clones from the library were screened using the adsorbed sera and yielded14positive clones containing8functional proteins which involved in ion/protein binding, signal transduction, protein folding, cell invasion, biosynthesis and metabolism, and6hypothetical proteins.
     (2) Differential expression between in vivo and in vitro and prokaryotic expression of the five in vivo induced antigen
     Five in vivo induced antigens genes (CaM, dense granule protein5(GRA5), MIC11,18kDa cyclophilin (C-18) and serine proteinase inhibitor (PI)) were selected and detected the differential expression under routine in vitro culture conditions or in the host by real-time PCR. Differences in the degree of up-regulation of the five genes were detected between the in vivo tachyzoites collected from BALB/c mice and the tachyzoites grown in vitro in BHK cells (p<0.05). CaM transcripts were detected at approximately15.04-fold higher levels in the in vivo samples than in the in vitro samples, which showed the most significant differences. Five pairs of primers of the genes were designed for prokaryotic expression. The ORFs were amplified and inserted into pGEX-6p-1, resulting in the recombinant plasmids expressing GST-fusion proteins, respectively. All the4recombinant proteins could be expressed efficiently in E. coli BL21, except pGEX-6p-1/GRA5. In the Western-blot analysis, both the positive sera against T. gondii and anti-GST antibodies recognized the recombinant proteins encoding the four in vivo induced antigens, suggesting the good antigenicity. The antigenic responses of CaM and C-18were stronger.
     (3) Phenotypic consequences of the down-regulated expression of T. gondii CaM
     Three pairs of siRNA (siRNA900, siRNA865and siRNA707) targeting different sites of CaM gene were used to suppress CaM expression. A certain degree of suppression by each siRNA on CaM expression was detected using real-time PCR. No effect was shown on the other proteins homologous with T. gondii CaM, suggesting the strong specific suppression by the designed siRNA. Most efficient suppression was found in tachyzoites treated with200nmol/L of siRNA900for24h. The phenotypic consequences of the parasite after treatment with siRNA900were investigated in BHK cells, and the treated tachyzoites showed decreased abilities of cell adherence, invasion and egress, but un-correlation with replication.
     (4) Immunogenicity of in vivo induced antigen MIC11
     The DNA fragment of T. gondii MIC11a-chain was inserted into pcDNA3.1vector, resulting in the recombinant plasmid pcDNA3.1/MIC11. Expression of MIC11from this vector was confirmed by indirect immune-fluorescence assay following transfection into BHK cells. The BALB/c mice were received the intramuscular injection of100μg pcDNA3.1/MIC11. The mice injected with100μg pcDNA3.1and100μL sterile PBS only were served as the control groups. Antibodies against TLA were first detected in the mice vaccinated with pcDNA3.1/MIC11two weeks after the first immunization. More anti-TLA IgG was accumulated and antibody titers increased dramatically in mice group vaccinated with pcDNA3.1/MIC11after the second and third immunization (p<0.05). In the ELISA analysis for cytokines, mice immunized with pcDNA3.1/MIC11produced highly significant levels of IFN-y, IL-12, IL-2compared with those immunized with PBS or pcDNA3.1(p<0.05). Mice immunized with pcDNA3.1/MIC11also induced higher level of lymphocyte proliferation compared with control groups (p<0.05). Mice were challenged with T. gondii RH strain tachyzoites at day14after the final immunization. All mice in the control groups died within10days post infection, while17%of the mice immunized with pcDNA3.1/MIC11were survived to day15after the parasite challenging. All the results demonstrated that the constructed DNA vaccine efficiently induced high levels of antibodies against T. gondii, Thl immune responses, and mediated good protection in BALB/c mice.
     The results of the present studies of identification of T. gondii in vivo induced antigen by IVIAT and the functional analysis improve our understanding of T. gondii pathogenesis and provide vaccine candidates against T. gondii infection.
引文
1.陈雪艳,付玉才,李璐.弓形虫依钙蛋白激酶Calpain-like的克隆及表达.热带医学杂志,2008,8:995-998.
    2. 崔君兆.弓形虫病研究九十年.实用寄生虫病杂志,2000,8:75-78.
    3. 江涛,何会时,龚大春,陈声国,聂浩,姚宝安,赵俊龙.血清法监测人工感染弓形虫病猪特异抗体的比较.湖北农业科学,2007,46:427-430.
    4.李永春.利用IVIAT技术筛选鸡白痢沙门菌体内感染相关因子及pSPI12质粒的鉴定与IpaJ蛋白的功能分析.[博士学位论文].武汉:华中农业大学图书馆,2010.
    5. 吕元聪.我国14省部分地区畜禽弓形虫感染流行病学调查,畜牧兽医杂志,1995,1:35-38.
    6.彭碧文.钙离子与钙调蛋白在弓形虫侵染宿主细胞信号转导中的作用.国外医学寄生虫病分册,2001,28:252-256.
    7.师丽敏.胸膜肺炎放线杆菌体内诱导抗原的筛选与分析鉴定.[硕士学位论文].武汉:华中农业大学图书馆,2010.
    8.宋洁.中国猪链球菌2型强致病株体内诱导表达基因的筛选研究.[硕士学位论文].武汉:华中农业大学图书馆,2011.
    9.陶青,赵俊龙.钙离子信号通路及相关蛋白激酶对弓形虫的作用.中国人兽共患病学报,2011,21:1041-1043.
    10. Alexander DL, Mital J, Ward GE, Bradley P, Boothroyd JC. Identification of the moving junction complex of Toxoplasma gondii:a collaboration between distinct secretory organelles. PloS Pathog,2005,1:0137-0149.
    11. Aliberti J, Valenzuela JG, Carruthers VB, Hieny S, Andersen J, Charest H, Reis e Sousa C, Fairlamb A, Ribeiro JM, Sher A. Molecular mimicry of a CCR5 binding-domain in the microbial activation of dendritic cells. Nat Immunol,2003,4: 485-490.
    12. Allaway D, Schofield NA, Leonard ME, Gilardoni L, Finan TM, Poole PS. Use of differential fluorescence induction and optical trapping to isolate environmentally induced genes. Environ Microbiol,2001,3:397-406.
    13. Amarzguioui M, Rossi JJ, Kim D. Approaches for chemically synthesized siRNA and vector-mediated RNAi. FEBS Lett,2005,579:5974-5981.
    14. Amerizadeh A, Idris ZM, Khoo BY, Kotresha D, Yunus MH, Karim IZ, Saadatnia G, Teh AY, Noordin R. Identification of Toxoplasma gondii in-vivo induced antigens by cDNA library immunoscreening with chronic toxoplasmosis sera. Microb Pathog, 2013,54:60-66.
    15. Angelichio MJ, Camilli A. In vivo expression technology. Infect Immun,2002,70: 6518-6523.
    16. Araujo FG Immunization against Toxoplasma gondii. Parasitol Today,1994,10: 358-360.
    17. Asaduzzaman M, Ryan ET, John M, Hang L, Khan AI, Faruque AS, Taylor RK, Calderwood SB, Qadri F. The major subunit of the Toxin Co-Regulated Pilus, TcpA, induces mucosal and systemic IgA immune responses in patients with cholera caused by Vibrio cholerae 01 and 0139. Infect Immun,2004,72:4448-4454.
    18. Badger JL, Wass CA, Weissman SJ, Kim KS. Application of signature-tagged mutagenesis for identification of Escherichia coli K1 genes that contribute to invasion of human brain microvascular endothelial cells. Infect Immun,2000,68: 5056-5061.
    19. Baker EK, Colley NJ, Zuker CS. The cyclophilin homolog NinaA functions as a chaperone, forming a stable complex in vivo with its protein target rhodopsin. EMBO J,1994,13:4886-4895..
    20. Bartilson M, Marra A, Christine J, Asundi JS, Schneider WP, Hromockyj AE. Differential fluorescence induction reveals Streptococcus pneumoniae loci regulated by competence stimulatory peptide. Mol Microbiol,2001,39:126-135.
    21. Bastin P, Ellis K, Kohl L, Gull K. Flagellum ontogeny in trypanosomes studied via all inherited and regulated RNA interference system. J Cell Sci,2000,113:3321-3328.
    22. Baulcombe DC. Gene silencing:RNA makes RNA makes no protein. Curr Biol,1999, 9:599-601.
    23. Baulcombe DC. RNA silencing. Curr Biol,2002,12:82-84.
    24. Beckers CJ, Dubremetz JF, Mercereau-Puijalon O, Joiner KA. The Toxoplasma gondii rhoptry protein ROP2 is inserted into the parasitophorous vacuole membrane, surrounding the intracellular parasite, and is exposed to the host cell cytoplasm. J Cell Biol,1994,127:947-961.
    25. Bhopale GM. Pathogenesis of toxoplasmosis. Comp Immunol Microbiol Infect Dis,2003,26:213-222.
    26. Billker O, Lourido S, Sibley LD. Calcium-dependent signaling and kinases in apicomplexan parasites. Cell Host Microbe,2009,5:612-622.
    27. Bina J, Zhu J, Dziejman M, Faruque S, Calderwood S, Mekalanos JJ. ToxR regulation of Vibrio cholerae and its expression in vibrios shed by cholera patients. PNAS,2003,100:2801-2806.
    28. Boothroyd JC, Hehl A, Knoll LJ, Manger ID. The surface of Toxoplasma:more or less. Int J Parasitol,1997,28:3-9.
    29. Bowie WR, King AS, Werker DH, Isaac-Renton JL, Bell A, Eng SB, Marion SA. Outbreak of toxoplasmosis associated with municipal drinking water. Lancet,1997, 350:173-177.
    30. Bunnell BA, Morgan RA. Gene therapy for infectious diseases. Clin Microbiol Rev, 1998,11:42-56.
    31. Butcher BA, Kim L, Johnson PF, Denkers EY. Toxoplasma gondii tachyzoites inhibit proinflammatory cytokine induction in infected macrophages by preventing nuclear translocation of the transcription factor NF-kappa B. J Immunol,2001,167: 2193-2201.
    32. Buxton D, Innes EA. A commercial vaccine for ovine toxoplasmosis. Parasitology, 110:11-16.
    33. Camilli A, Beattie DT, Mekalanos JJ. Use of genetic recombination as a reporter of gene expression. PNAS,1994,91:2634-2638.
    34. Camilli A, Mekalanos JJ. Use of recombinase gene fusions to identify Vibrio cholerae genes induced during infection. Mol Microbiol,1995,18:671-683.
    35. Cao SL, Progulske-Fox A, Hillman JD, Handfield M. In vivo induced antigenic determinants of Actinobacillus actinomycetemcomitans. FEMS Microbiol Lett,2004, 237:97-103.
    36. Carmen JC, Hardi L, Sinai AP. Toxoplasma gondii inhibits UV light-induced apoptosis through multiple interactions with the mitochondrion-dependent programmed cell death pathway. Cell Microbiol,2006,8:301-315.
    37. Carruthers VB. Armed and dangerous:Toxoplasma gondii uses an arsenal of secretory proteins to infect host cells. Parasitol Int,1999,48:1-10.
    38. Carruthers VB, Giddings OK, Sibley LD. Secretion of micronemal proteins is associated with Toxoplasma invasion of host cells. Cell Microbiol,1999,1:225-236.
    39. Carruthers VB, Sibley LD. Mobilization of intracellular calcium stimulates microneme discharge in Toxoplasma gondii. Mol Microbiol,1999,31:421-428.
    40. Carruthers VB, Sibley LD. Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompanies invasion of human fibroblasts. Eur. J. Cell Biol. 1997,73:114-123.
    41. Cerede O, Dubremetz JF, Soete M, Deslee D, Vial H, Bout D, Lebrun M. Synergistic role of micronemal proteins in Toxoplasma gondii virulence. J Exp Med, 2005,201:453-463.
    42. Cheng G, Fu Z, Lin J, Shi Y, Zhou Y, Jin Y, Cai Y. In vitro and in vivo evaluation of small interference RNA-mediated gynaecophoral canal protein silencing in Schistosoma japonicum.J Gene Med,2009,11:412-421.
    43. Chen G, Guo H, Lu F, Zheng H. Construction of a recombinant plasmid harbouring the rhoptry protein 1 gene of Toxoplasma gondii and preliminary observations on DNA immunity. Chin Med J (Engl),2001,114:837-840.
    44. Cheng SL, Clancy CJ, Checkley MA, Handfield M, Hillman JD, Progulske-Fox A, Lewin AS, Fidel PL, Nguyen MH. Identification of Candida albicans genes induced during thrush offers insight into pathogenesis. Mol Microbiol,2003,48:1275-1288.
    45. Chiang SL, Mekalanos JJ. Use of signaturetagged transposon mutagenesis to identify Vibrio cholerae genes critical for colonization. Mol Microbiol,1998,27:797-805.
    46. Chini EN, Nagamune K, Wetzel DM, Sibley LD. Evidence that the cADPR signalling pathway controls calcium-mediated microneme secretion in Toxoplasma gondii. Biochem J,2005,389:269-277.
    47. Choi WY, Nam HW, Kwak NH, Huh W, Kim YR, Kang MW, Cho SY, Dubey JP. Foodborne outbreaks of human toxoplasmosis. J. Infect. Dis,1997,175:1280-1282.
    48. Cleary MD, Singh U, Blader IJ, Brewer JL, Boothroyd JC. Toxoplasma gondii asexual development:identification of developmentally regulated genes and distinct patterns of gene expression. Eukaryot Cell,2002,1:329-340.
    49. Cong H, Gu QM, Jiang Y, He SY, Zhou HY, Yang TT, Li Y, Zhao QL. Oral immunization with a live recombinant attenuated Salmonella typhimurium protects mice against Toxoplasma gondii. Parasite Immunol,2005,27:29-35.
    50. Coppens I, Dunn JD, Romano JD, Pypaert M, Zhang H. Toxoplasma gondii sequesters lysosomes from mammalian hosts in the vacuolar space. Cell,2006,125: 261-274.
    51. Costa-Silva TA, Meira CS, Ferreira IM, Hiramoto RM, Pereira-Chioccola VL. Evaluation of immunization with tachyzoite excreted-secreted proteins in a novel susceptible mouse model (A/Sn) for Toxoplasma gondii. Exp Parasitol,2008,120: 227-234.
    52. Couper KN, Nielsen HV, Petersen E, Roberts F, Roberts CW, Alexander J. DNA vaccination with the immunodominant tachyzoite surface antigen (SAG-1) protects against adult acquired Toxoplasma gondii infection but does not prevent maternofoetal transmission. Vaccine,2003,21:2813-1820.
    53. Cowman AF, Crabb BS. Invasion of red blood cells by Malaria parasites. Cell,2006, 124:755-766.
    54. Dautu G, Munyaka B, Carmen G, Zhang G, Omata Y, Xuenan X, Igarashi M. Toxoplasma gondii:DNA vaccination with genes encoding antigens MIC2, M2AP, AMA1 and BAG1 and evaluation of their immunogenic potential. Exp Parasitol, 2007,116:273-282.
    55. Deb DK, Dahiya P, Srivastava KK, Srivastava R, Srivastava BS. Selective identification of new therapeutic targets of Mycobacterium tuberculosis by FVIAT approach. Tuberculosis,2002,82:175-182.
    56. de Melo EJ, de Carvalho TU, de Souza W. Penetration of Toxoplasma gondii into host cells induces changes in the distribution of the mitochondria and the endoplasmic reticulum. Cell Struct Funct,1992,17:311-317.
    57. de Moura L, Bahia-Oliveira LMG, Wada MY, Jones JL, Tuboi SH, Carmo EH, Ramalho WM, Camargo NJ, Trevisan R, Graca RMT, da Silva AJ, Moura I, Dubey JP, Garrett DO. Waterborne outbreak of toxoplasmosis, Brazil, from field to gene. Emerging Infectious Diseases,2006,12:326-329.
    58. Denkers EY, Butcher BA. Sabotage and exploitation in macrophages parasitized by intracellular protozoans. Trends Parasitol,2005,21:35-41.
    59. Denkers EY, Gazzinelli RT. Regulation and function of T-cell-mediated immunity during Toxoplasma gondii infection. Clin Microbiol Rev,1998,11:569-588.
    60. Desolme B, Mevelec MN, Buzoni-Gatel D, Bout D. Induction of protective immunity against toxoplasmosis in mice by DNA immunization with a plasmid encoding Toxoplasma gondii GRA4 gene. Vaccine,2000,18:2512-2521.
    61. Dimier-Poisson I, Aline F, Bout D, Mevelec MN. Induction of protective immunity against toxoplasmosis in mice by immunization with Toxoplasma gondii RNA. Vaccine,2006,24:1705-1709.
    62. Dobrowolski JM, Sibley LD. Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. Cell,1996,84:933-939.
    63. Donnelly JJ, Wahren B, Liu MA. DNA Vaccines:progress and challenges. J Immunol, 2005,175:633-639.
    64. Dubey JP. Toxoplasmosis in pigs-the last 20 years. Vet Parasitol,2009,164:89-103.
    65. Dubey JP, Jones JL. Toxoplasma gondii infection in humans and animals in the United States. Int J parasitol,2008,38:1257-1278.
    66. Dziadek B, Dziadek J, Dlugonska H. Identification of Toxoplasma gondii proteins binding human lactoferrin:a new aspect of rhoptry proteins function. Exp Parasitol, 2007,115:277-282.
    67. Fang R, Nie H, Wang Z, Tu P, Zhou D, Wang L, He L, Zhou Y, Zhao J. Protective immune response in BALB/c mice induced by a suicidal DNA vaccine of the MIC3 gene of Toxoplasma gondii. Vet parasitol,2009,164:134-140.
    68. Feinberg EH, Hunter CP. Transport of dsRNA into cells by the transmembrane protein SID-1. Science,2003,301:1545-1547.
    69. Ferguson DJP. Identification of faecal transmission of Toxoplasma gondii:Small science, large characters. Int J parasitol,2009,39:871-875.
    70. Finlay BB, Falkow S. Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev,1997,61:136-169.
    71. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by doublestranded RNA in Caenorhabditis elegans. Nature,1998,391:806-811.
    72. Fox BA, Bzik DJ. De novo pyrimidine biosynthesis is required for virulence of Toxoplasma gondii. Nature,2002,415:926-929.
    73. Garcia JL, Gennari SM, Navarro IT, Machado RZ, Sinhorini IL, Freire RL, Marana ER, Tsutsui V, Contente AP, Begale LP. Partial protection against tissue cysts formation in pigs vaccinated with crude rhoptry proteins of Toxoplasma gondii. Vet Parasitol,2005,129:114-123.
    74. Gatkowska J, Gasior A, Kur J, Dlugonska H. Toxoplasma gondii:chimeric Dr fimbriae as a recombinant vaccine against toxoplasmosis. Exp Parasitol,2008,118: 266-270.
    75. Gazzinelli RT, Amichay D, Sharton-Kersten T, Grunwald E, Farber JM, Sher A. Role of macrophage-derived cytokines in the induction and regulation of cell-mediated immunity to Toxoplasma gondii. Curr Top Microbiol Immunol,1996,219:127-139.
    76. Golding H, Aliberti J, King LR, Manischewitz J, Andersen J, Valenzuela J, Landau NR, Sher A. Inhibition of HIV-1 infection by a CCR5-binding cyclophilin from Toxoplasma gondii. Blood,2003,102:3280-3286.
    77. Golding H, Khurana S, Yarovinsky F, King LR, Abdoulaeva G, Antonsson L, Owman C, Platt EJ, Kabat D, Andersen JF, Sher A. CCR5 N-terminal region plays a critical role in HIV-1 inhibition by Toxoplasma gondii-derived cyclophilin-18. J Biol Chem,2005,280:29570-29577.
    78. Guo H, Chen G, Lu F, Chen H, Zheng H. Immunity induced by DNA vaccine of plasmid encoding the rhoptry protein 1 gene combined with the geneticadjuvant of pcIFN-gamma against Toxoplasma gondii in mice. Chin Med J (Engl),2001,114: 317-320.
    79. Gurnett AM, Liberator PA, Dulski PM, Salowe SP, Donald RG, Anderson JW, Wiltsie J, Diaz CA, Harris G, Chang B, Darkin-Rattray SJ, Nare B, Crumley T, Blum PS, Misura AS, Tamas T, Sardana MK, Yuan J, Biftu T, Schmatz DM. Purification and molecular characterization of cGMP-dependent protein kinase from Apicomplexan parasites. A novel chemotherapeutic target. JBiol Chem,2002,277:15913-15922.
    80. Gurunathan S, Klinman DM, Seder RA. DNA vaccines:immunology, application, and optimization. Annu Rev Immunol,2000,18:927-974.
    81. Gurunathan S, Wu C, Freidag BL, Seder RA. DNA vaccines:a key for inducing long-term cellular immunity. Curr Opin Immunol,2000,12:442-447.
    82. Hakansson S, Charron AJ, Sibley LD. Toxoplasma evacuoles:a two-step process of secretion and fusion forms the parasitophorous vacuole. EMBO J,2001,20: 3132-3144.
    83. Halonen SK, Weidner E. Overcoating of Toxoplasma parasitophorous vacuoles with host cell vimentin type intermediate filaments. J. Eukaryot. Microbiol,1994,1: 65-71.
    84. Handfield M, Brady LJ, Progulske-Fox A, Hillman JD. IVIAT:a novel method to identify microbial genes expressed specifically during human infections. Trends Microbiol,2000,8:336-339.
    85. Handfield M, Progulske-Fox A, Hillman JD. In vivo induced genes in human diseases. Periodontol 2000,2005,38:123-134.
    86. Hang LM, John M, Asaduzzaman M, Bridges EA, Vanderspurt C, Kirn TJ, Taylor RK, Hillman JD, Progulske-Fox A, Handfield M, Ryan ET, Calderwood SB. Use of in vivo induced antigen technology (IVIAT) to identify genes uniquely expressed during human infection with Vibrio cholerae. PNAS,2003,100:8508-8513.
    87. Harper JM, Zhou XW, Pszenny V, Kafsack BFC, Carruthers VB. The novel coccidian micronemal protein MIC11 undergoes proteolytic maturation by sequential cleavage to remove an internal propeptide. Int JParasitol,2004,34:1047-1058.
    88. Harris JB, Baresch-Bernal A, Rollins SM, Alam A, LaRocque RC, Bikowski M, Peppercorn AF, Handfield M, Hillman JD, Qadri F, Calderwood SB, Hohmann E, Breiman RF, Brooks WA, Ryan ET. Identification of in vivo-induced bacterial protein antigens during human infection with Salmonella enterica serovar Typhi. Infect Immun,2006,74:5161-5168.
    89. Hartley WJ, Marshall SC. Toxoplasmosis as a cause of ovine perinatal mortality. N.Z. Vet.J.1957,5:119-124.
    90. He Y, Cai G, Ni Y, Li Y, Zong H, He L. siRNA-mediated knockdown of two tyrosinase genes from Schistosoma japonicum cultured in vitro. Exp Parasitol,2012, 132:394-402.
    91. Hensel M, Shea JE, Gleeson C, Jones MD, Dalton E, Holden DW. Simultaneous identification of bacterial virulence genes by negative selection. Science,1995,269: 400-403.
    92. Herrington DA, Hall RH, Losonsky G, Mekalanos JJ, Taylor RK, Levine MM. Toxin, toxin-coregulated pili, and the toxR regulation are essential for Vibrio cholerae pathogenesis in humans. JExp Med,1988,168:1487-1492.
    93. High KP, Joiner KA, Handschumacher RE. Isolation, cDNA sequences, and biochemical characterization of the major cyclosporin-binding proteins of Toxoplasma gondii. JBiol Chem,1994,269:9105-9112.
    94. Holec-Gasior L, Kur J. Toxoplasma gondii:Recombinant GRA5 antigen for detection of immunoglobulin G antibodies using enzyme-linked immunosorbent assay. Exp Parasitol,2010,124:272-278.
    95. Holland GN. Ocular toxoplasmosis:a global reassessment. Part I:epidemiology and course of disease. Am. J. Ophthalmol,2003,136:973-988.
    96. Holliman R.E. Congenital toxoplasmosis:prevention, screening and treatment. J. Hosp. Infect,1995,30:179-190.
    97. Huynh MH, Harper JM, Carruthers VB. Preparing for an invasion:charting the pathway of adhesion proteins to Toxoplasma micronemes. Parasitol Res,2006,98: 389-395.
    98. Igarashi M, Kano F, Tamekuni K, Kawasaki PM, Navarro IT, Vidotto O, Vidotto MC, Machado RZ, Garcia JL. Toxoplasma gondii:cloning, sequencing, expression, and antigenic characterization of ROP2, GRA5 and GRA7. Genet Mol Res.2008,7: 305-313.
    99. Innes EA, Vermeulen AN. Vaccination as a control strategy against the coccidial parasites Eimeria, Toxoplasma and Neospora. Parasitology,2006,133:145-168.
    100.Ismael AB, Sekkai D, Collin C, Bout D, Mevelec MN. The MIC3 gene of Toxoplasma gondii is a novel potent vaccine candidate against toxoplasmosis. Infect Immun,2003,71:6222-6228.
    101.Jackson AL, Burchard J, Leake D, Reynolds A, Schelter J, Guo J, Johnson JM, Lim L, Karpilow J, Nichols K, Marshall W, Khvorova A, Linsley PS. Position-specific chemical modification of sirnas reduces off target transcript silencing. RNA,2006,12: 1197-1205.
    102. James P, Vorherr T, Carafoli E. Calmodulin-binding domains: just two faced or multi-faceted? Trends Biochem Sci,1995,20:38-42.
    103 John M, Kudva IT, Griffin RW, Dodson AW, McManus B, Krastins B, Sarracino D, Progulske-Fox A, Hillman JD, Handfield M, Tarr PI, Calderwood SB. Use of in vivo-induced antigen technology for identification of Escherichia coli O157:H7 proteins expressed during human infection. Infect Immun,2005,73:2665-2679.
    104.Joiner KA, Fuhrman SA, Miettinen HM, Kasper LH, Mellman I. Toxoplasma gondii: fusion competence of parasitophorous vacuoles in Fc receptor-transfected fibroblasts. Science,1990,249:641-646.
    105.Johnsen LL, Sayles PC. Deficient humoral responses underlie susceptibility to Toxoplasma gondii in CD4-deficient mice. Infect Immun,2002,70:185-191.
    106.Jones JL, Kruszon-Moran D, Sanders-Lewis K, Wilson M. Toxoplasma gondii infection in the United States, decline from the prior decade. Am. J. Trop. Med. Hyg, 2007,77:405-410.
    107.Jongert E, Melkebeek V, De Craeye S, Dewit J, Verhelst D, Cox E. An enhanced GRA1-GRA7 cocktail DNA vaccine primes anti-Toxoplasma immune responses in pigs. Vaccine,2008,26:1025-1031.
    108.Jung C, Lee C, Grigg ME. The SRS superfamily of Toxoplasma surface proteins. Int JParasitol,2004,34:285-296.
    109.Kafsack BF, Pena JD, Coppens I, Ravindran S, Boothroyd JC, Carruthers VB. Rapid membrane disruption by a perforin-like protein facilitates parasite exit from host cells. Science.2009.323:530-533.
    110.Keeley A, Soldati D. The glideosome:a molecular machine powering motility and host-cell invasion by Apicomplexa. Trends Cell Biol,2004,14:528-532.
    111.Kim L, Denkers EY. Toxoplasma gondii triggers Gi-dependent PI 3-kinase signaling required for inhibition of host cell apoptosis. J. Cell Sci,2006,119:2119-2126.
    112.Kim YR, Lee SE, Kim CM, Kim SY, Shin EK, Chung SS, Progulske-Fox A, Hillman JD, Handfield M, Rhee JH. Identification of putative Vibrio vulnificus in vivo expressed virulence factors by the in vivo induced antigen technology (IVIAT). Infect Immun,2003,71:5461-5471.
    113.Kur J, Holec-Gasior L, Hiszczynska-Sawicka E. Current status of toxoplasmosis vaccine development. Expert Rev Vaccines,2009,8:791-808.
    114.Lambert H, Hitziger N, Dellacasa I, Svensson M, Barragan A. Induction of dendritic cell migration upon Toxoplasma gondii infection potentiates parasite dissemination. Cell Microbiol,2006,8:1611-1623.
    115.Lang C, Gross U, Luder CG. Subversion of innate and adaptive immune responses by Toxoplasma gondii. Parasitol Res,2007,100:191-203.
    116.Langermans JAM, Van Der Hulst MEB, Nibbering PH, Hiemstra OPS, Fransen L, Van Furth R. IFN-y induced L-arginine dependent toxoplasmastatic activity in murine peritoneal macrophages is mediated by endogenous tumoe necrosis factor-a. J Immunol,1992,148:568-574.
    117.Lau YL, Fong MY. Toxoplasma gondii:serological characterization and immunogenicity of recombinant surface antigen 2 (SAG2) expressed in the yeast Pichia pastoris. Exp Parasitol,2008,119:373-378.
    118.Lecordier L, Mercier C, Sibley LD, Cesbron-Delauw MF. Transmembrane insertion of the Toxoplasma gondii GRA5 protein occurs after soluble secretion into the host cell. Mol Biol Cell,1999,10:1277-1287.
    119.Lee YH, Shin DW, Lee JH, Nam HW, Ahn MH. Vaccination against murine toxoplasmosis using recombinant Toxoplasma gondii SAG3 antigen alone or incombination with Quil A. Yonsei Med J,2007,48:396-404.
    120.Lehoux DE, Sanschagrin F, Levesque RC. Genomics of the 35-kb pvd locus and analysis of novel pvdIJK genes implicated in pyoverdine biosynthesis in Pseudomonas aeruginosa. FEMS Microbiol Lett,2000,190:141-146.
    121.Leyva R, Herion P, Saavedra R. Genetic immunization with plasmid DNA coding for the ROP2 protein of Toxoplasma gondii. Parasitol Res,2001,87:70-79.
    122.Lindh JG, Botero-Kleiven S, Arboleda JI, Wahlgren M. A protease inhibitor associated with the surface of Toxoplasma gondii. Mol Biochem Parasitol,2001,116: 137-145.
    123.Lovett JL, Marchesini N, Moreno SN, Sibley LD. Toxoplasma gondii microneme secretion involves intracellular Ca2+ release from IP3/ryanodine sensitive stores. J Biol Chem,2002,277:25870-25876.
    124.Lourenco EV, Bernardes ES, Silva NM, Mineo JR, Panunto-Castelo A, Roque-Barreira MC. Immunization with MIC1 and MIC4 induces protective immunity against Toxoplasma gondii. Microbes Infect,2006,8:1244-1251.
    125.Lovett JL, Sibley LD. Intracellular calcium stores in Toxoplasma gondii govern invasion of host cells. J. Cell Sci,2003,116:3009-3016.
    126.Luft BJ, Remington JS. Toxoplasmatic encephalitis in AIDS. Clin Infect Dis,1992, 15:211-222.
    127.Lunden A, Lovgren K, Uggla A, Araujo FG. Immune responses and resistance to Toxoplasma gondii in mice immunized with antigens of the parasite incorporated into immunostimulating complexes. Infect Immun,1993,61:2639-2643.
    128.MacFarlane RC, Singh U. Loss of dsRNA-based gene silencing in Entamoeba histolytica:implications for approaches to genetic analysis. Exp Parasitol,2008,119: 296-300.
    129.Mahan MJ, Heithoff DM, Sinsheimer RL, Low DA. Assessment of bacterial pathogenesis by analysis of gene expression in the host. Annu Rev Genet,2000,34: 139-164.
    130.Mahan MJ, Slauch JM, Mekalanos JJ. Selection of bacterial virulence genes that are specifically induced in host tissues. Science,1993,259:686-688.
    131.McLeod R, Boyer K, Karrison T, Kasza K, Swisher C, Roizen N, Jalbrzikowski J, Remington J, Heydemann P, Noble AG, Mets M, Holfels E, Withers S, Latkany P, Meier P. Outcome of treatment for congenital toxoplasmosis 1981-2004:the National Collaborative Chicago-Based, Congenital Toxoplasmosis Study. Clin Infect Dis,2006, 42:1383-1394.
    132.Meissner M, Reiss M, Viebig N, Carruthers V, Toursel C, Tomavo S, Ajioka J, Soldati D. A family of transmembrane microneme proteins of Toxoplasma gondii contain EGF-like domains and function as escorters. J Cell Sci,2002,115:563-574.
    133.Mekalanos JJ. Environmental signals controlling expression of virulence determinants in bacteria. JBacteriol,1992,174:1-7.
    134.Mercier C, Adjogble KD, Daubener W, Delauw MF. Dense granules:Are they key organelles to help understand the parasitophorous vacuole of all apicomplexa parasites? Int. J. Parasitol,2005,35:829-849.
    135.Miranda K, de Souza W, Plattner H, Hentschel J, Kawazoe U, Fang J, Moreno SN. Acidocalcisomes in Apicomplexan parasites. Exp Parasitol,2008,118:2-9.
    136.Montoya JQ Liesenfeld O. Toxoplasmosis. Lancet,2004,363:1965-1976.
    137.Mordue DG, Sibley LD. Intracellular fate of vacuoles containing Toxoplasma gondii is determined at the time of formation and depends on the mechanism of entry. J. Immunol,1997,159:4452-4459.
    138.Moreno SN, Ayong L, Pace DA. Calcium storage and function in apicomplexan parasites. Essays Biochem,2011,51:97-110.
    139.Moreno SNJ, Docampo R. Calcium regulation in protozoan parasites. Curr. Opin. Microbiol,2003,6:359-364.
    140.Morris MT, Coppin A, Tomavo S, Carruthers VB. Functional analysis of Toxoplasma gondii protease inhibitor 1.J Biol Chem,2002,277:45259-45266.
    141.Mun HS, Aosai F, Yano A. Role of Toxoplasma gondii HSP70 and Toxoplasma gondii HSP30/bagl in antibody formation and prophylactic immunity in mice experimentally infected with Toxoplasma gondii. Microbiol Immunol,1999,43: 471-479.
    142.Nagamune K, Beatty WL, Sibley LD. Artemisinin induces calcium-dependent protein secretion in the protozoan parasite Toxoplasma gondii. Eukaryotic cell,2007,6: 2147-2156.
    143.Nagamune K, Hicks LM, Fux B, Brossier F, Chini EN, Sibley LD. Abscisic acid controls calcium-dependent egress and development in Toxoplasma gondii. Nature, 2008a,451:207-210.
    144.Nagamune K, Moreno SN, Chini EN, Sibley LD. Calcium regulation and signaling in apicomplexan parasites. Subcell Biochem,2008b,47:70-81.
    145.Nebl T,Prieto JH,Kapp E, Smith BJ, Williams MJ,Yates JR 3rd, Cowman AF, Tonkin CJ. Quantitative in vivo analyses reveal calcium-dependent phosphorylation sites and identifies a novel component of the Toxoplasma invasion motor complex. PLoS Pathog,2011,7:e1002222.
    146.Nielsen HV, Di Cristina M, Beghetto E, Spadoni A, Petersen E, Gargano N. Toxoplasma gondii:DNA vaccination with bradyzoite antigens induces protective immunity in mice against oral infection with parasite cysts. Exp Parasitol,2006,112: 274-279.
    147.O'Connell E, Wilkins MF, Te Punga WA. Toxoplasmosis in sheep. Ⅱ. The ability of a live caccine to prevent lamb losses after an intravenous challenge with Toxoplasma gondii. NZ Vet J,1988,36:1-4.
    148.Ojo KK, Larson ET, Keyloun KR, Castaneda LJ, Derocher AE, Inampudi KK, Kim JE, Arakaki TL, Murphy RC, Zhang L, Napuli AJ, Maly DJ, Verlinde CL, Buckner FS, Parsons M, Hol WG, Merritt EA, Van Voorhis WC. Toxoplasma gondii calcium-dependent protein kinase 1 is a target for selective kinase inhibitors. Nat Struct Mol Biol,2010,17:602-607.
    149.Parmley S, Slifer T, Araujo F. Protective effects of immunization with a recombinant cyst antigen in mouse models of infection with Toxoplasma gondii tissue cysts. J Infect Dis,2002,185:90-95.
    150.Parmley SF, Weiss LM, Yang S. Cloning of a bradyzoite-specific gene of Toxoplasma gondii encoding a cytoplasmic antigen. Mol Biochem Parasitol,1995,73:253-257.
    151.Parmley SF, Yang S, Harth G, Sibley LD, Sucharczuk A, Remington JS. Molecular characterization of a 65-kilodalton Toxoplasma gondii antigen expressed abundantly in the matrix of tissue cysts. Mol Biochem Parasitol,1994,66:283-296.
    152.Plattner F, Soldati-Favre D. Hijacking of host cellular functions by the apicomplexa. Annu. Rev. Microbiol,2008,62:471-487.
    153.Pezzella-D'Alessandro N, Le Moal H, Bonhomme A,Valere A, Klein C, Gomez-Marin J, Pinon JM. Calmodulin distribution and the actomyosin cytoskeleton in Toxoplasma gondii. J Histochem Cytochem,2001,49:445-454.
    154.Pothier JF, Wisniewski-Dye F, Weiss-Gayet M, Moenne-Loccoz Y, Prigent-Combaret C. Promoter-trap identification of wheat seed extract-induced genes in the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp245. Microbiology, 2007,153:3608-3622.
    155.Peterson BZ, DeMaria CD,Adelman JP,Yue DT. Calmodulin is the Ca2+ sensor for Ca2+ -dependent inactivation of L-type calcium channels. Neuron,1999,22:549-558.
    156.Pezzella N, Bouchot A, Bonhomme A, Pingret L, Klein C, Burlet H, Balossier G, Bonhomme P, Pinon JM. Involvement of calcium and calmodulin in Toxoplasma gondii tachyzoite invasion. Eur J Cell Bioly,1997; 74:92-101.
    157.Pszenny V, Angel SO, Duschak VG, Paulino M, Ledesma BE, Yabo MI, Guamera E, Ruiz AM, Bontempi EJ. Molecular cloning, sequencing and expression of a serine proteinase inhibitor gene from Toxoplasma gondii. Mol Biochem Parasitol,2000,15: 241-249.
    158.Pszenny V, Ledesma BE, Matrajt M, Duschak VG, Bontempi EJ, Dubremetz JF, Angel SO. Subcellular localization and post-secretory targeting of TgPI, a serine proteinase inhibitor from Toxoplasma gondii. Mol Biochem Parasitol,2002,121: 283-286.
    159.Rainey PB, Preston GM. In vivo expression technology strategies:valuable tools for biotechnology. Curr Opin Biotechnol,2000,11:440-4.
    160.Ramachandran N, Hainsworth E, Bhullar B, Eisenstein S, Rosen B, Lau AY, Walter JC, LaBaer J. Self-assembling protein microarrays. Science,2004,305:86-90.
    161.Remington JS. Toxoplasmosis and congenital infection. Birth Defects,1968,4: 49-56.
    162.Richardson J, Craighead JC, Cao SL, Handfield M. Concurrence between the gene expression pattern of Actinobacillus actinomycetemcomitans in localized aggressive periodontitis and in human epithelial cells. JMed Microbiol,2005,54:497-504.
    163.Rollins SM, Peppercorn A, Hang L, Hillman JD, Calderwood SB, Handfield M, Ryan ET. In vivo induced antigen technology (IVIAT). Cell Microbiol,2005,7:1-9.
    164.Rollins SM, Peppercorn A, Young JS, Drysdale M, Baresch A, Bikowski MV, Ashford DA, Quinn CP, Handfield M, Hillman JD, Lyons CR, Koehler TM, Calderwood SB, Ryan ET. Application of in vivo induced antigen technology (IVIAT) to Bacillus anthracis. PLoS One,2008,3:0001824.
    165.Saeij JP, Boyle JP, Coller S, Taylor S, Sibley LD. Polymorphic secreted kinases are key virulence factors in toxoplasmosis. Science,2006,314:1780-1783.
    166.Saeij JP, Coller S, Boyle JP, Jerome ME, White MW, Boothroyd JC. Toxoplasma co-opts host gene expression by injection of a polymorphic kinase homologue. Nature,2007,445:324-327.
    167.Salim KY, Cvitkovitch DG, Chang P, Bast DJ, Handfield M, Hillman JD, de Azavedo JC. Identification of group A Streptococcus antigenic determinants upregulated in vivo. Infect Immun,2005,73:6026-6038.
    168.Sayles PC, Gibson GW, Johnsen LL. B cells are essential for vaccination-induced resistance to virulent Toxoplasma gondii. Infect Immun,2000,68:1026-1033.
    169.Schneider WP, Ho SK, Christine J, Yao M, Marra A, Hromockyj AE. Virulence gene identification by differential fluorescence induction analysis of Staphylococcus aureus gene expression during infection-simulating culture. Infect Immun,2002,70: 1326-33.
    170.Schwab JC, Beckers CJ, Joiner KA. The parasitophorous vacuole membrane surrounding intracellular Toxoplasma gondii functions as a molecular sieve. Proc. Natl. Acad. Sci. USA,1994,91:509-513.
    171.Seeber F, Beuerle B, Schmidt HH. Cloning and functional expression of the calmodulin gene from Toxoplasma gondii. Mol Biochem Parasitol,1999,99: 295-299.
    172.Sher A, Collazzo C, Scanga C, Jankovic D, Yap G, Aliberti J. Induction and regulation of IL-12-dependent host resistance to Toxoplasma gondii. Immunol Res, 2003,27:521-528.
    173.Sher A, Oswald IP, Hieny S, Gazzinelli RT. Toxoplasma gondii induces a T independent IFN-y response in natural killer cells that requires both adherant accessory cells and tumor necrosis factor-a. J Immunol,1993,150:3982-3989.
    174.Sher A, Reis e Sousa C. Ignition of the type 1 response to intracellular infection by dendric cell derived IL-12. Eur Cytokine Netw,1998,9:65-8.
    175.Siachoque H, Guzman F, Burgos J, Patarroyo ME, Gomez-Marin JE. Toxoplasma gondii:immunogenicity and protection by P30 peptides in a murine model. Exp Parasitol,2006,114:62-65.
    176.Sibley LD, Adam SL, Fukutomi Y. Tumor necrosis factor-a triggers antitoxoplasmal activity of IFN-y primed macrophages. J Immunol,1991,147:2340-2345.
    177.Sibley LD. Intracellular Parasite Invasion Strategies. Science,2004,304:248-253.
    178.Sibley LD, Niesman IR, Parmley SF, Cesbron-Delauw MF. Regulated secretion of multi-lamellar vesicles leads to formation of a tubulo-vesicular network in host-cell vacuoles occupied by Toxoplasma gondii. J. Cell Sci,1995,108:1669-1677.
    179.Sijen T, Fleenor J. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell,2001,107:465-476.
    180.Smith H. What happens to bacterial pathogens in vivo? Trends Microbiol,1998,6: 239-243.
    181.Soldati D, Dubremetz JF, Lebrun M. Microneme proteins:structural and functional requirements to promote adhesion and invasion by the apicomplexan parasite Toxoplasma gondii. Int J Parasitol,2001,31:1293-1302.
    182.Solis CF, Guillen N. Silencing Genes by RNA interference in the protozoan parasite entamoeba histolytica. Methods Mol Biol,2008,442:113-128.
    183.Song YH, Kozarov EV, Walters SM, Cao SL, Handfield M, Hillman JD, Progulske-Fox A. Genes of periodontopathogens expressed during human disease. Ann Periodontol,2002,7:38-42.
    184.Spencer JA, Smith BF, Guarino AJ, Blagburn BL, Baker HJ. The use of CpG as an adjuvant to Toxoplasma gondii vaccination. Parasitol Res,2004,92:313-316.
    185.Stanley AC, Buxton D, Innes EA, Huntley JF. Intranasal immunisation with Toxoplasma gondii tachyzoite antigen encapsulated into PLG microspheres induces humoral and cell-mediated immunity in sheep. Vaccine,2004,22:3929-3941.
    186.Sugi T, Kato K, Kobayashi K, Pandey K, Takemae H, Kurokawa H, Tohya Y, Akashi H. Molecular analyses of Toxoplasma gondii calmodulin-like domain protein kinase isoform 3. Parasitol Int,2009,58:416-423.
    187.Tao Q,Wang Z,Feng H,Fang R,Nie H,Hu M, Zhou Y,Zhao J. Seroprevalence and risk factors for Toxoplasma gondii infection on pig farms in centr-al China. J Parasitol,2011,97:262-264.
    188.Taylor S, Barragan A, Su C, Fux B, Fentress S, Tang K, Beatty WL, Hajj HE, Jerome M, Behnke MS, White M, Wootton JC, Sibley LD. A secreted serine-threonine kinase determines virulence in the eukaryotic pathogen Toxoplasma gondii. Science,2006, 314:1776-1780.
    189.Tenter AM, Heckerotha AR, Weiss LM. Toxoplasma gondii:from animals to humans. Int J parasitol,2000,30:1217-1258.
    190.Travier L, Mondragon R, Dubremetz JF, Musset K, Mondragon M. Functional domains of the Toxoplasma GRA2 protein in the formation of the membranous nanotubular network of the parasitophorous vacuole. Int J Parasitol,2008,7: 757-773.
    191.Valdivia RH, Falkow S. Bacterial genetics by flow cytometry:rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol Microbiol,1996,22:367-378.
    192.Valdivia RH, Falkow S. Fluorescence-based isolation of bacterial genes expressed within host cells. Science,1997,277:2007-2011.
    193.van Drunen Littel-van den Hurk S, Loehr BI, Babiuk LA Immunization of livestock with DNA vaccines:current studies and future prospects. Vaccine,2001,19: 2474-2479.
    194.Vercruysse J, Knox DP, Schetters TP, Willadsen P. Veterinary parasitic vaccines: pitfalls and future directions. Trends Parasitol,2004,20:488-492.
    195.Verma R, Khanna P. Development of Toxoplasma gondii vaccine:A global challenge. Hum Vaccin Immunother,2012,9:1-3.
    196.Wernimont AK, Artz JD, Finerty P Jr, Lin YH, Amani M, Allali-Hassani A, Senisterra G, Vedadi M, Tempel W, Mackenzie F, Chau I, Lourido S, Sibley LD, Hui R. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium. Nat Struct Mol Biol,2010,17:596-601.
    197.Wetzel DM, Chen LA, Ruiz FA, Sibley LD. Calcium-mediated protein secretion Potentiates motility in Toxoplasma gondii. J Cell Sci,2004,117:5739-5748.
    198.Wiersma HI, Galuska SE, Tomley FM, Sibley LD, Liberator PA, Donald RGK. A role for coccidian cGMP-dependent protein kinase in motility and invasion. Int J Parasitol,2004,34:369-380.
    199.Wilkins MF, O'Connell E, Te Punga WA. Toxoplasmosis in sheep III. Further evaluation of the ability of a live Toxoplasma gondii vaccine to prevent lamb losses and reduce congenital infection following experimental oral challenge. NZ Vet J, 1988,36:86-89.
    200.Wolf A, Cowen D, Paige B. Human toxoplasmosis:occurrence in infants as an encephalomyelitis verification by transmission to animals. Science,1939,89: 226-227.
    201.Wu Y, Kuzma J, Marechal E, Graeff R, Lee HC, Foster R, Chua NH. Abscisic acid signaling through cyclic ADP-ribose in plants. Science,1997,278:2126-2130.
    202.Yarovinsky F. Toll-like receptors and their role in host resistance to Toxoplasma gondii. Immunol Lett,2008,119:17-21.
    203.Yoo JY, Kim HC, Zhu W, Kim SM, Sabet M, Handfield M, Hillman J, Progulske-Fox A, Lee SW. Identification of Tannerella forsythia antigens specifically expressed in patients with periodontal disease. FEMS Microbiol Lett,2007,275:344-352.
    204. Yu L, Gao YF, Li X, Qiao ZP, Shen JL. Double-stranded RNA specific to adenosine kinase and hypoxanthine-xanthine-guanine-phosphoribosyltransferase retards growth of Toxoplasma gondii. Parasitol Res,2009,104:377-383.
    205.Yu L, Gao YF, Qiao ZP, Li CL, Li X, Shen JL. Toxoplasma gondii:siRNA can mediate the suppression of adenosine kinase expression. Exp Parasitol,2008,118: 96-102.
    206.Zenner L, Estaquier J, Darcy F, Maes P, Capron A, Cesbron-Delauw MF. Protective immunity in the rat model of congenital toxoplasmosis and the potential of excreted-secreted antigensas vaccine components. Parasite Immunol,1999,21: 261-272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700