鸡痘免疫增强型核酸疫苗构建及免疫评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验将疑似“混合型”鸡痘的病料进行病理学检查,发现皮肤、气管和喉头病料的细胞胞浆内嗜酸性染色的A型包涵体。病原分离鉴定表明,病毒能在10日龄鸡胚绒毛尿囊膜上形成典型的痘斑,并在CEF上形成鸡痘病毒典型病变。据GenBank发表的FPV美国标准强毒株基因序列,利用Oligo 6.0和Primer 5.0软件设计1对扩增4b core蛋白基因引物,通过PCR扩增测序及动物回归试验证明所分离的病毒是鸡痘病毒(FPV),命名为HH2008。
     本实验根据Afonso等人已发表的FPV核苷酸全序列(AF198100),针对FPV140上下游设计了1对引物,PCR扩增出FPV140完整的开放阅读框,进行亚克隆构建原核表达质粒pET30a-ENV,表达蛋白大小约为42 ku。制备兔抗ENV多克隆抗体,抗体效价可达到2~(18),Westernblot检测发现多抗血清特异性好,可通过ELISA鉴定鸡痘病毒。
     本试验将FPV ORF140基因亚克隆至pVAX1真核表达载体中,构建了重组真核表达质粒pVAX-ENV。利用一段编码(G_4S)_3多肽的碱基Linker将ChIFN-γ分别与FPV ENV基因进行连接,成功构建pVAX-ENV-IFN融合基因真核表达质粒。通过脂质体转染法将pVAX-ENV和pVAX-ENV-IFN转入BHK21细胞中并检测到目的蛋白表达。重组真核表达质粒免疫雏鸡进行体内表达检测,ENV基因和ENV-IFN融合基因能够在体内进行表达,同时表达后的融合蛋白可以被ChIFN-γ多克隆抗体和FPV ENV多克隆抗体检测出来,进一步证明了融合基因表达的蛋白保留了融合前两段基因各自的生物学活性,为后续动物试验提供了理论基础。
     动物免疫试验分为5个组,即E组(FPV ENV基因真核表达质粒免疫组)、E-I组(pVAX-ENV-IFN真核表达质粒免疫组)、V组(鸡痘商品化疫苗免疫组)、P组(pVAX1空质粒免疫组)和PBS对照组(B组)。利用淋巴细胞转化试验、酶联免疫吸附试验和流式细胞术对不同处理组雏鸡的各项免疫指标进行了检测,最后应用病毒攻击试验比较不同质粒免疫组间保护率的差异。结果表明,免疫组各日龄雏鸡免疫指标均比pVAX1空载体组和PBS组高,以ENV-IFN融合基因的结果尤为显著。其中T、B淋巴细胞增殖功能、CD4~+、CD8~+、T细胞数量和外周血液中抗FPV ENV特异性抗体与pVAX1空载体组和PBS组相比较都有明显的提高,且以融合基因组和疫苗组最为显著。综上所述,ChIFN-γ基因在配合FPV抗原基因免疫过程中,机体免疫应答能力增强,提高了机体抵抗病毒的攻击能力。本试验构建ChIFN-γ与病毒抗原基因融合基因质粒鸡免疫保护试验为进一步研究ChIFN-γ生物学活性提供了试验依据,同时为探讨研制新型免疫增强型抗病毒疫苗提供了理论基础。
In this research, we firstly examined chickens suspected of“mixed type”fowl pox with pathological methods. Eosinophilic dying A type inclusion body could be observed in the skin, trachea and laryngeal. Then virus was isolated and passaged onto the chorioallantoic membrane of 10-day-old embryonated chicken eggs for several times, the compact variola could be formed on CAM. The CAM-adapted virus was propagated on primary chicken embryo fibroblast cell (CEF) until cytopathic effect was noted. According to American standards FPV genome sequence published in GenBank, a pair of primers for 4b core protein gene was designed with Oligo 6.0 and Primer 5.0 software, sequence analysis of PCR product and regression of chicken test proved that the isolated pathogen was fowl poxvirus, named HH2008.
     According to published gene sequence (AF198100) in GenBank, a pair of primers for ORF 140 gene was designed. After idenfication and sequence analysis of the PCR product, it was subcloned into prokaryotic expression vector and designed pET30a-ENV, then expressed in E. Coli Rosetta system and ENV protein is approximately 42 ku as expected. The recombinant ENV protein was purified and used as immunogen to generate rabbit polyclonal antibody. Western-blot and ELISA indicated that the antibody could detect FPV ENV protein. More importantly, an indirect ELISA was developed with this anti-FPV140 antibody was capable of distinguishing FPV from other common avian pathogens.
     FPV ORF140 gene was then modified and inserted into an eukaryotic expression vector, pVAX1, to construct pVAX1-ENV. Furthermore, a flexible linker, which express (G_4S)_3 polypeptide was used to link ChIFN-γgene with FPV ORF140 gene and got a fusion gene eukaryotic expression plasmid (pVAX1-ENV-Linker-IFN). Transient transfection of these two plasmids in vitro showed that the pVAX-ENV and pVAX1-ENV-Linker-IFN could express in BHK21 cells demonstrated by their antibodies, respectively. Intramscular injection experiment of these two plasmids in vivo showed pVAX-ENV and pVAX-ENV-IFN were able to expressed too. It proved that the protein expressed by fusion gene could retain their bioactivities, and provided theoretical foundation for the following immunoprotection research.
     The experimental chicken were divided into 5 groups, E group inoculated with pVAX-ENV plasmid, E-I group inoculated with pVAX-ENV-IFN plasmid, V group inoculated with FP commericial vaccine, P group inoculated with empty pVAX vetor, and B group inoculate with PBS as control. Thereafter, lymphocyte proliferative assay, enzyme Linkered immunosorbent assay and flow cytometric technique were used to detect the immune response of different groups. Finally chickens in different groups were challenged with FPV HH2008 strain to compare their protection rate. The results showed that most of immune response of V, E and E-I groups were higher than those of B and P groups, especially the E-I groups. T, B lymphocyte proliferative function, the number of CD4~+, CD8~+ T cell, the special anti-FPV ENV antibody titer in immune groups were all higher than those of B, P groups. And the E-I and V groups were the most significant among these groups. The histopathological change of FPV target organs of each group were examined after challenge and the immunoprotection rates were calculated among every group. Above all, ChIFN-γwere inoculated with FPV antigen gene, it could improve the host immune response and higher protection rate could be observed against FPV chanllenge. Furthermore, FPV antigen genes and ChIFN-γfusion plasmid was firstly constructed and the results could provide solid scientific ground to the further study of ChIFN-γbioactivities, and the theoretical basis to the dicovery of new type immune-enhancing vaccine for virual diseases.
引文
J萨姆布鲁克, E F弗里奇, T曼尼阿蒂斯. 1996.分子克隆实验指南[M].第2版,北京:北京科学出版社:775–776
    常维山,孙淑红,王雪鹏,等. 2003.实验鸡群暴发鸡痘并发细菌感染的诊断报告[J].中国禽业导刊, (24): 27
    陈全,朱道银,骆旭东,等. 2003.结核分枝杆菌lhp–esat6融合基囚原核表达载体的构建和表达[J].重庆医科大学学报, 28(3): 284–333
    丁家波,崔治中,于立娟,等. 2004.含有禽网状内皮组织增生病病毒基因组片段的天然重组鸡痘病毒的研究[J].微生物学报, 44: 588–592
    段宏安, Diallo I, Spradbrow P,等. 1999.应用聚合酶链式反应检测禽痘病毒田间分离株及疫苗株中网状内皮组织增殖病毒LTR片段,env及rel基因[J].中国兽医杂志, 25(8): 9 -10
    郭建顺,金宁一,等.鸡痘病毒基因探针检测方法的建立及初步应用[J].中国预防兽医学报[J], 2007, 29(2): 126–129
    郭建顺,金宁一,夏志平,等. 2004.鸡痘病毒PCR检测方法的建立[J].中国兽医学报, 24(6): 536–539
    郭明明.鸡白细胞介素15对鸡新城疫F基因DNA疫苗免疫增强作用的研究[D]. 2006,东北农业大学研究生学位论文
    来鲁华.蛋白质的结构预测与分子设计[M]. 1993.北京:北京大学出版社.
    刘武杰,仇旭升,等. 2008.三种重组鸡痘病毒联合与单独免疫效力比较[J].中国免疫学杂志, 24: 538–541
    骆旭东,朱道银,陈全蒋,等. 2003.结核分支杆菌Ag85 R MPT64融合基因疫苗的构建及其在小鼠体内的表达[J].中华结核和呼吸杂志. 10(26): 646–648
    齐俊良. 2003.新型鸡痘临床病例诊断报告[J].中国动物检疫, 20(10): 33–34.
    卿玉玲,赵嘉将,任红. 2003.乙型肝炎HBsAg和GM–CSF融合表达质粒的构建及表达[J].免疫学杂志. 19(3): 201–207
    孙进华,单安山,等. 2009. AA肉鸡IFN–γ的表达及蛋白结构的初步预测[J].东北农业大学学报, 40(4): 74–79
    孙强明,戴长柏,李洪钊,等. 2002. huIL–6–GM–CSF(9–127)融合蛋自的表达及活性测定[J].免疫学杂志. 18(4): 253–157
    汪先桃,曾照芳. 2008.γ–IFN、腺苷脱氨酶和新喋呤对结核性胸膜炎的诊断价值[J].重庆医科大学学报. 33(8): 987–989
    王栋,王禾,武国军,等. 2001.人IgG3上游铰链区/p53四价功能域融合基因的构建及空间构象分析[J].细胞与分子免疫学杂志. 17(4): 381–383
    王云峰,童光志. 2004.鸡痘母源抗体对重组鸡痘疫苗免疫效果的影响[J].畜牧兽医学报,35(5): 546–549.
    吴庭才,张春杰. 2009.核酸疫苗的特点、组成及在动物免疫中的应用[J].生物学通报, 44(5): 5–7
    夏荣,林来兴妹,周宏伟,等. 2001. hIL–2/mGM–CSF融合蛋白的构建及表达[J].中国免疫学杂志. 10(17): 534–537
    许青荣,王桂枝. 2000.鸡痘病毒的分离鉴定[J],中国预防兽医学报. 9, 22(5): 386–387
    杨静红. 2008.免疫组化和PCR方法检测鹅细小病毒在感染雏鹅体内分布规律研究[D].东北农业大学研究生学位论文
    曾岩,任晓峰,李广兴,等. 2010.重组鸡γ–干扰素对H5亚型禽流感灭活苗的免疫增强作用[J]东北农业大学学报, 41(10): 87–90
    张明明,洪理泉,卢仁泉,等. 2007. cTnI–Linker–TnC融合蛋白基因的构建、表达及鉴定[J].现代检验医学杂志, 22(1):10–14
    张志,崔治中. 2004.整合进禽网状内皮组织增生病病毒基因组片段的鸡马里克氏病病毒重组野毒株的发现[J].中国科学C辑, 34: 317–324
    Afonso C L, Tulman E Lu Z, et al. 2000. The genome of fowlpox virus[J]. J Virol, 74: 3815–3831.
    Akira S. 2000. The role of IL–18 in innate immunity[J]. Curr. Opin. Immunol, 12: 59–63.
    Arhekger R B, Darlington R W, Gafford L G, et al. 1962. An electron mircroscopic sstydy of fowlpox infection in chick scalps[J]. Lab Invest, 11: 814–825.
    Arhelger R B,Randall C C. 1964.Electron microscopic observations on the development of fowlpox virus in chorioallantoic membrane[J].Virology. 22:59–66.
    Bach E,Szabo S,Dighe A,et al. 1995. Ligand–induced autoregulation of IFN gamma receptor beta chain expression in T helper cell subsets[J].Science, 270:1215–1218.
    Baechler E, Batliwalla F, Karypis G, et al. 2003. Interferon–inducible gene expression signature in peripheral blood cells of patients with severe lupus[J]. Proc. Natl. Acad. Sci. USA, 100: 2610–2615.
    Bernabei P, Allione A, Rigamonti L, et al. 2001. Regulation of interferon–gamma receptor (IFN–gamma R)chains: a peculiar way to rule the life and death of human lymphocytes[J]. Eur. Cytokine Netw, 12: 6–14.
    Bernabei P, Coccia E, Rigamonti L, et al. 2001. Interferongamma receptor 2 expression as the deciding factor in human T, B, and myeloid cell proliferation or death[J]. J. Leukoc. Biol, 70: 950–960.
    Cantin E, Tanamachi B, Openshaw H. 1999. Role for gamma interferon in control of herpes simplex virus type 1 reactivation[J]. J. Virol, 73: 3418–3423.
    Carnaud C, Lee, D, Donnars O, Park H, et al. 1999. Cutting edge: cross–talk between cells of the innate immune system: NKT cells rapidly activate NK cells[J]. J. Immunol, 163: 4647–4650.
    Cheevers W P, O’Callaghan D J, Randall C C. 1968. Biosynthesis of host and viral deoxyribonucleic acid during hyperplastic fowlpox infection in vivo[J]. J Virol, 2: 421–429.
    Cheevers W P, Randall C C. 1968. Viral and cellular growth and sequential increase of protein and DNA during fowlpox infection in vivo[J]. Proc Soc Exp Biol Med, 127: 401–405.
    Christian H., Barbara E H Coupar A R. et al. 1997. Field and Virus Strains of Fowlpox Virus Carry Integrated Sequences from the Avian Retrovirus. Reticuloendo the liosis Virus[J]. J. Virol. 235: 367–376.
    Chulbul M, Ahmed, Howard M. 2006. IFN–γand its receptor fubunit IFN GR1 are recruited to the IFN–γ–activated sequence element at the promoter site of IFN–γ–activated genes:evidence of transactivational activity in IFN GR1[J]. J. Immunol, 177: 315–320.
    Das S, Ward S V, Tacke R S, et al. 2006. Activation of the RNA–dependent protein Kinase PKR promoter in the absence of interferon is dependent upon Sp proteins[J]. J Biol Chem, 281: 3244–3253.
    Decker T, Stockinger s, Karaghiosoff, et al. 2002. IFNs and STATs in innate immunity to microorganisms[J]. J. Clin. Invest. 109: 1271–1277.
    Denise Boulanger, Michael A. Skinner. 2002. Identification and Characterization of Three Immunodominant Structural Proteins of Fowlpox Virus[J]. Journal of Virology. 76, 19, 9844–9855
    Derrien M, Punjabi A, Khanna M, et al. 1999. Tyrosine phosphorylation of A17 during vaccinia virus infection:involvement of the H1 phosphatase and the F10 kinase[J]. J Virol, 73: 7287–7296.
    Diallo I S, M. A. Mackenzie, P. B. Spradbrow, and W. F. Robinson. 1998. Field isolates of fowlpox virus contaminated with reticuloendotheliosis virus. [J]Avian Pathol. 27: 66–86.
    Digby M R, and Lowenthal J W. 1995.Cloning and expression of the chicken interferon–γgene[J]. J Interferon Res, 15: 939–945.
    Dubochet J M, Adrian K, Richteer J G, et al. 1994. Structure of intracellular mature vaccinia virus observed by ctyoelectron microscopy[J]. J Virol, 68: 1 935–1 941.
    Flaishon L, Hershkoviz R, Lantner F, et al. 2000. Autocrine secretion of interferon gamma negatively regulates homing of immature B cells[J]. Exp. Med,192: 1381–1388.
    Frucht M, Fukao T, Bogdan C, Schindler H, et al. 2001. IFN–gamma production by antigen–presenting cells: mechanisms emerge[J]. Trends Immunol, 22: 556–560.
    Fukao T, Frucht D, Yap G, et al. 2001. Inducible expression of Stat4 in dendritic cells and macrophages and its critical role in innate and adaptive immune responses[J] Immunol, 166:4446–4455.
    Fukao T, Matsuda S, Koyasu S. 2000. Synergistic effects of IL–4 and IL–18 on IL–12–dependent IFN–gamma production by dendritic cells[J]. Immunol, 164: 64–71.
    Gafford L G, Randall C C. 1976. Virus–specific RNA and DNA in nuclei of cells infected with fowlpox virus[J]. Virology, 69: 1–14.
    Garcia M A, Gil J, Ventoso I, et al. 2006. Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action[J]. Microbiol Mol Biol Rev, 70: 1032–1060.
    Garcia M, Narang N, Reed W M, et al. 2003. Molecular characterization of reticuloendotheliosis virus insertions in the genome of field and vaccine strains of fowl poxvirus[J]. Avian Dis, 47: 343–354.
    Giroux M, Schmidt M, Descoteaux A. 2003. IFN–gamma–induced MHC class II expression: transactivation of class II transactivator promoter IV by IFN regulatory factor–1 is regulated by protein kinase C–alpha[J]. J Immunol, 17(8): 4187–4194.
    Golab J, Zagozdzon, Stoklosal T, et al. 2000. Direct stimulation of macrophages by IL–12 and IL–18–αbridge too far[J]. Immunol. Lett, 72: 153–157.
    Groettrup M, Khan S, Schwarz K, et al. 2001. Interferon gamma inducible exchanges of 20S proteasome active site subunits: why[J]. Biochimie, 83: 367–372.
    Groettrup M, Kraft R, Kostka S, et al. 1996. A third interferon–gamma–induced subunit exchange in the 20S proteasome[J]. Eur. J. Immunol, 26: 863–869.
    Guidotti L, Mc Clary H, Loudis J, et al. 2000. Nitric oxide inhibits hepatitis B virus replication in the livers of transgenic mice[J]. J. Exp. Med, 191: 1247–1252.
    Harris D, Haynes L, Sayles P, et al. 2000. Reciprocal regulation of polarized cytokine production by effector B and T cells[J]. Nat. Immunol, 1: 475–482.
    Hertig C, Coupar B E, Gould A R, et al. 1997. Field and vaccine strains of fowlpox virus carry integrated sequences from the avian retrovirus, reticuloendotheliosis virus[J]. Virology, 235: 367–376.
    Hochrein H, Shortman K, Vremec D, et al. 2001. Differential production of IL–12, IFN–alpha, and IFN–gamma by mouse dendritic cell subsets[J] Immunol, 166: 5448–5455.
    Hum Lee L, Hwa Lee K. 1997. Application of the polymerase chain reaction for the diagnosis of fowl poxvirus infection[J]. J Virol Methods, 63(1–2): 113–119.
    Issacs A, Lindanmann J. 1957. Virus interference I: the interferon [J]. Poc R Soc Ser B, 147: 258–267.
    Jay G. Calbert, Keyvan Nazerian, Richard L Witter et al. 1993. Fowlpox Virus Recombinants Expressing the Envelope Glycoprotein of an Avian Reticuloendotheliosis Retrovirus InduceNeutralizing Antibodies and Reduce Viremia in Chickens[J]. J. Virol, 67(6): 3069–3076.
    Kaiser P, and Sonnemans D. 1998. Avian IFN–γgenes: sequence anlysis suggests probable cross–species reactiviy among galliforms[J]. Interferon and Cytokine Res, 18: 711–719.
    Kim T J and Tripathy D N. 2001. Reticuloendotheliosis virus integration in the fowl poxvirus genome: not a recent event[J]. Avian Dis, 45 663–669.
    Koonin E V. 1993. A highly conserved sequence motif defining the family of MutT–related proteins from eubacteria, eukaryotes and viruses[J]. Nucleic Acids Res, 21: 4847.
    Kotenko S, Izotova L, Pollack P, et al. 1995.Interaction between the components of the interferon gamma receptor complex[J]. J. Biol. Chem, 270:20915–20921.
    Kovacs G R, and B Moss. 1996. The vaccinia virus HSR gene encodes late gene transcription factor 4: purification, cloning, and overexpression[J]. J Virol, 70: 6796–6802.
    Kristi M. Moore, Jennifer R. Davis, Takanori Sato, et al. 2000. Virus (REV) Long Terminal Repeats Incorporated in the Genomes of Commercial Fowl Poxvirus Vaccines and Pigeon
    Poxviruses Without Indication of the Presence of Infectious REV[J]. Avian Dis. 44: 827–841. Laidlaw S M, Anwar M A, Thomas W, et al. 1998. Fowlpox virus encodes nonessential homologs of cellular alpha–SNAP, PC–1, and an orphan human homolog of a secreted nematode protein [J]. J Virol, 72: 6742–6751.
    Lee J, Goldman D, Piliero L. 2001. Interferon–gamma polymorphisms in systemic lupus erythematosus[J]. Genes Immun, 2: 254–257.
    Liao T H. 1985. The subunit structure and active site sequence of porcine spleen deoxyribonuclease[J]. J Biol Chem, 260: 10708–10713.
    Lio D, Scola L, Crivello A, et al. 2001. Allele frequencies of 874T–A single nucleotide polymorphism at the first intron of interferon–gamma gene in a group of Italian centenarians[J]. Exp. Gerontol, 37: 315–319.
    Lowenthal J W, Digby M R. 1995. Produetion of interferon–γby chicken cell[J]. J interferon cytokine Res, 15:933–938.
    Major A, Cuff C. 1996. Effects of the route of infection on immunoglobulin G subclasses and specificity of the reovirus–specific humoral immune response[J]. J. Virol, 70: 5968–5974.
    Malathi K, Paranjape J M, Bulanova E, et al. 2005. A transcriptional signaling pathway in the IFN system mediated by 2'–5'–oligoadenylate activation of RNase L[J]. Proc Natl Acad Sci U S A, 102: 14533–14538.
    Maricarmen G, Neelam N, Willie M. Reed et al. 2003. Molecular Characterization of Reticuloendotheliosis Virus Insertions in the Genome of Field and Vaccine Strains of Fowl Poxvirus[J]. Avian Dis. 47: 343–354.
    Melanie G, Manel S, Albert D. 2003. IFN–-induced MHC class II expression: transactivation of class II transactivator promoter IV by IFN regulatory factor–1 is regulated by protein kinase C [J]. J. Immunol. 171: 4187–4194.
    Meredith N, Mohit K, Harry V, et al. 2005. IFN–γinduces apoptosis in developing mast cells[J]. J. Immunol, 175: 3000–3005.
    Michele D, Emilio B, Stefania C, et al. 2007. Interleukin–12: biological properties and clinical application[J]. Clin Cancer Res, 13: 4667–4675.
    Moore K M, Davis J R, Sato T, et al. 2000. Reticuloendotheliosis virus(REV)long terminal repeats incorporatedin the genomes of commercial fowl poxvirus vaccines and pigeon poxviruses without indication of the presence of infectious REV[J]. Avian Dis, 44: 827–841.
    Munder M, Mallo M, Eichmann K, et al. 2001. Direct stimulation of macrophages by IL–12 and IL–18–a bridge built on solid ground[J]. Immunol. Lett, 75:159–160.
    Mustafa G, Chintak B, Ravi A, et al. 2006. The gamma interferon(IFN–γ)mimetic peptide IFN–γ(95–133)prevents encephalomyocarditis virus infection both in tissue culture and in mice[J]. Clin. Vaccine Immunol, 13: 944–952.
    Nandi D, Jiang H, Monaco J. 1996. Identification of MECL–1(LMP–10)as the third IFN–gamma–inducible proteasome subunit[J]. J. Immunol, 156: 2361–2364.
    Norman J A, Hobart P. 1997. Development of improved vectors for DNA–based immunization and other gene therapy applications. Vaccine[J]. 15(8): 801–803.
    Otani T, Nakamura S, Toki M, et al. 1999. Identification of IFN–gamma–producing cells in IL–12/IL–18–treated mice[J]. Cell. Immunol, 198: 111–119.
    Parks R J, Krell P J, Derbyshire J B, et al. 1994. Studies of fowlpox virus recombination in the generation of recombinant vaccines[J]. Virus Res. 32(3): 283–297.
    Pien G, Satoskar A, Takeda K, et al. 2000. Cutting edge: selective IL–18 requirements for induction of compartmental IFN–gamma responses during viral infection[J]. J. Immunol, 65: 4787–4791.
    Pratik S, William M. Schnitzlein, Deoki N. 2003. Tripathy. Reticuloendotheliosis Virus Sequences within the Genomes of Field Sriainsof Fowlpox Virus Display Variability[J]. J. Virol. 77(10): 5855–5862.
    Pratik S, William M. Schnitzleln, Deoki N. Tripathy. 2005. Construction and Characterization of a Fowlpox Virus Field Isolate Whose Genome Lacks Reticuloendotheliosis Provirus Nucleotide Sequences[J]. Avian Dis. 49: 401–408.
    Rowland R, Rovinson B, Stefanick J, et al. 2001. Inhibition of porcine reproductive and respiratory syndrome virus by interferon–gamma and recovery of virus replication with2–aminopurine[J]. Arch Virol, 146: 539–555
    Robert L, Theresa L, Soldano F. 2006. Immune escape associated with functional defects in antigen–processing machinery in head and neck cancer[J]. Clin Cancer Res, 12: 3890–3895
    Robyn S, Martina F, Lei S, et al. 2009. SOCS–1 binding to tyrosine 441 of IFN–γreceptor subunit 1 contributes to the attenuation of IFN–γsignaling in vivo[J]. J. Immunol, 183: 4537–4544.
    Salazar M T, Hamilton T, Biron C. 2000. A chemokineto–cytokine–to–chemokine cascade critical in antiviral defense[J]. J. Clin. Invest, 105: 985–993.
    Schindler H, Lutz M, Rollinghoff M, et al. 2001. The production of IFN–gamma by IL–12/IL–18–activated macrophages requires STAT4 signaling and is inhibited by IL–4[J]. J. Immunol, 166: 3075–3082.
    Schitzlein W M, Ghildyal N, Tripathy D N. 1988. Genomic and antigenic characterization of avipoxviruses[J]. Virus Res, 10: 65–76.
    Schroder K, Hertzog P J, Ravasi T, et al. 2004. Interferon–gamma: an overview of signals, mechanisms and functions[J]. J Leukoc Biol, 75: 163–89.
    Schults U, and Kaspers B. 1995. Recombinant chicken interferon: a potentantiviral agent that lacks intrinsic macrophage activating factoractiviy[J]. Eur J Immunol, 25: 847–851.
    Sekellick M J, and Ferrandion A. F. 1994. Chicken interferon gene I: cloning, expression and analysis[J]. J Interferon Res, 14: 71.
    Sen C. 2001. Viruses and interferons[J]. Annu. Rev. Microbiol, 55: 255–281.
    Singh G K, Singh N P, Garg S K. 1987. Studies on pathogenesis of fowlpox: virological study[J]. Acta Virol, 31(5): 417–423.
    Singh P, Schnitzlein W M and Tripathy D N. 2003. Reticuloendotheliosis virus sequences within the genomes of field strains of fowlpox virus display variability[J]. J Virol, 77: 5855–5862.
    Strobl B, Arulampalam V, Newman S, et al. 2001. A completely foreign receptor can mediate an interferon–gamma–like response[J]. EMBO J, 20: 5431–5442.
    Swallen T O. 1963. A radioautographic study of the lesions of fowlpox using thymidinge–H3 [J]. Am J Pathol, 42: 485–491.
    Tadese T and Reed W M. 2003. Detection of specific reticuloendotheliosis virus sequence and protein from REV–integrated fowlpox virus strains[J]. Virol Methods, 110: 99–104.
    Tadese T, Reed W M. 2003. Use of restriction fragment length polymorphism, immunoblotting, and polymerase chain reaction in the differentiation of avian poxviruses[J]. J Vet Diagn Invest, 15(2): 141–150.
    Takami K, akuwa N, Okazaki H, et al. 2002. Interferon–gamma inhibits hepatocyte growthfactor–stimulated cell proliferation of human bronchial epithelial cells: up–regulation of p27(kip1)cyclin–dependent kinase Inhibitor. Am.J.Respir[J]. Cell Mol. Biol, 26: 231–238.
    Thornberry N. 1998. Caspases: key mediators of apoptosis[J]. Chem. Biol, 5: R97–103.
    Torriglia A, Perani P, Brossas J Y, et al. 1998. L–DNase II, a molecule that links proteases and endonucleases in apoptosis, derives from the ubiquitous serpin leukocyte elastase inhibitor[J]. Mol Cell Biol, 18: 3612–3619.
    Turner P C and Moyer R W. Poxvirus immune modulators: functional insights from animal models[J]. Virus Research, 88: 35–53.
    Waldburger J M, Masternak K, Mottet A, et al. 2000. Lessons from the bare lymphocyte syndrome: molecular mechanisms regulating MHC class II expression. Immunol[J]. Rev, 178:148–165.
    Wang B, Andre I, Gonzalez A, et al. 1997. Interferon–gamma impacts at multiple points during the progression of autoimmune diabetes. Proc. Natl. Acad[J]. Sci. USA, 94: 13844–13849.
    Xaus J, Comalada M, Valledor A, et al. 2001. Molecular mechanisms involved in macrophage survival, proliferation, activation or apoptosis[J]. Immunobiology, 204: 543–550.
    Xiang Y, Simpson D A, Spiegel J, et al. 1998. The vaccinia virus A18R DNA helicase is a postreplicative negative transcription elongation factor[J]. J Virol, 72: 7012–7023.
    Zantinge J L, Krell P J, Derbyshire J B, et al. 1996. Partial transcriptional mapping of the fowlpox virus genome and analysis of the EcoR I L fragment[J]. J Gen Virol, 77: 603–614

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700