水源粪肠球菌耐药情况调查及耐药影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
畜牧水产上抗生素类药物大量而频繁的使用导致的细菌耐药性问题己引起国内外广泛关注。为了解水环境中细菌对常用抗生素的耐药情况以及残留兽药进入水环境中对水源细菌耐药性的影响,本试验以粪肠球菌为指示菌,对不同水环境中细菌耐药性进行了监测,同时建立模型池塘生态系统研究不同用药方式对水源细菌耐药性的影响。试验分为两个部分:
     (一)从天然水源(福州国家森林公园和模型池塘生态系统)、水产养殖场(鱼塘、鳗鱼场、牛场鱼塘和猪场鱼塘)、人类居住环境(生活小区、污水沟及闽江)和水生动物(蝌蚪、鳗鱼、黄颡鱼、鲮鱼和鲫鱼)共分离出539株粪肠球菌,根据美国临床和实验室标准协会(CLSI)推荐的微量肉汤稀释法进行药敏试验,了解水源粪肠球菌对6种常见抗生素的耐药情况。结果如下:
     不同水源分离粪肠球菌对6种常见抗生素的耐药情况不同:天然水源分离菌耐药率、耐药水平、多重耐药率和耐药指数(ARI)在本试验中最低;其次为生活小区池塘和鳗鱼场,除对土霉素的耐药率较高,分别为69.2%和100%外,对其他抗生素耐药率均比较低。水产养殖场(鳗鱼场除外)、人类居住环境(污水沟和闽江)和水生动物耐药情况较复杂,不仅耐药率、耐药水平和ARI较高,多重耐药情况也比较严重。同时,水生动物分离菌耐药情况比相应水环境严重。
     试验结果证明了细菌耐药性与水源受抗生素污染之间存在一定的联系。水环境中抗生素暴露水平越高,分离菌耐药率、耐药水平和多重耐药现象越严重;反之,耐药情况越简单。
     (二)通过建立模型池塘生态系统,选取土霉素和环丙沙星来研究抗生素以不同的途径进入水环境后对水源细菌耐药性的影响。试验采用直接用药组、含药饲料组和含药粪便组3种不同的用药方式,于投药前和投药后不同时间点采样进行细菌药敏试验,结果如下:
     3种用药方式下,含药饲料组对水源粪肠球菌耐药性影响最大。在投药后3d,分离菌耐药率达到最高,同时土霉素饲料组和环丙沙星饲料组出现了MIC值大于256μg/mL的高水平耐药菌,所占比率分别为63.3%和20%;之后耐药率回落比较缓慢,4个月后,仍有20%以上的耐药菌。直接用药组对水源细菌耐药性的影响略大于含药粪便组。用药后含药粪便组细菌耐药率降低最快,2个月后几乎无耐药性。土霉素药物组与环丙沙星药物组相比,分离菌耐药情况更严重,用药4个月后,3种方式下仍然可以分离出比对照组比例高的土霉素耐药菌。
     试验结果提示用药方式不同,细菌耐药率、耐药水平也不一样;此研究结果可为水产养殖如何正确用药提供科学依据。
With the abuse of antibiotics in animal husbandry and aquaculture, the problem of antibiotic resistance of bacteria has caused wide attention at home and abroad. To study the resistance of bacteria to common antibiotics in aquatic environment and the influence of veterinary drug residues on water source bacteria. Enterococcus faecalis was chosen as indicative bacteria in this study, bacterial resistance in different aquatic environments was monitored. Then, model pond ecosystem was built to research the effect of different medication ways on antibiotics resistance of water source Enterococcus faecalis. This study includes two parts.
     (1) 539 strains of E. faecalis were isolated from natural water (national forest park in fuzhou city and model pond ecosystem), aquaculture farms (fish farm, eel farm, cattle-fish farm and pig-fish farm), human inhabitation environments (residence district pond, sewage and Minjiang River), and aquatic animals (tadpoles, eel, yellow catfish, mud carp and crucian carp), antibiotic susceptibility test was carried by micro-broth-dilution method according to Clinical and Laboratory Standards Institute (CLSI).The objective was to investigate antibiotic resistance conditions to six kinds of antibiotics of water source E. faecalis. The result indicated that:
     Different water source E. faecalis had different resistance conditions. Natural water isolated E. faecalis had the lowest resistance rate, resistance level, multi-drug resistance rate and antibacterial resistance index(ARI). Residence district pond and eel farm isolated E. faecalis had high resistance rates to oxytetracycline, which were 69.2% and 100%, respectively; and had low resistance rates to other antibiotics. Aquaculture farms (except for eel farm), human inhabitation environments (sewage and Minjiang River) and aquatic animal isolated E. faecalis showed complex resistance conditions, they had not only high resistance rates, resistance levels and ARI, but also severe multi-drug resistance conditions. At the same time, aquatic animal isolated E. faecalis had more serious resistance than relevant aquatic environments isolated E. faecalis.
     The results proved that there was a definite relation between bacterial resistance and water pollution conditions by antibiotics. The higher the antibiotics exposure level was, the heavier the resistance rate, resistance level and multi-drug resistance of E. faecalis were; conversely, the resistance conditions of isolates were simple.
     (2) By building model pond ecosystem, we chosen two antibiotics (oxytetracycline and ciprofloxacin) to study the effect factors of resistance of water source E. faecalis. Three different medication groups including direct medication group, drug-containing feed group and drug-containing feces group were used, samples were collected before medication and after medication in different time points, then antibiotic susceptibility test was carried. The result indicated that:
     Comparison the three medication ways, drug-containing feed group showed the most influence to antibiotic resistance of water source E. faecalis. On the 3rd day after medication, the resistance rates of isolates reached to the highest, and there were some high level drug-resistant bacteria with MIC≥256μg/mL in oxytetracycline-containing feed group and ciprofloxacin-containing feed group, the rates of them were 63.3% and 20%, respectively; then the resistance rate fell slowly. After 4 months, resistant bacteria still could be isolated; the rate was above 20%. The influence of water source E. faecalis in direct medication group was a little bigger than drug-containing feces group. But resistance rate in drug-containing feces group fell fast; and became few after 2 months. Compared with ciprofloxacin-containing group, E. faecalis isolated in oxytetracycline-containing group showed the severer resistance conditions. After 4 months, we could still isolate E. faecalis resistant to oxytetracycline.
     The results suggested that different medication ways had different resistance rates and resistance levels. It also provided reliable medication evidences for aquaculture farming.
引文
[1]高迎春,魏秀丽,蔡芳芹,等.动物应用抗菌药的风险及防制对策[J].中国兽医杂志,2006,40(2):43-48.
    [2]俞道进,曾振灵,陈杖榴.四环素类抗生素残留对水生态环境影响的研究进展[J].中国兽医学报,2004,24(5):515-517.
    [3]Kerry J,Hiney M,Coyne R,et al.Fish feed as a source of oxytetracycline-resistant bacteria in the sediments under fish farms[J].Aquaculture,1995(131):101-113.
    [4]徐士新.我国对抗菌药物耐药性应采取的措施[J].中国兽医杂志,2001,35(6):39-41.
    [5]Mazel D,Davies J.Antibiotic resistance in microbes[J].Cellular and Molecular Life Sciences,1999(56):742-754.
    [6]Jjemba PK.The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land:a review[J].Agriculture,Ecosystems and Environment 2002(93):267-278.
    [7]Hamscher G,Pawelzick HT,Sczesny S,et al.Antibiotics in Dust Originating from a Pig-Fattening Farm:A New Source of Health Hazard for Farmers?[J].Environmental Health Perspectives,2003,111(13):1590-1594.
    [8]Samuelsen OB,Torsvik A.Long-range changes in oxytetracycline concentration and bacterial resistance toward oxytetracycline in a fish sediment after medication[J].Soil Total Environ,1992(114):25-36.
    [9]俞道进,黄一帆,邓文华,等.猪场大肠杆菌耐药性的流行病学调查[J].福建农林大学报,2005,34(3):358-362.
    [10]倪柏锋,朱家新,陆国林,等.浙江地区动物细菌性病原结构及耐药性变迁的研究[J].中国畜牧兽医,2007,34(2):147-149.
    [11]潘志明,焦新安,刘学贤,等.鸡白痢沙门氏菌耐药性的变化趋势[J].中国预防兽医学报,1999,21(14):305-307.
    [12]杜银中,陈泽祥,吴礼洁,等.西宁地区仔猪大肠杆菌血清型调查及耐药性监测[J].畜牧与兽医,2002,34(6):33-34.
    [13]Dijck PV,Van de Voorde H.Sensitivity of environmental microorganisms to antimicrobial agents[J].Appl Environ Microbiol,1976,31:332-336.
    [14]Miranda CD,Zemelman R.Antimicrobial multiresistance in bacteria isolated from freshwater Chilean salmon farms[J].The Science of The Total Environment,2002,293(13):207-218.
    [15]Raloff,J.Waterways carry antibiotic resistance[J].The Weekly Newsmagazine of Science,1999,155(23):356.
    [16]沈叙庄.关注对动物使用抗生素与细菌耐药的问题[J].中华儿科杂志,2002,40(8):452-453.
    [17]Wolfgang Witte.Ecological impact of antibiotic use in animals on different complex microflora:environment[J].International Journal of Antimicrobial Agents,2000(14):321-325.
    [18]叶应芜,杨天兵.细菌耐药机制的研究进展[J].中华医学检验杂志,1995,18(6):325-327.
    [19]陈代杰.抗菌药物与细菌耐药性[M].上海:华东理工大学出版社,2001,11.
    [20]叶贺佳,叶万树,黄东璋.细菌耐药性的产生机理及其控制对策[J].动物医学进展,2005,26(10):33-38.
    [21]吴聪明,陈杖榴.细菌耐药性扩散的机制[J].动物医学进展,2003,24(4):6-11.
    [22]Shepard BD,Gilmore MS.Antibiotic-resistant enterococci:the mechanisms and dynamics of drug introduction and resistance[J].Microbes and Infection,2002,(4):215-224.
    [23]Schaberg DR,Culver DH,Gaynes RP.Major Trends in the Microbial Etiology of Nosocomial Infection[J].The American Journal of Medicine,1991,91(3B):72S-75S.
    [24]李景云,马越.粪肠球菌的耐药性分析和聚类分析在流行病学研究中应用[J].中国药事,2003,12(17):769-771.
    [25]Cabllero-Granado FJ,Cisneros JM,Luque R,et al.Comparative study of bacteremias caused by Enterococcus spp.with and without high-level resistance to gentamicin[J].Journal of Clinical Microbiology,1998,36(2):520-525.
    [26]RuoffKL,Maza LD,Murtagh MJ,et al.Species identities of Enterococci isolated from clinical specimens[J].Journal of Clinical Microbiology,1990,28(3):435-437.
    [27]Monstein HJ,Mikael Q,Annika S,et al.Division of the genus Enterococcus into species groups using PCR-Based molecular typing methods[J].Microbiology,1998,(144):1171-1179.
    [28]齐亚银,剡根强,王静梅,陈宏伟,等.致羔羊脑炎型粪肠球菌的分离及鉴定[J].石河子大学学报(自然科学版),2005,23(2):200-202.
    [29]Cetinkaya Y,Falk P,Mayhall CG Vancomycin-resistant enterococci[J].Clinical Microbiology Reviews,2000,13(4):686-707.
    [30]Coque TM,Tomayko JF,Ricke SC,et al.Vancomycin-Resistant Enterococci from Nosocomial,Community,and Animal Sources in the United States[J].Antimicrobial Agents and Chemotherapy,1996,40(11):2605-2609.
    [31]Boyce JM,Opal SM,Chow JW,et al.Outbreak of multidrug-resistant Enterococcus faecium with transferable VanB class vancomycin resistance[J].Journal of Clinical Microbiology,1994,32(5):1148-1153.
    [32]Cray JW,Jeorge RH.Experience of vancomycin-resistant Enterococci in a children's hospital[J].Journal of Hospital Infection,2000,(45):11-18.
    [33]McCarthy KM,Van Nierop W,Duse A,et al.Control of an outbreak of vancomycin-resistant Enterococcus faecium in an oncology ward in South Africa:effective use of limited resources[J].Journal of Hospital Infection,2000,(44):294-300.
    [34]Petersen A,Andersen JS,Kaewmak T,et al.Impact of Integrated Fish Farming on Antimicrobial Resistance in a Pond Environment[J].Applied and environment microbiology,2002,68(12):6036-6042.
    [35]Petersen A,Dalsgaard A.Antimicrobial resistance of intestinal Aeromonas spp.and Enterococcus spp.in fish cultured in integrated broiler-fish farms in Thailand[J].Aquaculture.2003(219):71-82.
    [36]I.Kuhn,A.Iversen,L.G.Burman,et al.Epidemiology and ecology ofenterococci,with special reference to antibiotic resistant strains,in animals,humans and the environment[J].International Journal of Antimicrobial Agents,2000(14):337-342.
    [37]P Martins da Costa,P Vaz-Pires,F Bemardo,et al.Antimicrobial resistance in Enterococcus spp.isolated in inflow,effluent and sludge from municipal sewage water treatment plants[J].Water research,2006(40):1735-1740.
    [38]Harwood VJ,Brownell M,Perusek W,et al.Vancomycin-Resistant Enterococcus spp.Isolated from Wastewater and Chicken Feces in the United States[J].Applied and Environmental Microbiology,2001,67(10):4930-4933.
    [39]Aarestrup FM,Hasman H.Jensen LB,et al.Antimicrobial Resistance among Enterococci from Pigs in Three European Countries[J].Applied and Environmental Microbiology,2002,68(8):4127-4129.
    [40]杜蓉.肠球菌的耐药机制研究进展[J].华西医学,2006,21(2):395-396.
    [41]方小龙,陈群.肠球菌耐药机制研究进展[J].医学综述2006.12(19):1165-1166.
    [42]Roberts MC,Sutcliffe J,Courvalin P,et al.Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants[J].Antimicroblal Agents and Chemotherapy,1999,43(12):2823-2830.
    [43]糜祖煌.肠球菌的耐药性及耐药基因检测[J].现代实用医学,2004,16(7):385-386.
    [44]Garnier F,Gambarotto K,Denis F,et al.Molecular study of vancomycin-resistant enterococci isolated from humans and from food in a cattle-rearing area of France[J].Joumal of Antimicrobial Chemotherapy,2004,54(1):236-239.
    [45]Aarestrup FM,Agerso Y,Gerner-Smidt P,et al.Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community,broilers,and pigs in Denmark[J].Diagnostic Microbiology and Infectious Disease.2000(37):127-137.
    [46]Hummel A,Holzapfel WH,Franz CMAP.Characterisation and transfer of antibiotic resistance genes from enterococci isolated from food[J].Systematic and Applied Microbiology,2007(30):1-7.
    [47]Wilcks A,Andersen SR,Licht TR.Characterization of transferable tetracycline resistance genes in Enterococcusfaecalis isolated from raw food[J].FEMS Microbiology Letters,2005(243):15-19.
    [48]Ng LK,Martin I,Alfa M,et al.Multiplex PCR for the detection of tetracycline resistant genes[J].Molecular and Cellular Probes.2001(15):209-215.
    [49]Bertrand X,Mulin B,Viel JF,et al.Common PFGE patterns in antibiotic-resistant Enterococcus faecalis from humans and cheeses[J].Food Microbiology,2000(17):543-551.
    [50]Simjee S,Zhang Y,McDermott PF,et al.Heterogeneity of vat(E)-carrying plasmids in Enterococcus faecium recovered from human and animal sources[J].International Journal of Antimicrobial Agents,2006(28):200-205.
    [51]Depardieu F,Perichon B,Courvalin P.Detection of the van Alphabet and Identification of Enterococci and Staphylococci at the Species Level by Multiplex PCR[J].Journal of clinical microbiology,2004,42(12):5857-5860.
    [52]Poyart C,Quesnes G,Trieu-Cuot P.Sequencing the Gene Encoding Manganese-Dependent Superoxide Dismutase for Rapid Species Identification of Enterococci[J].Journal of Clinical Microbiology,2000,38(1):415-418.
    [53]Angeletti S,Lorino G,Gherardi G,et al.Routine Molecular Identification of Enterococci by Gene-Specific PCR and 16S Ribosomal DNA Sequencing[J].Journal of Clinical Microbiology,2001,39(2):794-797.
    [54]杨华为,蒋迪,王璨,等.细菌鉴定和耐药性检测方法的发展[J].临床药物治疗杂志,2004,4(4):39-45.
    [55]林东防,徐晓刚,朱德妹.23SrRNA 基因在常见病原菌鉴定中的应用[J].中华检验医学杂志,2005,28(1):79-82.
    [56]Tsai JC,Hsueh PR,Lin HM,et al.Identification of Clinically Relevant Enterococcus Species by Direct Sequencing of groES and Spacer Region[J].Journal of Clinical Microbiology,2005,43(1):235-241.
    [57]Liu DY,Wang C,Swiatlo EJ,et al.PCR amplification of a species-specific putative transcriptional regulator gene reveals the identity of Enterococcus faecalis[J].Research in Microbiology,2005(156):944-948.
    [58]叶贺佳,叶万树,黄东璋.细菌耐药性的产生机理及其控制对策[J].动物医学进展,2005,26(10):33-38.
    [59]曹文斌,王文魁,薛静,等.细菌耐药机制及其控制对策[J].中国畜牧兽医,2005,32(11):52-54.
    [60]黄一帆.浅谈21世纪中兽医学的发展[J].福建畜牧兽医,2000(1):15-16.
    [61]陈民钧,王辉.重视细菌耐药监测[J].冲华检验医学杂志,2002(25):325-326.
    [62]马越,李景云,金少鸿.努力加强我国细茵耐药性的监测[J].中华医学杂志,2003(83):1029-1030.
    [63]金洪钧,孙丽伟.实验室水生微宇宙的组建和基本生态学过程[J].南京大学学报,1992,28(1):98-106.
    [64]杜秀英,竺乃恺,夏希娟,等.微宇宙理论及其在生态毒理学研究中的应用[J].生态学报,2001,21(10):1726-1733.
    [65]黄玉瑶,高玉荣,任淑智,等.模型池塘生态系统设计与应用研究[J].应用与环境生物学报,1995,1(2):103-113.
    [66]金洪钧,孙丽伟.模拟水生态系统及其在环境研究中的应用[J].应用生态学报,1990,1(4):356-363.
    [67](美)默里等著,徐建国等译.临床微生物学[M].北京:科学出版社,2005.407-409.
    [68]卓鸿磷.动物源粪肠球菌耐药性流行病学研究[D].福州:福建农林大学,2007.
    [69]Wiggins BA,Andrews RW,Conway RA,et al.Use of Antibiotic Resistance Analysis To Identify Nonpoint Sources of Fecal Pollution[J].Applied Environmental Microbiology,1999,65(8):3483-3486.
    [70]聂湘平,魏泰莉,蓝崇钰.多氯联苯在模拟水生态系统中的分布、积累与迁移动态研究[J].水生生物学报,2004,28(5):478-483.
    [71]李爱.近岸养殖区中氯霉素迁移转化规律的研究[D].大连:大连海事大学,2006.
    [72]马玉红,史海燕,土霉素的研究概况[J].青海畜牧兽医杂志,2007,37(4):45-46.
    [73]Hirsch R,Ternes T,Habcrer K,et al.Occurrence of antibiotics in the aquatics environment[J].The Science of the Total Environment,1999(225):109-118.
    [74]Bopp LH,Schoonmaker DJ,Baltch AL,et al.Molecular epidemiology of vancomycin-resistant enterococci from 6 hospitals in New York State[J].American Journal Infection Control,1999,27(5):411-417.
    [75]Jung WK,Lim JY,Kwon NH,et al.Vancomycin-resistant enterococci from animal sources in Korea[J].International Journal of Food Microbiology,2007(113),102-107.
    [76]Kuhn I,Iversen A,Finn M,et al.Occurrence and Relatedness of Vancomycin-Resistant Enterococci in Animals,Humans,and the Environment in Different European Regions[J].Applied and Environmental Microbiology,2005,71(9):5383-5390.
    [77]Iversen A,Kuhn I,Franklin A,et al.High Prevalence of Vancomycin-Resistant Enterococci in Swedish Sewage[J].Applied and Environmental Microbiology.2002,68(6):2838-2842.
    [78]Quednau M,Ahrne S,Petersson AC,et al.Antibiotic-resistant strains of Enterococcus isolated from Swedish and Danish retailed chicken and pork[J].Journal Applied Microbiology,1998(84):1163-1170.
    [79]Butaye P,Devriese LA,Haesebrouck F.Antimicrobial Growth Promoters Used in Animal Feed:Effects of Less Well Known Antibiotics on Gram-Positive Bacteria[J].Clinical Microbiology Reviews,2003.16(2):175-188.
    [80]郑波,王珊,李耘,等.万古霉素耐药肠球菌基因及水平转移研究[J].中国临床药理学杂志.2007,23(2):133-136.
    [81]Chow JW,Kak V.Acquired antibiotic resistances in Enterococci[A].Gilmore MS.The Enterococci:Pathogenesis,Molecular Biology,and Antibiotic Resistance[M].Washington DC,ASM Press.2002:355-384.
    [82]Miranda CD,Zemelman R.Antimicrobial multiresistance in bacteria isolated from freshwater Chilean salmon farms[J].The Science of the Total Environment,2002(293):207-218.
    [83]Manjusha S,Sarita GB,Elyas KK,et al.Multiple Antibiotic Resistances of Vibrio Isolates from Coastal and Brackish Water Areas[J].American Journal of Biochemistry and Biotechnology,2005,1(4):201-206.
    [84]刘智明,陈建军,柴少征,等.猪“无名高热病”的原因分析及防控措旋[J].河南畜牧兽医,2007,28(1):24-25.
    [85]李军,牛钟相.猪链球菌病研究进展[J].动物医学进展,2004,25(3):31-33.
    [86]冯新,韩文瑜,雷连成.细菌对四环素类抗生素的耐药机制研究进展[J].中国兽药杂志,2004,38(2):38-42.
    [87]陈文标.细菌对喹诺酮类药物耐药机制的研究进展[J].检验医学与临床,2007,4(3):200-201.
    [88]陈菊芳,周孝治,聂湘平,等.不同给药方式下环丙沙星在模拟水生态系统中的归趋[J].生态学报,2007,27(12):5300-5307.
    [89]吴银宝,汪植三,廖新俤,等.恩诺沙星对小型模型水生态系统中微生物的影响[J].生态学报,2006,26(8):2640-2645.
    [90]俞道进.土霉素残留在水环境中的转归及对底泥细菌的影响[D].广州:华南农业大学,2003.
    [91]Nowara A,J Burhenne,M Spiteller.Binding of fluoroquinolone carboxylic acid derivatives to clay[J].J.Agric.Food Chem,1997(45):1459-1463.
    [92]Torniainen K,Askolin CP,Mattinen J.Isolation and structure elucidation of an intermediate in the photodegradation of ciprofloxacin[J].Journal of Pharmaceutical Biomedical Analysis,1997(16):439-445.
    [93]丁疆华.广州市畜禽粪便污染与防治对策[J].环境科学研究.2000.13(3):57-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700