巨型艾美耳球虫顶膜抗原1基因重组卡介苗的构建及其免疫保护性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸡球虫病是严重危害全世界养禽业的一类寄生虫病。目前该病的防治主要依靠化学药物,少量依靠疫苗。但化药治疗由于存在耐药性、药物残才留等不利影响,因此用疫苗免疫代表了未来鸡球虫病防治的发展方向。卡介苗具有良好的安全性和内在佐剂特性,可以诱导坚强持久的细胞免疫,是表达重组外源基因的理想活菌疫苗载体。本实验室前期研究表明表达E. tenella rhomboid与ADF基因的球虫重组卡介苗疫苗具有较好的免疫保护效果,尤其是表达rhomboid基因的重组卡介苗的ACI值达到了180以上,显示用卡介苗来构建鸡球虫疫苗具有较好的前景。
     巨型艾美耳球虫是集约化鸡场最常见的3种球虫之一,常引起亚临床球虫病,使鸡的饲料转化率、增重和产蛋量受到影响。本研究在克隆巨型艾美耳球虫入侵相关基因AMA1的基础上,对该基因及编码蛋白进行了详细的生物信息学分析,然后构建AMA1基因的大肠杆菌-分枝杆菌穿梭载体和整合载体,SDS-PAGE与Western blotting结果显示成功表达了AMA1基因。用构建的表达AMA1抗原的重组BCG/pMV261-AMA1和BCG/pMV361-AMA1经三种不同免疫途径接种雏鸡,同源株攻虫后显示重组BCG疫苗皮下和滴鼻途径免疫优于口服途径,而且重组卡介苗滴鼻免疫能诱导较强的细胞和体液免疫反应。
     安全是疫苗应具备的基本条件。鉴于目前尚无卡介苗对鸡是否安全的相关报道,本试验中,将rBCG/pMV361-AMA1以不同剂量皮下注射免疫7日龄雏鸡,通过增重、脏器系数、血液生化以及器官组织学变化等指标来评价重组卡介苗对鸡的安全性。结果显示重组卡介苗正常剂量免疫对鸡增重、脏器系数、生化指标及器官组织结构等均无显著影响(p>0.05),重组卡介苗对鸡总体上是安全的。
     为进一步增强重组卡介苗的免疫保护效力,本研究利用SOE-PCR将鸡IFN-γ与巨型艾美耳球虫AMA1基因通过一柔性linker串联,构建重组表达载体pMV261-IFN-γ-Linker-AMA1,电穿孔转入卡介苗中,经热诱导后,SDS-PAGE及Western blotting鉴定发现重组卡介苗在约65kDa处有一明显的特异条带,显示融合蛋白成功在卡介苗中表达。将构建的rBCG/pMV261-IFN-γ-Linker-AMA1,rBCG/pMV261-AMA1以及BCG通过滴鼻途径接种雏鸡,经同源株攻虫研究其免疫保护效力。结果显示重组卡介苗免疫对同源株攻虫具有一定的免疫保护效力,其中rBCG/pMV261-IFN-γ-AMA1免疫两次的保护力要高于rBCG/pMV261-AMA1免疫两次,表明IFN-γ具有增强AMA1免疫效果的作用。
     综上,本研究构建了三种重组卡介苗,免疫试验显示均对同源株攻虫有一定的保护效力,同时评价了重组卡介苗对鸡体的安全性,为重组卡介苗疫苗在鸡球虫病乃至鸡其它传染性疾病中的应用奠定了基础。
E. maxima is recognized as one of the three coccidians that distributed universallyin intensive farms.The current control strategy against coccidiosis in poultry isdominated by prophylactic application of anticoccidial drugs. However, increasinggovernment regulations and bans on the use of coccidiostats, the appearance ofmulti-drug-resistant strains of Eimeria, concerns over drug residues in poultryproducts, the lack of new pipeline products and disadvantages of live vaccinesincluding the potential reversion to virulence, an early reduction in weight gain andvariable efficacy between batches suggest that new approaches are required. Althoughseveral attempts have been made to develop subunit vaccines or DNA vaccines, thereis no available vaccine against coccidiosis. A recent approach using live bacteria ascarriers to deliver and express Eimeria antigens with the long-term aim of controllingavian coccidiosis shows great potential for large-scale control of infectious diseases inthe livestock industry.Mycobacterium bovis BCG, an attenuated M. bovis strain, isparticularly attractive for the delivery of heterologous antigens based on itsremarkable safety record and intrinsic adjuvant properties. Since both M. bovis BCGand Eimeria spp. are intracellular micro-organisms, we rationalized that recombinantBCG would be appropriate for the development of a vaccine against coccidiosis.Apical membrane antigen1(AMA1), secreted by micronemes, appears to be essentialduring the invasion of host cells and is currently founded in Toxoplasma gondii,Neospora caninum,Eimeria tenella, and Eimeria maxima. AMA1in Plasmodium isone of the most promising malaria vaccine candidate and currently a hot research, hasimportant significance in the development of malaria vaccines.
     Based on the fact that the lack of an ideal genetically engineered vaccine againstcoccidiosis,two rBCG strains pMV261-AMA1and pMV361-AMA1expressingAMA1gene of E. maxima,were constructed and their immune protective effect wereevaluated in this study.Subsequently, safety of rBCG/pMV261-AMA1on chickenwere analyzed. For enhancement of the protective efficacy of recombinant BCG in chickens, rBCG co-expressing AMA1and IFN-γgene were constructed, and itsefficacy against homologous infection in chickens were evaluated. This report shouldprovide a new method for the future development of vaccines against coccidiosis.
     Cloning and bioinformatics analysis of Eimeria maxima AMA1gene:Basedon the published ORF of E. maxima AMA1gene,a pair of primers were designed andAMA1gene was cloned.Subsequently,the structure and functions of this gene wasanalyzed by bioinformatics method. The recults showed AMA1had an open readingframe(ORF) of1623bp encoded a secreted protein with a26th amino acid residuessignal peptide. while there were one transmembrane peptides,three N-glycosylationsites and34phosphorylation sites. AMA1had eight disulfide bond in tis extracellularregion. AMA1had the secondary structure mainly composed of helix,random coiland had the tertiary structure including ten helixs and14th-pleated sheet.
     Construction of pMV261-AMA1and pMV361-AMA1expression vectorsand expression in BCG:The AMA1gene segment of E. maxima was generated byPCR with primers designed based on sequences of E. maxima AMA1,pMV261andpMV361. The resulting plasmids pMV261-AMA1and pMV361-AMA1wereelectrotransfected into BCG and expressed successfully in rBCG.Western blottingindicated that the MAA1protein had a good immunogenicity.
     Protective efficacy of recombinant Mycobacterium bovis BCG expressingapical membrane antigen1against homologous infection:Day-old birds wereimmunized twice with rBCG/pMV261-AMA1, rBCG/pMV361-AMA1or BCG viaoral, intranasal, and subcutaneous routes, then orally challenged with homologous E.maxima sporulated oocysts. Gain of body weight, fecal oocyst output, lesion scores,serum antibody responses, numbers of splenocyte CD4+and CD8+T cells, and gutcytokine transcript levels were assessed as measures of protective immunity. Thesubcutaneous and intranasal routes were superior to the oral route based onaugmented weight gain, reduced fecal oocyst shedding, and decreased intestinallesions. Intranasal rBCG immunization induced a strong humoral and cellularresponse directed against homologous E. maxima infection. This study provides datafor the use of rBCG to develop a prophylactic vaccine against coccidiosis.
     Safety of rBCG/pMV361-AMA1on chickens:Chickens were immunizedsubcutaneously with rBCG/pMV361-AMA1at different dose. The safety of rBCG on chicken was evaluated based on weight gain, organ coefficient, blood biochemicalparameters and tissue structure of organs.The results showed that no significantdifference were observed in weight gain and organ coefficient between differentgroups(p>0.05). The D-BIL content of group1, group2and group3were highersignificantly compared with that of group4(p <0.05), and there were no difference inother blood biochemical parameters between different groups(p>0.05). High doses ofrecombinant BCG immunization had some impact on the chicken heart,and themyocardial cell presented a large number of lymphocytes infiltration. The liver, spleenand other organs had no changes in the different groups.
     Construction of pMV261-IFN-γ-Linker-AMA1and expression in BCG:Thevector of pMV261-IFN-γ-Linker-AMA1was constructed with chicken IFN-γgene,E.maxima AMA1gene by SOE-PCR, and was electrotransfected into BCG and selectedby kanamycin. After induction period at45℃, the recombinant proteins wereseparated by SDS-PAGE and Western boltting was done for immunoblot analysis. Aband with about65kDa was detected from rBCG/pMV261-IFN-γ-Linker-AMA1,indicatinging that the fusion protein IFN-γ-AMA1had expressed successfully in BCG.
     Protective immunity of rBCG/pMV261-IFN-γ-Linker-AMA1against Emaxima challenge:Chickens were immunized intranasally with rBCG/pMV261-IFN-γ-Linker-AMA1,rBCG/pMV261-AMA1and BCG, respectively. The efficacy ofimmunization was evaluated on the basis of oocyst output, cecal lesion scores andbody weight. The results showed that the recombinant BCG immunization had certainimmune protective efficacy against homologous challenge.The immune protectiveeffect with rBCG/pMV261-IFN-γ-Linker-AMA1were superior to that with rBCG/pMV261-AMA1,and the result indicated that IFN-γplayed a role in enhancing theimmune protection effect.
引文
[1] Mahairas GG, Sabo PJ, Hickey MJ,et al. Molecular analysis of genetic differences betweenMycobacterium bovis BCG and virulent M. bovis[J]. J Bacteriol,1996,178(5):1274-1282.
    [2] Behr MA,Wilson MA, Gill WP, et al. Comparative genomics of BCG vaccines bywhole-genome DNA microarray[J]. Science,1999,284(5419):1520-1523.
    [3] Brosch R, Pym AS, Gordon SV, et al.The evolution of mycobacterial pathogenicity: cluesfrom comparative genomics[J]. Trends Microbiol,2001,9(9):452-458.
    [4] Leung AS, Tran V, Wu Z, et al. Novel genome polymorphisms in BCG vaccine strains andimpact on efficacy[J]. BMC Genomics,2008,9:413.
    [5] Lugosi L. Theoretical and methodological aspects of BCG vaccine from the discovery ofCalmette and Guerin to molecular biology. A review[J]. Tuber Lung Dis,1992,73(5):252-361.
    [6] Bloom BR, Jacobs Jr WR. New strategies for leprosy and tuberculosis and for developmentof bacillus Calmette-Guerin into a multivaccine vehicle[J]. Ann N Y Acad Sci,1989,569:155-173.
    [7] Stover CK, de lC V, Fuerst TR, et al. New use of BCG for recombinant vaccines. Nature,1991,351(6326):456-460.
    [8] Philipp WJ, Schwartz DC, Telenti A, et al. Mycobacterial genome structure[J].Electrophoresis,1998,19(4):573-576.
    [9] Dennehy M, Williamson AL. Factors influencing the immune response to foreign antigenexpressed in recombinant BCG vaccines[J]. Vaccine,2005,23(10):1209-1224.
    [10] Castanon-Arreola M, Lopez-Vidal Y, Espitia-Pinzon C, et al.A new vaccine againsttuberculosis shows greater protection in a mouse model with progressive pulmonarytuberculosis[J]. Tuberculosis (Edinb),2005,85(1–2):115-126.
    [11] Horwitz MA. Recombinant BCG expressing Mycobacterium tuberculosis majorextracellular proteins[J]. Microbes Infect,2005,7(5–6):947-954.
    [12] Jacobs Jr WR, Tuckman M, Bloom BR. Introduction of foreign DNA into mycobacteriausing a shuttle phasmid[J]. Nature,1987,327(6122):532-535.
    [13] Snapper SB, Lugosi L, Jekkel A, et al. Lysogeny and transformation in mycobacteria: stableexpression of foreign genes[J]. Proc Natl Acad Sci USA,1988,85(18):6987-6991.
    [14] Rauzier J, Moniz-Pereira J, Gicquel-Sanzey B. Complete nucleotide sequence of pAL5000,a plasmid from Mycobacterium fortuitum[J]. Gene,1988,71(2):315-321.
    [15] Matsuo K, Yamaguchi R, Yamazaki A, et al.Establishment of a foreign antigen secretionsystem in mycobacteria[J]. Infect Immun,1990,58(12):4049-4054.
    [16] Dellagostin OA, Esposito G, Eales LJ, et al.Activity of mycobacterial promoters duringintracellular and extracellular growth[J]. Microbiology,1995,141(8):1785-1792.
    [17] Labidi A, David HL, Roulland-Dussoix D. Restriction endonuclease mapping and cloningof Mycobacterium fortuitum var. fortuitum plasmid pAL5000[J]. Ann Inst PasteurMicrobiol,1985,136(2):209-215.
    [18] Mederle I, Bourguin I, Ensergueix D, et al. Plasmidic versus insertional cloning ofheterologous genes in Mycobacterium bovis BCG: impact on in vivo antigen persistenceand immune responses[J]. Infect Immun,2002,70(1):303-304.
    [19] Aldovini A, Young RA. Humoral and cell-mediated immune responses to live recombinantBCG–HIV vaccines[J]. Nature,1991,351(6326):479-482.
    [20] Murray A, Winter N, Lagranderie M, et al. Expression of Escherichia colibeta-galactosidase in Mycobacterium bovis BCG using an expression system isolated fromMycobacterium paratuberculosis which induced humoral and cellular immune responses[J].Mol Microbiol,1992,6(22):3331-3342.
    [21] Stover CK, Bansal GP, Hanson MS, et al. Protective immunity elicited by recombinantbacille Calmette–Guerin (BCG) expressing outer surface protein A (OspA) lipoprotein: acandidate Lyme disease vaccine[J]. J Exp Med,1993,178(1):197-209.
    [22] Timm J, Lim EM, Gicquel B. Escherichia coli-mycobacteria shuttle vectors for operon andgene fusions to lacZ: the pJEM series[J]. J Bacteriol,1994,176(21):6749-6753.
    [23] Kanekiyo M, Matsuo K, Hamatake M, et al. Mycobacterial codon optimization enhancesantigen expression and virus-specific immune responses in recombinant Mycobacteriumbovis bacilli Calmette-Guerin expressing human immunodeficiency virus type1Gag[J].JVirol,2005,79(14):8716-8723.
    [24] Bastos RG, Dellagostin OA, Barletta RG, et al. Immune response of pigs inoculated withMycobacterium bovis BCG expressing a truncated form of GP5and M protein of porcinereproductive and respiratory syndrome virus[J]. Vaccine,2004,22(3-4):467-474.
    [25] Barletta RG, Snapper B, Cirillo JD, et al. Recombinant BCG as a candidate oral vaccinevector[J]. Res Microbiol,1990,141(7-8):931-939.
    [26] Kawahara M, Hashimoto A, Toida I, et al.Oral recombinant Mycobacterium bovis bacillusCalmette–Guerin expressing HIV-1antigens as a freeze-dried vaccine induces long-term,HIV-specific mucosal and systemic immunity[J]. Clin Immunol,2002,105(3):326-331.
    [27] Power CA, Wei G, Bretscher PA. Mycobacterial dose defines the Th1/Th2nature of theimmune response independently of whether immunization is administered by theintravenous, subcutaneous, or intradermal route[J]. Infect Immun,1998,66(12):5743-5750.
    [28] Hayward CM, O'Gaora P, Young DB, et al. Construction and murine immunogenicity ofrecombinant Bacille Calmette Guerin vaccines expressing the B subunit of Escherichia coliheat labile enterotoxin[J]. Vaccine,1999,17(9-10):1272-1281.
    [29] PymAS, Brodin P, Majlessi L, et al. Recombinant BCG exporting ESAT-6confersenhanced protection against tuberculosis[J]. Nat Med,2003,9(5):533-539.
    [30] Bastos RG, Dellagostin OA, Barletta RG, et al.Construction and immunogenicity ofrecombinant Mycobacterium bovis BCG expressing GP5and M protein of porcinereproductive respiratory syndrome virus[J]. Vaccine,2002,21(1-2):21-29.
    [31] Langermann S, Palaszynski SR, Burlein JE, et al.Protective humoral response againstpneumococcal infection in mice elicited by recombinant bacille Calmette–Guerin vaccinesexpressing pneumococcal surface protein A[J]. J Exp Med,1994,180(6):2277-2286.
    [32] Roland KL, Tinge SA, Killeen KP, et al. Recent advances in the development of live,attenuated bacterial vectors[J]. Curr Opin Mol Ther,2005,7(1):62-72.
    [33] Nasser EA, Kaufmann SH. Improved protection by recombinant BCG[J]. MicrobesInfect,2005,7(5-6):939-946.
    [34] Horwitz MA, Harth G, Dillon BJ, et al.Recombinant bacillus Calmette-Guerin (BCG)vaccines expressing the Mycobacterium tuberculosis30-kDa major secretory protein inducegreater protective immunity against tuberculosis than conventional BCG vaccines in ahighly susceptible animal model[J]. Proc Natl Acad Sci USA,2000,97(25):13853-13858.
    [35] Hoft DF, Blazevic A, Abate G, et al. A new recombinant bacille Calmette-Guerin vaccinesafely induces significantly enhanced tuberculosis-specific immunity in humanvolunteers[J]. J Infect Dis,2008,198(10):1491-1501.
    [36] Dhar N, Rao V, Tyagi AK. Immunogenicity of recombinant BCG vaccine strainsoverexpressing components of the antigen85complex of Mycobacterium tuberculosis[J].Med Microbiol Immunol,2004,193(1):19-25.
    [37] Jain R, Dey B, Dhar N, et al. Enhanced and enduring protection against tuberculosis byrecombinant BCG-Ag85C and its association with modulation of cytokine profile in lung[J].PLoS ONE,2008,3(12):e3869.
    [38] Sugawara I, Li Z, Sun L, et al.Recombinant BCG Tokyo (Ag85A) protects cynomolgusmonkeys (Macaca fascicularis) infected with H37Rv Mycobacterium tuberculosis[J].Tuberculosis (Edinb),2007,87(6):518-525.
    [39] Sugawara I, Sun L, Mizuno S, et al.Protective efficacy of recombinant BCG Tokyo (Ag85A)in rhesus monkeys (Macaca mulatta) infected intratracheally with H37Rv Mycobacteriumtuberculosis[J].Tuberculosis (Edinb),2009,89(1):62-67.
    [40] Badell E, Nicolle F, Clark S, et al. Protection against tuberculosis induced by oral primewith Mycobacterium bovis BCG and intranasal subunit boost based on the vaccinecandidate Ag85B-ESAT-6does not correlate with circulating IFN-gamma producingT-cells[J].Vaccine,2009,27(1):28-37.
    [41] Shi C, Wang X, Zhang H, et al. Immune responses and protective efficacy induced by85Bantigen and early secreted antigenic target-6kDa antigen fusion protein secreted byrecombinant bacille Calmette-Guerin[J]. Acta Biochim Biophys Sin,2007,39(4):290-296.
    [42] Xu Y, Zhu B, Wang Q, et al. Recombinant BCG coexpressing Ag85B, ESAT-6andmouse-IFN-gamma confers effective protection against Mycobacterium tuberculosis inC57BL/6mice[J]. FEMS Immunol Med Microbiol,2007,51(3):480-487.
    [43] Qie YQ, Wang JL, Zhu BD, et al. Evaluation of a new recombinant BCG which containsmycobacterial antigen ag85B-mpt64(190-198)-mtb8.4in C57/BL6mice[J]. Scand JImmunol,2008,67(2):133-139.
    [44] Wang JL, Qie YQ, Zhu BD, et al. Evaluation of a recombinant BCG expressing antigenAg85B and PPE protein Rv3425from DNA segment RD11of Mycobacterium tuberculosisin C57BL/6mice[J]. Med Microbiol Immunol,2008,198(1):5-11.
    [45] Tang C, Yamada H, Shibata K, et al. Efficacy of recombinant bacille Calmette-Guerinvaccine secreting interleukin-15/antigen85B fusion protein in providing protection againstMycobacterium tuberculosis[J]. J Infect Dis,2008,197(9):1263-1274.
    [46] Grode L, Seiler P, Baumann S, et al. Increased vaccine efficacy against tuberculosis ofrecombinant Mycobacterium bovis bacille Calmette–Guerin mutants that secretelisteriolysin[J]. J Clin Invest,2005,115(9):2472-2479.
    [47] Magalhaes I, Sizemore DR, Ahmed RK, et al. rBCG induces strong antigen-specific T cellresponses in rhesus macaques in a prime-boost setting with an adenovirus35tuberculosisvaccine vector[J]. PLoS ONE,2008,3(11):e3790.
    [48] Sun R, Skeiky YA, Izzo A, et al. Novel recombinant BCG expressing perfringolysin O andthe over-expression of key immunodominant antigens; pre-clinical characterization, safetyand protection against challenge with Mycobacterium tuberculosis[J]. Vaccine,2009,27(33):4412-4423.
    [49] Shafferman A, Zvi A, Ariel N, et al. inventors. Novel recombinant BCG tuberculosisvaccine designed to elicitimmuneresponses to Mycobacterium tuberculosis in allphysiological stages of infection and disease[J]. United States Patent Application patent,2009,0136534.
    [50] Hess J,Miko D, Catic A, et al.Mycobacterium bovis bacillus Calmette-Guerin strainssecreting listeriolysin of listeria monocytogenes [J].Proc Nail Acad Sci USA,1998,95(9):5299-5304.
    [51] Baumgart KW,McKenzie KR,Radford AJ,et al. Immunogenicity and protective studieswith recombinant mycobacteria and vaccmia vectors co-expressing the18kilo Daltonprotein of Mycobacterium leprae [J]..Infect Immun,1996,64(6):2274-2281.
    [52] Mazzantini RP, Miyaji EN, Dias WO, et al. Adjuvant activity of Mycobacterium bovis BCGexpressing CRM197on the immune response induced by BCG expressing tetanus toxinfragment C[J]. Vaccine,2004,22(5-6):740-746.
    [53] Abomoelak B, Huygen K, Kremer L, et al.Humoral and cellular immune responses in miceimmunized with recombinant Mycobacterium bovis Bacillus Calmette–Guerin producing apertussis toxin-tetanus toxin hybrid protein[J]. Infect Immun,1999,67(10):5100-5105.
    [54] Nascimento IP, Dias WO, Mazzantini RP, et al. Recombinant Mycobacterium bovis BCGexpressing pertussis toxin subunit S1induces protection against an intracerebral challengewith live Bordetella pertussis in mice[J]. Infect Immun,2000,68(9):4877-4883.
    [55] Medeiros MA, Armoa GR, Dellagostin OA, et al. Induction of humoral immunity inresponse to immunization with recombinant Mycobacterium bovis BCG expressing the S1subunit of Bordetella pertussis toxin[J]. Can JMicrobiol,2005,51(12):1015-1020.
    [56] Edelman R, Palmer K, Russ KG, et al. Safety and immunogenicity of recombinant BacilleCalmette–Guerin (rBCG) expressing Borrelia burgdorferi outer surface protein A (OspA)lipoprotein in adult volunteers: a candidate Lyme disease vaccine[J]. Vaccine,1999,17(7–8):904-914.
    [57] Seixas FK, Fernandes CH, Hartwig DD, et al.Evaluation of different ways of presentingLipL32to the immune system with the aim of developing a recombinant vaccine againstleptospirosis[J]. Can J Microbiol,2007,53(4):472-479.
    [58] Seixas FK, da Silva EF, Hartwig DD, et al. Recombinant Mycobacterium bovis BCGexpressing the LipL32antigen of Leptospira interrogans protects hamsters fromchallenge[J]. Vaccine,2007,26(1):88-95.
    [59] Biet F, Kremer L, Wolowczuk I,et al. Immune response induced by recombinantMycobacterium bovis BCG producing the cholera toxin B subunit[J]. Infect Immun,2003,71(5):2933-2937.
    [60] da Silva Ramos RA, Conceicao FR, Grassmann AA, et al. B subunit of Escherichia coliheat-labile enterotoxin as adjuvant of humoral immune response in recombinant BCGvaccination[J]. Can J Microbiol,2008,54(8):677-686.
    [61] Michelon A, Conceicao FR, Binsfeld PC, et al. Immunogenicity of Mycobacterium bovisBCG expressing Anaplasma marginale MSP1a antigen[J]. Vaccine,2006,24(37-39):6332-6339.
    [62] Wada N, Ohara N, Kameoka M, et al.Long-lasting immune response induced byrecombinant bacillus Calmette-Guérin (BCG) secretion system[J].Scand J Immunol,1996,43(2):202-209.
    [63] Honda M, Matsuo K, Nakasone T, et al.Protective immune responses induced by secretionof a chimeric soluble protein from a recombinant Mycobacterium bovis bacillusCalmette-Guérin vector candidate vaccine for human immunodeficiency virus type1insmall animals[J].Proc Natl Acad Sci U S A,1995,92(23):10693-10697.
    [64] winter N, Lagranderie M, Rauzier J, et al. Expression of heterologous genes inMycobacterium bovis BCG: induction of a cellular response against HIV-1Nef protein[J].Gene,1991,109(1):47-54.
    [65] Yasutomi Y, Koenig S, Haun SS, et al.Immunization with recombinant BCG-siv elicitsSIV-specific cytotoxic T lymphocytes in Rbesus monkeys [J].J Immuno1,1993,150(7):3101-3107.
    [66] Hiroi T, Gote H,Someya K, et al.HIV mucosal vaccine: nasal immunization withrBCG-V3J1induces a long term V3J1peptide-specific neu-tralizing immunity in Thl-andTh2-deficient conditions[J]. J Immunol,2001,167(10):5862-5867.
    [67] Kawahara M,Matsuo K, Nakasone T, et al.Combined intrarectal/intradermal inooulation ofrecombinant mycobacterium bovis bacillus Calmette-Guerin (BCG) induces enhancedimmune responses against the inserted HIV-I V3antigen[J].Vaccine,2002,21(3.4):158-166.
    [68] Triccas JA,Britton WJ, Gicquel B. Isolation of strong expression signals of Mycobacteriumtuberculosis [J].Microbiology,2001,147(5):1253-1258.
    [69] Fennelly GJ, Flynn JL, Menlen Vt, et al. Recombinant Balille Calmette-Gurein primingagainst measles[J]. J Infect Dis,1995,172(3):698-705.
    [70] Zhu YD, Fennelly G, Miller C, et al. Recombinant bacille Calmette-Guerin expressing themeasles virus nucleoprotein protects infant rhesus macaques from measles viruspneumonia[J]. J Infect Dis,1997,176(6):1445-1453.
    [71] Jabbar IA, Fernando GJ, Saunders N, et al.Immune responses induced by BCG recombinantfor human papillomavirus L1and E7proteins[J]. Vaccine,2000,18(22):2444-2453.
    [72] Govan VA, Christensen ND, Berkower C, et al.Immunization with recombinant BCGexpressing the cottontail rabbit papillomavirus (CRPV) L1gene provides protection fromCRPV challenge[J]. Vaccine,2006,24(12):2087-2093.
    [73] cottontail rabbit papillomavirus (CRPV) L2E7E2genes induces regression of establishedpapillomas[J]. Virus Res,2007,127(1):43-48.
    [74] da Cruz FW, McBride AJ, Conceicao FR, et al. Expression of the B-cell and T-cell epitopesof the rabies virus nucleoprotein in Mycobacterium bovis BCG and induction of an humoralresponse in mice[J].Vaccine,2001,20(5-6):731-736.
    [75] Uno-Furuta S, Matsuo K, Tamaki S, et al.Immunization with recombinant Calmette-Guerinbacillus (BCG)-hepatitis C virus (HCV) elicits HCV-specific cytotoxic T lymphocytes inmice[J]. Vaccine,2003,21(23):3149-3156.
    [76] Wei SH, Yin W, An QX, et al.A novel hepatitis C virus vaccine approach using recombinantBacillus Calmette-Guerin expressing multi-epitope antigen[J].Arch Virol,2008,153(6):1021-1029.
    [77] Rezende CA, De Moraes MT,De SM, et al. Humoral response and genetic stability ofrecombinant BCG expressing hepatitis B surface antigens[J].J Virol Methods,2005,125(1):1-9.
    [78] Dennehy M, Bourn W, Steele D, et al.Evaluation of recombinant BCG expressing rotavirusVP6as an anti-rotavirus vaccine[J]. Vaccine,2007,25(18):3646-3657.
    [79] Bai JN, Bian YQ, Zhao BH. Construction of recombinant BCG bearing S1glycoprotein ofnephropathogenic IBV and study on its immunogenicity on chickens[J]. Wei Sheng Wu XueBao,2007,47(2):324-328.
    [80] Bueno SM, Gonzalez PA, Cautivo KM, et al. Protective T cell immunity against respiratorysyncytial virus is efficiently induced by recombinant BCG[J]. Proc Natl Acad Sci USA,2008,105(52):20822-20827.
    [81] Kremer L, Riveau G, Baulard A, et al. Neutralizing antibody responses elicited in miceimmunized with recombinant bacillus Calmette-Guerin producing the Schistosoma mansoniglutathione S-transferase[J]. J Immunol,1996,156(11):4309-4317.
    [82] Kremer L, Dupre L, Riveau G, et al. Systemic and Mucosal Immune Responses afterIntranasal Administration of Recombinant Mycobacterium bovis Bacillus Calmette-GuerinExpressing Glutathiones-Transferase from Schistosoma haematobium[J]. Infect Immun,1998,66(12):5669-5676.
    [83] Varaldo PB, Leite LC, Dias WO, et al. Recombinant Mycobacterium bovis BCG Expressingthe SmL4Antigen of Schistosoma mansoni Protects Mice from Cercarial Challenge[J].Infect Immun,2004,72(6):3336-3343.
    [84]肖红,郑波,祁学忠,等.日本血吸虫32kDa抗原基因的克隆及在耻垢分枝杆菌中的表达[J].同济医科大学学报,2000,29(1):4-7.
    [85]程继忠,皇甫永穆,海涛,等.日本血吸虫26kDa抗原基因在BCG中的表达[J].中国生物化学与分子生物学报,1998,14(6):661-667.
    [86]李文桂,石佑恩,汪燕鸣,等.血吸虫重组BCG-Sj26GST疫苗接种后保护力的观察[J].同济医科大学学报,1999,24(1):13-16.
    [87] Dai W, Gao H, Huang H, et al.Comparative study on the immunogenicity betweenrecombinant MS-Sj26GST vaccine and recombinant BCG-Sj26GST vaccine in Schistosomajaponicum[J]. J Huazhong Univ Sci Technol Med Sci,2003,23(3):213-215.
    [88] Matsumoto S, Yukitake H, Kanbara H, et al. Recombinant Mycobacterium bovis bacillusCalmette-Guérin secreting merozoite surface protein1(MSP1) induces protection againstrodent malaria parasite infection depending on MSP1-stimulated interferon gamma andparasite-specific antibodies[J]. J Exp Med,1998,188(5):845-854.
    [89] Matsumoto S, Yukitake H, Kanbara H, et al.Long-lasting protective immunity againstrodent malaria parasite infection at the blood stage by recombinant BCG secretingmerozoite surface protein-1[J]. Vaccine,1999,18(9-10):832-834.
    [90] Matsumoto S, Yanagi T, Ohara N, et al.Stable expression and secretion of the B-cell epitopeof rodent malaria from Mycobacterium bovis BCG and induction of long-lasting humoralresponse in mouse[J]. Vaccine,1996,14(1):54-60.
    [91] Zheng C, Xie P, Chen Y. Molecular cloning and sequencing of the circumsporozoite proteingene from Plasmodium falciparum strain FCC-1/HN and expression of the gene inMycobacteria[J]. J Clin Microbiol,2001,39(8):2911-2915.
    [92] Zheng C, Xie P, Chen Y. Recombinant Mycobacterium bovis BCG producing thecircumsporozoite protein of Plasmodium falciparum FCC-1/HN strain induces strongimmune responses in BALB/c mice[J]. Parasitol Int,2002,51(1):1-7.
    [93] Zheng C, Xie P, Chen Y. Immune response induced by recombinant BCG expressingmerozoite surface antigen2from Plasmodium falciparum[J]. Vaccine,2001,20(5-6):914-919.
    [94] Rapeah S, Norazmi MN. Immunogenicity of a recombinant Mycobacterium bovis bacilleCalmette-Guèrin expressing malarial and tuberculosis epitopes[J].Vaccine,2006,24,24(17):3646-3653.
    [95] Nurul AA, Norazmi MN. Immunogenicity and in vitro protective efficacy of recombinantMycobacterium bovis bacille Calmette Guerin (rBCG) expressing the19kDa merozoitesurface protein-1(MSP-1(19)) antigen of Plasmodium falciparum[J]. Parasitol Res,2011,108(4):887-897.
    [96] Arama C, Waseem S, Fernández C,et al.A recombinant Bacille Calmette-Guérin constructexpressing the Plasmodium falciparum circumsporozoite protein enhances dendritic cellactivation and primes for circumsporozoite-specific memory cells in BALB/cmice[J].Vaccine,2012,30(37):5578-5584.
    [97] Arama C, Assefaw-Redda Y, Rodriguez A,et al.Heterologous prime-boost regimenadenovector35-circumsporozoite protein vaccine/recombinant Bacillus Calmette-Guérinexpressing the Plasmodium falciparum circumsporozoite induces enhanced long-termmemory immunity in BALB/c mice[J]. Vaccine,2012,30(27):4040-4045.
    [98] Teo WH, Nurul AA, Norazmi MN. Immunogenicity of recombinant BCG-based vaccineexpressing the22kDa of serine repeat antigen (SE22) of Plasmodium falciparum[J]. TropBiomed,2012,29(2):239-253.
    [99] Connell ND, Medina-Acosta E, McMaster WR, et al.Effective immunization againstcutaneous leishmaniasis with recombinant bacille Calmette-Guérin expressing theLeishmania surface proteinase gp63[J]. Proc Natl Acad Sci U S A,1993,90(24):11473-11477.
    [100] Streit JA, Recker TJ, Donelson JE, et al. BCG expressing LCR1of Leishmania chagasiinduces protective immunity in susceptible mice[J]. Exp Parasitol,2000,94(1):33-41.
    [101] Supply P, Sutton P, Coughlan SN,et al.Immunogenicity of recombinant BCG producingthe GRA1antigen from Toxoplasma gondii[J]. Vaccine,1999,17(7-8):705-714.
    [102] Wang H, Liu Q, Liu K, et al.Immune response induced by recombinant Mycobacteriumbovis BCG expressing ROP2gene of Toxoplasma gondii[J]. Parasitol Int,2007,56(4):263-268.
    [103]李俊华,吴少庭,翁亚彪,等.弓形虫GRA4和SAG2基因重组BCG疫苗免疫保护性的比较研究[J].中国寄生虫学与寄生虫病杂志,2007,25(3):217-221.
    [104] Li WG, Wang H, Zhu YM. Changes of cytokines of splenocytes in mice immunized bymix recombinant BCG-EmII/3and BCG-Em14-3-3vaccine of Em[J]. Xi Bao Yu Fen ZiMian Yi Xue Za Zhi.2007,23(10):911-913.
    [105]李文桂,朱佑明,王鸿.多房棘球绦虫重组BCG-EmⅡ/3疫苗免疫小鼠后脾细胞亚群的动态观察[J].免疫学杂志,2008,24(6):146-149.
    [106]周宇.肝片吸虫保护性抗原基因在卡介苗中的表达[D].成都:四川大学,2003.
    [107] Santangelo MP, McIntosh D, Bigi F,et al. Mycobacterium bovis BCG as a deliverysystem for the RAP-1antigen from Babesia bovis[J].Vaccine,2007,25(6):1104-1113.
    [108]王秋悦,任科研,李建华,等. EGFP标记柔嫩艾美耳球虫重组卡介苗的构建及其在鸡体内的分布[J].中国科学,2008,38(11):1084-1089.
    [109] Qiuyue Wang, Jianhua Li, Xichen Zhang,et al. Protective immunity of recombinantMycobacterium bovis BCG expressing rhomboid gene against Eimeria tenella challenge[J]. Vet Parasitol,2009,160(3-4):198-203.
    [110] Li WC, Zhang XK, Du L,et al.Eimeria maxima: efficacy of recombinant Mycobacteriumbovis BCG expressing apical membrane antigen1against homologous infection[J]. ParasitolRes,2013,112(11):3825-3833.
    [111]李运娜,黄金贵,李建华,等.柔嫩艾美耳球虫ADF基因重组卡介苗的构建及其免疫保护性研究[J].中国病原生物学杂志,2012,7(2):85-88.
    [112]侯洪烈,张许科,李运娜,等. ADF-IL-2基因重组卡介苗的构建及免疫保护效果[J].中国兽医学报,2013,33(7):1016-1020.
    [113]李瑾,黄炳成,魏庆宽,等.微小隐孢子虫重组BCG-CP15/60-23疫苗的构建及鉴定[J].中国热带医学,2008,8(6):917-921.
    [114]李瑾,黄炳亮,魏庆宽,等.微小隐孢子虫重组BCG-Cp23疫苗的构建及鉴定[J].中国人兽共患病学报,2008,24(12):1145-1148.
    [115] Young SL, O Donnell MA, Buchan GS. IL-2-secreting recombinant bacillus CalmetteGuerin can overcome a Type2immune response and corticosteroid inducedimmunosuppression to elicit a Type1immuneresponse[J]. IntImmunol,2002,14(7):793-800.
    [116] Biet F, Kremer L, Wolowczuk I, et al.Mycobacterium bovis BCG producinginterleukin-18increases antigen-specific gamma interferon production in mice[J]. InfectImmun,2002,70(12):6549-6557.
    [117] Luo Y, Yamada H, Chen X, et al. Recombinant Mycobacterium bovis bacillusCalmette-Guerin (BCG) expressing mouse IL-18augments Th1immunity and macrophagecytotoxicity[J]. Clin Exp Immunol,2004,137(1):24-34.
    [118] Lagranderie M, Murray A, Gicquel B,et al. Oral immunization with recombinant BCGinduces cellular and humoral immune responses against the foreign antigen[J].Vaccine,1993,11(13):1283-1290.
    [119] Conradt P, Hess J, Kaufmann SH. Cytolytic T-cell responses to human dendritic cellsand macrophages infected with Mycobacterium bovis BCG and recombinant BCG secretinglisteriolysin[J]. Microbes Infect,1999,1(10):753-764.
    [120] Ohara N, Matsuoka M, Nomaguchi H, et al.Protective responses against experimentalMycobacterium leprae infection in mice induced by recombinant Bacillus Calmette-Guerinover-producing three putative protective antigen candidates[J]. Vaccine,2001,19(15-16):1906-1910.
    [121] Rao V, Dhar N, Tyagi AK. Modulation of host immune responses by overexpression ofimmunodominant antigens of Mycobacterium tuberculosis in bacille Calmette-Guerin[J].Scand J Immunol,2003,58(4):449-461.
    [122] Bao L, Chen W, Zhang H, et al.Virulence, immunogenicity, and protective efficacy oftwo recombinant Mycobacterium bovis bacillus Calmette-Guerin strains expressing theantigen ESAT-6from Mycobacterium tuberculosis[J]. Infect Immun,2003,71(4):1656-1661.
    [123] Demangel C, Garnier T, Rosenkrands I, et al.Differential effects of prior exposure toenvironmental mycobacteria on vaccination with Mycobacterium bovis BCG or arecombinant BCG strain expressing RD1antigens[J]. Infect Immun,2005,73(4):2190-2196.
    [124] Kita Y, Tanaka T, Yoshida S, et al. Novel recombinant BCG and DNA-vaccinationagainst tuberculosis in a cynomolgus monkey model[J]. Vaccine,2005,23(17-18):2132-2135.
    [125] Nascimento IP, Dias WO, Quintilio W, et al. Neonatal immunization with a single doseof recombinant BCG expressing subunit S1from pertussis toxin induces completeprotection against Bordetella pertussis intracerebral challenge[J]. MicrobesInfect,2008,10(2):198-202.
    [126] Tullius MV, Harth G, Maslesa-Galic S, et al.A Replication-Limited RecombinantMycobacterium bovis BCG vaccine against tuberculosis designed for humanimmunodeficiency virus-positive persons is safer and more efficacious than BCG[J]. InfectImmun,2008,76(11):5200-5214.
    [127] Dellagostin OA, Wall S, Norman E, O'et al. Construction and use of integrative vectorsto express foreign genes in mycobacteria[J]. Mol Microbiol,1993,10(5):983-993.
    [128] Winter N, Lagranderie M, Gangloff S, et al. Recombinant BCG strains expressing theSIVmac251nef gene induce proliferative and CTL responses against nef synthetic peptidesin mice[J].Vaccine,1995,13(5):471-478.
    [129] Leung NJ, Aldovini A, Young R, et al. The kinetics of specific immune responses inrhesus monkeys inoculated with live recombinant BCG expressing SIV Gag, Pol, Env, andNef proteins[J]. Virology,2000,268(1):94-103.
    [130] Mederle I, Le Grand R, Vaslin B, et al. Mucosal administration of three recombinantMycobacterium bovis BCG-SIVmac251strains to cynomolgus macaques induces rectalIgAs and boosts systemic cellular immune responses that are primed by intradermalvaccination[J].Vaccine,2003,21(27-30):4153-4166.
    [131] Ami Y, Izumi Y, Matsuo K, et al.Priming-boosting vaccination with recombinantMycobacterium bovis bacillus Calmette-Guerin and a nonreplicating vaccinia virusrecombinant leads to long-lasting and effective immunity[J]. J Virol,2005,79(20):12871-12879.
    [132] Someya K, Cecilia D, Ami Y, et al. Vaccination of rhesus macaques with recombinantMycobacterium bovis bacillus Calmette-Guerin Env V3elicits neutralizingantibody-mediated protection against simian-human immunodeficiency virus with ahomologous but not aheterologous V3motif[J]. J Virol,2005,79(3):1452-1462.
    [133] Kawahara M, Matsuo K, Honda M. Intradermal and oral immunization withrecombinant Mycobacterium bovis BCG expressing the simian immunodeficiency virusGag protein induces long-lasting, antigen-specific immune responses in guinea pigs[J]. ClinImmunol,2006,119(1):67-78.
    [134] Yu JS, Peacock JW, Jacobs Jr WR, et al.Recombinant bacillus Calmette-Guerin elicitsHIV-1envelope-specific T lymphocytes at mucosal sites[J]. Clin Vaccine Immunol,2007,14(7):886-893.
    [135] Promkhatkaew D, Pinyosukhee N, Thongdeejaroen W,et al. Enhancement ofcell-mediated immune response in mice by whole HIV-1gag in Mycobacterium bovis BCGas a live vaccinecandidate[J]. Southeast Asian J Trop Med Public Health,2009,40(1):113-122.
    [136] Cayabyab MJ, Korioth-Schmitz B, Sun Y, et al. Recombinant Mycobacterium bovisBCG prime-recombinant adenovirus boost vaccination in rhesus monkeys elicits robustpolyfunctional simian immunodeficiency virus-specific T-cell responses[J]. J Virol,2009,83(11):5505-5513.
    [137] Wang H, Liu Q, Liu K, et al. Immune response induced by recombinant Mycobacteriumbovis BCG expressing ROP2gene of Toxoplasma gondii[J]. Parasitol Int,2007,56(4):263-268.
    [138] Li WG,Wang H, Zhu YM. Changes of cytokines of splenocytes in mice immunized bymix recombinant BCG-EmII/3and BCG-Em14-3-3vaccine of Em[J]. Xi Bao Yu Fen ZiMian Yi Xue Za Zhi,2007,23(10):911-913.
    [139] Yamada H, Matsumoto S, Matsumoto T, et al.Murine IL-2secreting recombinantbacillus Calmette-Guerin augments macrophage mediated cytotoxicity against murinebladder cancer MBT-2[J]. J Urol,2000,164(2):526-531.
    [140] Young S, O'Donnell M, Lockhart E, et al. Manipulation of immune responses toMycobacterium bovis by vaccination with IL-2and IL-18-secreting recombinant bacillusCalmette Guerin[J].Immunol Cell Biol,2002,80(3):209-215.
    [141] Biet F, Kremer L, Wolowczuk I,et al. Mycobacterium bovis BCG producinginterleukin-18increases antigen-specific gamma interferon production in mice[J]. InfectImmun,2002,70(12):6549-6557.
    [142] Luo Y, Yamada H, Chen X, et al. Recombinant Mycobacterium bovis bacillusCalmette-Guerin (BCG) expressing mouse IL-18augments Th1immunity and macrophagecytotoxicity[J]. Clin Exp Immunol,2004,137(1):24-34.
    [143] Arnold J, de Boer EC, O'Donnell MA,et al. Immunotherapy of experimental bladdercancer with recombinant BCG expressing interferon gamma[J]. J Immunother,2004,27(2):116-123.
    [144] Biet F, Duez C, Kremer L, et al. Recombinant Mycobacterium bovis BCG producingIL-18reduces IL-5production and bronchoalveolar eosinophilia induced by an allergicreaction[J]. Allergy,2005,60(8):1065-1072.
    [145] Liu W, O'Donnell MA, Chen X,et al. Recombinant bacillus Calmette-Guerin (BCG)expressing interferon-alpha2B enhances human mononuclear cell cytotoxicity againstbladder cancer cell lines in vitro[J]. Cancer Immunol Immunother,2009,58(10):1647-1655.
    [146] Luo Y, Yamada H, Evanoff DP,et al.Role of Th1-stimulating cytokines in bacillusCalmette-Gu′erin (BCG)-induced macrophage cytotoxicity against mouse bladder cancerMBT-2cells[J]. Clinical and Experimental Immunology,2006,146(1):181-188.
    [147] Donnell M AO', Aldovini A, Duda RB, et al. Recombinant Mycobacterium bovis BCGsecreting functional interleukin-2enhances gamma interferon production by splenocytes[J].Infection and Immunity,1994,62(6):2508-2514.
    [148] DudaR B, Yang H, Dooley D D,et al.Recombinant BCG therapy suppresses melanomatumor growth[J].Annals of Surgical Oncology,1995,2(6):542-549.
    [149] Kong D, Kunimoto, DY. Secretion of human interleukin2by recombinantMycobacterium bovis BCG[J]. Infection and Immunity,1995,63(3):799-803.
    [150] Murray P J, Aldovini A,Young R A.Manipulation and potentiation of antimycobacterialimmunity using recombinant bacille Calmette-Gu′erin strains that secretecytokines[J].Proceedings of the National Academy of Sciences of the United States ofAmerica,1996,93(2):934-939.
    [151] Ryan A A, Wozniak T M, Shklovskaya E,et al.Improved protection against disseminatedtuberculosis by Mycobacterium bovis bacillus Calmette-Gu′erin secreting murine GM-CSFis associated with expansion and activation of APCs[J].Journal of Immunology,2007,179(12):8418-8424.
    [152] Wangoo A, Brown I N, Marshall B G,et al. Bacille Calmette-Gu′erin(BCG)-associatedinflammation and fibrosis: modulation by recombinant BCG expressing interferon-gamma(IFNgamma)[J]. Clinical and Experimental Immunology,2000,119(1):92-98.
    [153] Slobbe L, Lockhart E, Donnell M A O',et al. An in vivo comparison of bacillusCalmette-Gu′erin (BCG) and cytokine secreting BCG vaccines[J]. Immunology,1999,96(4):517-523.
    [154] Luo Y, Chen X, Szilvasi A,et al.Coexpression of interleukin-2and green fluorescentprotein reporter in mycobacteria: in vivo application for monitoring antimycobacterialimmunity[J]. Molecular Immunology,2000,37(9):527-536.
    [155] Moreira A L, Tse nova L, Murray P J,et al. Aerosol infection of mice with recombinantBCG secreting murine IFNgamma partially reconstitutes local protectiveimmunity[J].Microbial Pathogenesis,2000,29(3):175-185.
    [156] Luo Y, Chen X, Han R,et al.Recombinant bacille Calmette-Gu′erin (BCG) expressinghuman interferon-alpha2B demonstrates enhanced immunogenicity[J]. Clinical andExperimental Immunology,2001,123(2):264-270.
    [157] Chen X, Donnell M A O', Luo Y. Dose-dependent synergy of Th1-stimulating cytokineson bacille Calmette-Gu′erin-induced interferon-gamma production by human mononuclearcells[J].Clinical and Experimental Immunology,2007,149(1):178-185.
    [158] Biet F, Kremer L, Wolowczuk I,et al. Mycobacterium bovis BCG producingInterleukin-18increases antigen-specific gamma interferon production in mice[J]. Infectionand Immunity,2002,70(12):6549-6557.
    [159] He J, Shen D, Donnell M. A. O',et al.Induction of MUC1-specific cellular immunity bya recombinant BCG expressing human MUC1and secreting IL2[J]. International Journal ofOncology,2002,20(6):1305-1311.
    [160] Chung M A, Luo Y, Donnell M. O', et al. Development and preclinical evaluation of aBacillus Calmette-Gu′erin-MUC1-based novel breast cancer vaccine[J]. Cancer Research,2003,63(6):1280-1287.
    [161] Luo Y, Yamada H, Evanoff D P,et al. Role of Th1-stimulating cytokines in bacillusCalmette-Gu′erin (BCG)-induced macrophage cytotoxicity against mouse bladder cancerMBT-2cells[J]. Clinical and Experimental Immunology,2006,146(1):181-188.
    [162] Fan X L, Yu T H, Gao Q,et al.Immunological properties of recombinant Mycobacteriumbovis bacillus Calmette-Gu′erin strain expressing fusion protein IL-2-ESAT-6[J]. ActaBiochimica et Biophysica Sinica,2006,38(10):683-690.
    [163] Ryan AA, Spratt J M, Britton W J,et al. Secretion of functional monocyte chemotacticprotein3by recombinant Mycobacterium bovis BCG attenuates vaccine virulence andmaintains protective efficacy against M. tuberculosis infection[J].Infection and Immunity,2007,75(1):523-526.
    [164] Yuan S, Shi C, Han W,et al.Effective anti-tumor responses induced by recombinantbacillus Calmette-Gu′erin vaccines based on different tandem repeats of MUC1andGM-CSF[J]. The European Journal of Cancer Prevention,2009,18(5):416-423.
    [165] Yuan S, Shi C, Ling R,et al.Immunization with two recombinant BacillusCalmette-Gu′erin vaccines that combine the expression of multiple tandem repeats ofmucin-1and colony stimulating-factor suppress breast tumor growth in mice[J]. Journal ofCancer Research and Clinical Oncology,2010,136(9):1359-1367.
    [166] Shen H, Wang C, Yang E, et al.Novel recombinant BCG coexpressing Ag85B, ESAT-6and mouse TNFalpha induces significantly enhanced cellular immune and antibodyresponses in C57BL/6mice[J]. Microbiology and Immunology,2010.54(8):435-441.
    [167] Xu JH, Qin ZH, Liao YS, et al. Characterization and expression of anactin-depolymerizing factor from Eimeria tenella[J]. Parasitol. Res,2008,103(2):263-270.
    [168] Del Cacho E, Gallego M, Lee SH, et al.Induction of protective immunity againstEimeria tenella, Eimeria maxima, and Eimeria acervulina infections using dendriticcell-derived exosomes[J]. Infection and Immunity,2012,80(5):1909-1916.
    [169] Veterinary Medicines Directorate (2012) Sales of Antimicrobial Products Authorised forUse as Veterinary Medicines, Antiprotozoals, Antifungals, Growth Promoters andCoccidiostats in the UK in2011, Veterinary Medicines Directorate (www.vmd.gov.uk).
    [170] Basak SC, Lee S, Barta JR, et al. Differential display analysis of gene expression in twoimmunologically distinct strains of Eimeria maxima[J]. Parasitol Res,2006,99(1):28-36.
    [171] Jang SI, Kim DK, Lillehoj HS, et al. Evaluation of MontanideTMISA71VG Adjuvantduring Profilin Vaccination against Experimental Coccidiosis[J]. PLoS One,2013,8:e59786.
    [172] Blake DP, Billington KJ, Copestake SL,et al.Genetic mapping identifies novel highlyprotective antigens for an apicomplexan parasite[J]. PLoS Pathog,2011,7: e1001279.
    [173] Blake DP, Tomley FM. Securing poultry production from the ever-present Eimeriachallenge[J]. Trends Parasitol.2014,30(1):12-19.
    [174] Beach J R., Corl J C. Studies in the Control of Avian Coccidiosis[J]. Poultry Science,1925,4(3):83-93.
    [175] Chapman H D, Cherry T E, Danforth H D, et al.Sustainable coccidiosis cont rol inpoultry production:the role of live vaccines [J]. Int J Parasit,2002,32:617-629.
    [176] Shirley MW, Smith AL, Tomley FM. The biology of avian eimeria with an Emphasis ontheir control by vaccination[J]. Advances in Parasitology,2005,60:285-330.
    [177] Jeffers, T K. Attenuation of Eimeria tenella through selection for pre-cociousness[J]. J.Parasitol,1975,61,1083–1090.
    [178] Long, PL. Eimeria tenella: reproduction, pathogenicity and immunogenicity of a strainmaintained in chick embryos by serial passage[J]. J. Comp. Pathol,1972,82,429–437.
    [179] Crouch C F, AndrewsS J,Ward R G,et aL. Protective efficacy of alive attenuateanticoccidial vaccine administered to1-day-old chickens[J].Avian Pathol.2003,32(3):297-304.
    [180] Danforth, H.D.2000. Increase in anticoccidial sensitivity seen after field trial studieswith five oocyst vaccination of partially drug-resistant strains of avian Eimeria species(abstract). In: Proceedings of the75th Annual Meeting of the American Society ofParasitologists and the53rd Annual Meeting of Protozoologists, p.90.
    [181] Schetters, T.P.M., Janssen, H.A.J.M., Vermeulen, A.N.,1999. A new vaccination conceptagainst coccidiosis in poultry. In: van der Sluis, W.(Ed.), World Poultry. Elsevier,Amsterdam, pp.23–24.
    [182] Li G Q, Icanu S, Xiang F Y, et al. Isolation and selection of ionophore-tolerant Eimeriaprecocious lines: E tenella, E maxima and E. acervulina[J].Vet Parasitol,2004,119(4):261-276.
    [183] Li G Q, Kanu S, Xiao S M, et al. Responses of chickens vaccinated with a liveattenuated multi-valent ionophore-tolerant Eimeria vaccine[J].Vet Parasitol,2005,129(3-4):179-186.
    [184] Danforth H D. Use of live oocyst vaccines in the control of avian coccidiosis:experimental studies and field trials[J].Int J Parasitol,1998,28(7):1099-1109.
    [185] Vermeulen AN, Schaap DC,Schetters TP. Control of coccidiosis in chickens byvaccination[J].Vet Parasitol,2001,100(1-2):13-20.
    [186] Singh A K, Verma AK, Neha,et al. Trends and Advances in Vaccines Against ProtozoanParasites of Veterinary Importance: A Review[J].Journal of Biological Sciences,2014,14(2):95-109.
    [187] Michael A. The practical use of a maternal vaccine against coccidiosis. In: WorldPoultry19. Amsterdam (The Netherlands): Elsevier.2003,p24-26.
    [188] Michael A.2007. Maternal vaccination against coccidiosis is an option. In: WorldPoultry23. Amsterdam (The Netherlands): Elsevier. p.36-37.
    [189] Finger A, Michael A.2005. Maternal protection against Eimeria challenge of CoxAbic_vaccinated chickens. Proceedings of the IXth International Coccidiosis Conference;2005Sep19–23; Foz do Iguassu, Brasil. p.146.
    [190] Ziomko I, Karamon J, Cencek T, Gornowicz E, Skoracki A, Ashash U.2005. Preventionof broiler chick coccidiosis using the inactivated subunit vaccine CoxAbic_. Bull Vet InstPulawy.49:299-302.
    [191] Wallach M, Smith NC, Petracca M, et al. Eimeria maxima gametocyte antigens:potentialuse in a sub-unit maternal vaccine against coccidiosis in chickens[J]. Vaccine.1995,13:347-354.
    [192] Wallach M. The importance of transmission-blocking immunity in the control ofinfections by apicomplexa parasites[J]. Int J Parasitol,1997,27(10):1159-1167.
    [193] Wen-Chao Li,Xu-ke Zhang,Ling Du,et al. Eimeria maxima: efficacy of recombinantMycobacterium bovis BCG expressing apical membrane antigen1against homologousinfection[J]. Parasitol Res.2013,112(11):3825-3833.
    [194] Xu J, Zhang Y, Tao J. Efficacy of a DNA vaccine carrying Eimeria maxima Gam56antigen gene against coccidiosis in chickens[J]. Korean J. Parasitol,2013,51(2):147–154.
    [195] Ding J, Qian W, Liu Q,et al. Multi-epitope recombinant vaccine inducesimmunoprotection against mixed infection of Eimeria spp[J]. Parasitol. Res,2012,110(6):2297–2306.
    [196] Jang SI, Lillehoj HS, Lee SH, et al. Eimeria maxima recombinant Gam82gametocyteantigen vaccine protects against coccidiosis and augments humoral and cell-mediatedimmunity[J]. Vaccine,2010,28(17):2980–2985.
    [197] Dalloul RA, Lillehoj HS, Klinman DM,et al. In ovo administration of CpGoligodeoxynucleotides and the recombinant microneme protein MIC2protects againstEimeria infections[J]. Vaccine,2005,23(24):3108–3113.
    [198] Ding X, Lillehoj HS, Dalloul RA, et al. In ovo vaccination with the Eimeria tenellaEtMIC2gene induces protective immunity against coccidiosis[J]. Vaccine,2005,23(28):3733–3740.
    [199] Sathish K, Sriraman R, Subramanian BM, et al. Plant expressed coccidial antigens aspotential vaccine candidates in protecting chicken against coccidiosis[J]. Vaccine,2012,30(30):4460–4464.
    [200] Lai L, Bumstead J, Liu Y,et al. The role of sialyl glycan recognition in host tissuetropism of the avian parasite Eimeria tenella[J]. PLoS Pathog,2011,7:e1002296
    [201] Yin G, Qin M, Liu X, et al. An Eimeria vaccine candidate based on Eimeria tenellaimmune mapped protein1and the TLR-5agonist Salmonella typhimurium FliC flagellin[J].Biochem Biophys Res Commun.2013,440(3):437-42.
    [202] Schaap D, Arts G, Kroeze J, et al. An Eimeria vaccine candidate appears to be lactatedehydrogenase; characterization and comparative analysis[J].Parasitology,2004,128(6):603–616.
    [203] Song H, Yan R, Xu L et al. Efficacy of DNA vaccines carrying Eimeria acervulinalactate dehydrogenase antigen gene against coccidiosis[J]. Exp. Parasitol,2010,126(2):224–231.
    [204] Vermeulen, A. Progress in recombinant vaccine development against coccidiosis. Areview and prospects into the next millennium[J]. Int. J. Parasitol,998,28(7):1121–1130.
    [205] Lee SH, Lillehoj HS, Jang SI, et al. Effects of dietary supplementation withphytonutrients on vaccine-stimulated immunity against infection with Eimeria tenella[J].Vet Parasitol,2011,181(2-4):97–105.
    [206] Min W, Lillehoj HS, Burnside J, et al. Adjuvant effects of IL-1b, Il-2, IL-8, IL-15, IFN-a,IFN-g, TGF-b4and lymphotactin on DNA vaccination against Eimeria acervulina[J].Vaccine,2001,20(1-2):267–274.
    [207] Liu Y, Zheng J, Li J, et al. Protective immunity induced by a DNA vaccine encodingEimeria tenella rhomboid against homologous challenge[J]. Parasitol Res,2013,112(1):251–257.
    [208] Crane MS, Goggin B, Pellegrino RM, et al. Cross-protection against four species ofchicken coccidia with a single recombinant antigen[J]. Infect Immun,1991,59(4):1271–1277.
    [209] Klotz C, Gehre F, Lucius R, et al. Identification of Eimeria tenella genes encoding forsecretory proteins and evaluation of candidates by DNA immunisation studies inchickens[J]. Vaccine,2007,25(36):6625–6634.
    [210] Konjufca V, Jenkins M, Wang S, et al. Immunogenicity of recombinant attenuatedSalmonella enterica serovar Typhimurium vaccine strains encoding Eimeria tenella antigenSO7[J]. Infect. Immun,2008,76(12):5745–5753.
    [211] Song X, Xu L, Yan R, et al. The optimal immunization procedure of DNA vaccinepcDNA-TA4-IL-2of Eimeria tenella and its cross-immunity to Eimeria necatrix andEimeria acervulina[J]. Vet Parasitol,2009,159(1):30–36.
    [212] Pogonka T, Klotz C, Kovács F, et al. A single dose of recombinant Salmonellatyphimurium induces specific humoral immune responses against heterologous Eimeriatenella antigens in chicken[J]. Int. J. Parasitol,2003,33(1):81–88.
    [213] Kopko S H, Martin D S, Barta J R. Responses of chickens to a of Eimeria tenellaadministered using various immunizing strategies. recombinant refractile bodyantigen[J].Poult Sci,2000,79(3):336-342.
    [214] Christian Klotz,Florian Gehre, Richard Lucius, et al.Identification of Eimeria tenellaencoding for secretory proteins and evaluation of candidates by DNA immunisation studiesin chickens[J].Vaccine,2007,25(36):6625-6634.
    [215] Du A, Wang S. Efficacy of a DNA vaccine delivered in attenuated Salmonellatyphimurium against Eimeria tenella infection in chickens[J]. Int J parasito1,2005,35(7):777-785.
    [216] Wu SQ, Wang M, Liu Q,et al. Construction of DNA vaccines and their inducedprotective immunity against experimental Eimeria tenella infection[J]. Parasitol Res,2004,94(5):332-336.
    [217] Xu Q, Song X, Xu L,et al. Vaccination of chickens with a chimeric DNA vaccineencoding Eimeria tenella TA4and chicken IL-2induces protective immunity againstcoccidiosis[J]. Vet Parasitol,2008,156(3-4):319-323.
    [218] Geriletu, Lixin Xu, rihua Xu, et al. Vaccination of chickens with DNA vaccineexpressing Eimeria tenella MZS-7against coccidiosis[J]. Vet Parasitol,2011,177(1-2):6-12.
    [219] Song H, Qiu B, Yan R,et al. The protective efficacy of chimeric SO7/IL-2DNA vaccineagainst coccidiosis in chickens[J]. Res Vet Sci.2013,94(3):562-567.
    [220]雷晨星.鸡巨型艾美耳球虫抗原EmTFP250的免疫原性研究[D].南京:南京农业大学,2008.
    [221]张娜.鸡毒害艾美耳球虫NA4基因免疫调节型DNA疫苗的构建及其保护性研究[D].南京:南京农业大学,2008.
    [222]周婷婷.五种鸡堆型艾美耳球虫DNA疫苗免疫保护效果的比较[D].南京:南京农业大学,2008.
    [223] Shah M A, Yan R, Xu L, et al. A recombinant DNA vaccine encoding Eimeriaacervulina cSZ-2induces immunity against experimental E. tenella infection[J].VetParasitol,2010,2010,169(1):185-189.
    [224] Shah M A, Xu L, Yan R, et al. Cross immunity of DNA vaccine pVAXI-cSZ2-IL-2toEimeria tenella, E. necatrix and E. maxima[J]. Exp Parasito1,2010,124(3):330-333.
    [225] Ma D, Ma C, Pan L,et al. Vaccination of chickens with DNA vaccine encoding Eimeriaacervulina3-I E and chicken IL-15offers protection against homologous challenge[J].ExpParasito1,2011,127(1):208-214.
    [226] Ma D, Ma C, Gao M, et al. Induction of Cellular Immune Response by DNA VaccineCoexpressing E. acervulina3-1E Gene and Mature CHII-15Gene[J]. J Parasitol Res,2012:654279.
    [227] Zhu H, Yan R, Wang S, et al. Identification and molecular characterization of a novelantigen of Eimeria acervulina[J]. Mol Biochem Parasitol,2012,186(1):21-28.
    [228] Zhu H, Xu LR, Song X, et al. Identification and characterization of a cDNAclone-encoding antigen of Eimeria acervulina[J]. Parasitology.2012139(13):1711-1719.
    [229] Konjufca V, Wanda SY, Jenkins MC,et al. A recombinant attenuated Salmonella entericaserovar Typhimurium vaccine encoding Eimeria acervulina antigen offers protectionagainst E. acervulina challenge. Infect Immun.2006,74(12):6785-96.
    [230]谭宗华,谢明权,蔡建平,等.堆型艾美耳球虫cSZ1基因在减毒沙门氏菌的表达及免疫保护效果研究[J].寄生虫与医学昆虫学报,2005,12(1):6-13.
    [231] Yang G, Li J, Zhang X,et al. Eimeria tenella: construction of a recombinant fowlpoxvirus expressing rhomboid gene and its protective efficacy against homologous infection[J].Exp Parasitol.2008,119(1):30-36.
    [232]工春风,秦泽荣,徐镇蕊,等.饲喂转球虫基因功能乳酸杆菌后对雏鸡体重的影响[J].畜牧兽医学报,2002,33(6)591-593.
    [233]张莉.疫苗级乳球菌表达载体的构建及柔嫩艾美耳球虫TA4基因的表达[D].北京:中国农业大学,2002.
    [234] Yank Guilian, Li Jianhua, Zhan Xichen, et al. Eimeria tebella:Construction of arecombinant fowlpox virus expressing rhomboid gene and1ts protective efficacy againsthomologous infection[J].Exp parasitol,2008,119(1):30-36.
    [235]李运娜,黄金贵,李建华,等.柔嫩艾美耳球虫ADF基因重组卡介苗的构建及其免疫保护性研究[J].中国病原生物学杂志.2012.7(2):85-88.
    [236]侯洪烈,张许科,李运娜,等.ADF-IL-2基因重组卡介苗的构建及免疫保护效果[J].中国兽医学报,2013,33(7):1016-1020.
    [237] Sathish K, Sriraman R, Subramanian BM,et al. Plant expressed EtMIC2is an effectiveimmunogen in conferring protection against chicken coccidiosis[J].Vaccine,2011,29(49):9201-9208.
    [238] Del Cacho E, Gallego M, Lee SH,et al. Induction of protective immunity againstEimeria tenella infection using antigen-loaded dendritic cells (DC) and DC-derivedexosomes[J]. Vaccine,2011,29(21):3818-3825.
    [239] del Cacho E, Gallego M, Lee SH,et al. Induction of protective immunity against Eimeriatenella, Eimeria maxima, and Eimeria acervulina infections using dendritic cell-derivedexosomes[J]. Infect Immun.,2012,80(5):1909-1916.
    [240]马德星,潘龙,杨静红,等.鸡堆形艾美球虫3-1E基因真核表达质粒的构建及其抗球虫免疫保护作用[J].中国兽医科学,2009,39(10):900-904.
    [241] Sonu K D,Liliehoj H S,C'hoi K D,et al. A DNA vaccine encoding a conserved Eimeriaprotein induces protective immunity against live Eimeria acvrvulina challenge[J].Vaccine,19(23):243-252.
    [242] Xu S Z, Chen T, Wand M. Protective immunity enhanced by chimeric DNAprime-protein boost strategy against Eimeria tenella challenge[J].Avian Dis,2006,50(4):579-585.
    [243] Lillehoj HS, Ding X, Dalloul RA. Embryo vaccination against Eimeria tenella andEimeria acervulina infections using recombinant proteins and cytokine adjuvants[J]. JParasitol,2005,91(3):666-673.
    [244] Krieg AM. CpG motifs in bacterial DNA and their immune effects[J]. Annual Review ofImmunology,2002,20(1):709-760.
    [245] Dalloul RA, Lillehoj HS, Okamura M, et al. In vivo effects of CpGoligodeoxynucleotide on Eimeria infection in chickens[J]. Avian Dis.2004,48(4):783-790.
    [246] Du A, Hu S, Wang S. Eimeria tenella: ginsenosides-enhanced immune response to theimmunization with recombinant5401antigen in chickens[J]. Exp Parasitol,2005,111(3):191-197.
    [247] Zhang DF, Xu H, Sun BB,et al. Adjuvant effect of ginsenoside-based nanoparticles(ginsomes) on the recombinant vaccine against Eimeria tenella in chickens[J]. Parasitol Res,2012,110(6):2445-2453.
    [248] Berezin VE, Bogoyavlenskiy AP, Tolmacheva VP,et al. Immunostimulating complexesincorporating Eimeria tenella antigens and plant saponins as effective delivery system forcoccidia vaccine immunization[J]. J Parasitol,2008,94(2):381-385.
    [249] Kim DK, Lillehoj HS, Lee SH,et al. Effects of novel vaccine/adjuvant complexes on theprotective immunity against Eimeria acervulina and transcriptome profiles[J]. Avian Dis,2012,56(1):97-109.
    [250] Lee SH, Lillehoj HS, Jang SI,et al. Evaluation of novel adjuvant Eimeria profilincomplex on intestinal host immune responses against live E. acervulina challengeinfection[J]. Avian Dis,2012,56(2):402-405.
    [251] Lee SH, Lillehoj HS, Jang SI,et al. Embryo vaccination of chickens using a noveladjuvant formulation stimulates protective immunity against Eimeria maxima infection[J].Vaccine,2010,28(49):7774-7778.
    [252] Jang SI, Lillehoj HS, Lee SH, et al. Immunoenhancing effects of Montanide ISAoil-based adjuvants on recombinant coccidia antigen vaccination against Eimeria acervulinainfection[J].Vet Parasitol,2010,172(3-4):221-228.
    [253] Jang SI, Lillehoj HS, Lee SH,et al. Montanide ISA71VG adjuvant enhances antibodyand cell-mediated immune responses to profilin subunit antigen vaccination and promotesprotection against Eimeria acervulina and Eimeria tenella[J]. Exp Parasitol,2011,127(1):178-183.
    [254] Jang SI, Lillehoj HS, Lee SH,et al. Mucosal immunity against Eimeria acervulinainfection in broiler chickens following oral immunization with profilin in Montanideadjuvants[J]. Exp Parasitol,2011,129(1):36-41.
    [255] Jang SI, Lillehoj HS, Lee SH,et al. Montanide IMS1313N VG PR nanoparticleadjuvant enhances antigen-specific immune responses to profilin following mucosalvaccination against Eimeria acervulina[J]. Vet Parasitol,182(2-4):163-170.
    [256] Jang SI, Kim DK, Lillehoj HS,et al. Evaluation of Montanide ISA71VG adjuvantduring profilin vaccination against experimental coccidiosis[J]. PLoS One,2013,8(4):e59786.
    [257] Ding X, Lillehoj HS, Quiroz MA,et al. Protective immunity against Eimeria acervulinafollowing in ovo immunization with a recombinant subunit vaccine and cytokine genes[J].Infect. Immun,2004,72(12):6939-6944.
    [258]徐守振,李卫华,尹燕博,等.鸡柔嫩艾美耳球虫CDPK和鸡IFN-重组质粒的构建与体外表达[J].中国兽医科学,2010,40(9):920-924.
    [259] Kennedy M C, Wang J, Zhang Y, et al. In vitro studies with recombinant Plasmodiumfalciparum apical membrane antigen1(AMA1): production and activity of an AMA1vaccine and generation of a multiallelic response[J]. Infect Immun,2002,70(12):6948–6960.
    [260] Remarque EJ, Faber BW, Kocken CH, et al.Apical membrane antigen1: a malariavaccine candidate in review[J].Trends Parasitol,2008,24(2):74-84.
    [261] Macraild CA, Anders RF, Foley M, et al.Apical membrane antigen1as an anti-malarialdrug target[J]. Curr Top Med Chem,2011,11(16):2039-2047.
    [262] Zhang H, Nishikawa Y, Yamagishi J, et al. Neospora caninum: Application of apicalmembrane antigen1encapsulated in the oligomannose coated liposomes for reduction ofoffspring mortality from infection in BALB/c mice[J]. Exp Parasitol,2010,125(2):130-136.
    [263]李文超,陶建平,顾有方,等.巨型艾美耳球虫(Eimeria maxima)地理株研究Ⅳ.孢子化卵囊蛋白的SDS-PAGE与抗原性分析[J].中国兽医学报.2010,30(11):1464-1467.
    [264] Thomas N P, S ren B, Gunnar V,et al.SignalP4.0: discriminating signal peptides fromtransmembrane regions[J].Nature Methods,2011,8(10):785–786.
    [265] Krogh A, Larsson B, von Heijne G,et al.Predicting transmembrane protein topologywith a hidden Markov model: application to complete genomes[J].J Mol Biol,2001,305(3):567-580.
    [266] J rg S,Richard R,Copley, TD, et al.SMART: a web-based tool for the study ofgenetically mobile domains[J].Nucleic Acids Res,2000,28(1):231–234.
    [267] Crawford J1, Tonkin ML, Grujic O, et al. Structural characterization of apical membraneantigen1(AMA1) from Toxoplasma gondii[J].J Biol Chem,2010,285(20):15644-15652.
    [268] Jiang L, Lin J, Han H, et al. Identification and characterization of Eimeria tenella apicalmembrane antigen-1(AMA1)[J]. PLoS One,2012,7(7):e41115.
    [269] Arnott A, Mueller I, Ramsland PA, et al. Global Population Structure of the GenesEncoding the Malaria Vaccine Candidate, Plasmodium vivax Apical Membrane Antigen1(PvAMA1)[J]. PLoS Negl Trop Dis,2013,7(10):e2506.
    [270] Lal K, Bromley E, Oakes R, et al. Proteomic comparison of four Eimeria tenellalife-cycle stages: Unsporulated oocyst, sporulated oocyst, sporozoite andsecond-generation merozoite[J]. Proteomics,2009,9(19):4566-4576.
    [271] Ng ST, Jangi MS, Shirley MW, et al. Comparative EST analyses provide insights intogene expression in two asexual developmental stages of Eimeria tenella[J]. Exp Parasitol,2002,101(2-3):168-173.
    [272] Lee SH, Lillehoj HS, Jang SI, et al. The effects of novel adjuvant complex/Eimeriaprofilin vaccine on intestinal host immune responses against live E. acervulina challengeinfection[J]. Vaccine,2010,28(39):6498-6504.
    [273] Li J, Zheng J, Gong P, et al.Efficacy of Eimeria tenella rhomboid-like protein as asubunit vaccine in protective immunity against homologous challenge[J]. Parasitol Res,2012,110(3):1139-1145.
    [274] Yang G, Wang C, Hao F, et al. Studies on construction of a recombinant Eimeria tenellaSO7gene expressing Escherichia coli and its protective efficacy against homologousinfection[J]. Parasitol Int,2010,59(4):517-523.
    [275] McDonald V, Shirley MW.Past and future: vaccination against Eimeria[J].Parasitology,2009,136(12):1477-1489.
    [276] Dietrich G, Viret JF, Hess J.Novel vaccination based on recombinant Mycobacteriumbovis BCG[J]. Int. J. Med. Microbiol,2003,292(7-8):441-451.
    [277] Bastos RG, Borsuk S, Seixas FK, et al. Recombinant Mycobacterium bovis BCG[J].Vaccine2009,27(47):6495-6503.
    [278] Richie T, Saul A.Progress and challenges for malaria vaccines[J]. Nature,2002,415(6872):694-701.
    [279] Zhang H, Compaore MK, Lee EG, et al. Apical membrane antigen1is a cross-reactiveantigen between Neospora caninum and Toxoplasma gondii, and the anti-NcAMA1antibody inhibits host cell invasion by both parasites[J]. Mol Biochem Parasitol,2007,151(2):205-2212.
    [280] Zhang H, Nishikawa Y, Yamagishi J, et al. Neospora caninum: Application of apicalmembrane antigen1encapsulated in the oligomannose coated liposomes for reduction ofoffspring mortality from infection in BALB/c mice[J]. Exp Parasitol,2010,125(2):130-136.
    [281] Remarque EJ, Faber BW, Kocken CH, et al. Apical membrane antigen1: amalaria.vaccine candidate in review[J]. Trends Parasitol,2008,24(2):74-84.
    [282]王秋悦.柔嫩艾美耳球虫rhomboid基因重组卡介苗的构建及其免疫保护性研究[D].吉林大学博士论文,2009.
    [283] Roland KL, Tinge SA, Killeen KP, et al. Recent advances in the development of live,attenuated bacterial vectors[J]. Curr Opin Mol Ther,2005,7(1):62-72.
    [284] Jiang LL, Lin JJ, Hong Y, et al. Identification and characterization of Eimeria tenellaapical membrane antigen-1(AMA1)[J]. PLoS One,2012,7:e41115.
    [285] De Bruyn J, Soetaert K, Buyssens P, et al. Evidence for specific and non-covalentbinding of lipids to natural and recombinant Mycobacterium bovis BCG HSP60proteins,and to the Escherichia coli homologue GroEL[J]. Microbiology,2000,146(7):1513-1524.
    [286] Jin TH, Nguyen L, Qu T, Tsao E. Improved formulation and lyophilization cycle forrBCG vaccine[J].Vaccine,2011,29(29-30):4848-52.
    [287] Dalloul RA, Lillehoj HS.Recent advances in immunomodulation and vaccinationstrategies against coccidiosis[J]. Avian Disease,2005,49(1):1–8.
    [288] Flynn JL.Recombinant BCG as an antigen delivery system[J]. Cell Mol Biol(Noisy-le-grand),1994,40(Suppl1):31-36.
    [289] Chapman R, Chege G, Shephard E, et al.Recombinant Mycobacterium bovis BCG as anHIV vaccine vector [J]. Curr HIV Res,2010,8(4):282-298.
    [290] Ding J, Bao W, Liu Q, et al. Immunoprotection of chickens against Eimeria acervulinaby recombinant alpha-Tubulin protein[J]. Parasitol Res,2008,103(5):1133–1140.
    [291] Johnson J, Reid WM,Anticoccidial drugs: lesion scoring techniques in battery and floorpen experiments with chickens[J]. Exp Parasitol,1970,28(1):30–36.
    [292] Lillehoj HS, Ding X, Marco AQ, et al. Resistance to intestinal coccidiosis followingDNA immunization with the cloned3-1E Eimeria gene plus IL-2, IL-15, and IFN-[J].Avian Dis,2005,49(1):112–117.
    [293] Hong YH, Lillehoj HS, Lillehoj EP, et al. Changes in immunerelated gene expressionand intestinal lymphocyte subpopulations following Eimeria maxima infection ofchickens[J]. Vet Immunol Immunopathol,2006,114(3-4):259–272.
    [294] Pfaffl MW.A new mathematical model for relative quantification in real-timeRT-PCR[J]. Nucleic Acids Res,2001,29(9):e45.
    [295] Zhang DF, Sun BB, Yue YY, et al. Anticoccidial activity of traditional Chinese herbalDichroa febrifuga lour. Extract against Eimeria tenella infection in chickens[J]. ParasitolRes,2012,111(6):2229–2233.
    [296] Awad AM, El-Nahas AF, Abu-Akkada SS.Evaluation of the protective efficacy of theanticoccidial vaccine coccivac-B in broilers when challenged with Egyptian field isolates ofE. Tenella[J]. Parasitol Res,2013,112(1):113–121.
    [297] Li GQ, Kanu S, Xiao SM, et al. Responses of chickens vaccinated with a live attenuatedmulti-valent ionophore-tolerant Eimeria vaccine[J]. Vet Parasitol,2005,129(3-4):179–186.
    [298] Lee SH, Lillehoj HS, Cho SM, et al. Protective effects of dietary safflower (carthamustinctorius) on experimental coccidiosis[J]. J Poult Sci,2008,46(1):155–162.
    [299] Lillehoj HS, Lillehoj EP.Avian coccidiosis.a review of acquired intestinal immunity andvaccination strategies[J]. Avian Dis,2000,44(2):408–425.
    [300] Lillehoj HS Effects of immunosuppression on avian coccidiosis: cyclosporin a but nothormonal bursectomy abrogates host protective immunity[J]. Infect Immun,1987,55(1):1616–1621.
    [301] Lillehoj HS, MinW, Dalloul RA.Recent progress on the cytokine regulation of intestinalimmune responses to Eimeria[J]. Poult Sci,2004,83(4):611–623.
    [302] Withanage GS, Kaiser P, Wigley P, et al. Rapid expression of chemokines andproinflammatory cytokines in newly hatched chickens infected with Salmonella entericaserovar typhimurium[J]. Infect Immun,2004,72(4):2152–2159.
    [303] Rothwell L, Young JR, Zoorob R, et al. Cloning and characterization of chicken IL-10and its role in the immune response to Eimeria maxima[J]. J Immunol,2004,173(4):2675–2682.
    [304] Shrley M W,Smith A L, BlakeD P.Changes in successful control of the avian coccidia[J].Vaccine,2007,25(30):5540-5547.
    [305]孔祥峰,尹富贵,刘合军,等.早期断奶仔猪生理生化参数和脏器指数的变化[J].中国实验动物学报,2006,14(4):298-302.
    [306] Chapman H D. Advances in the cont rol of parasitic diseases of poult ry [C]ProceedingsⅪinternational congress of world veterinary poultry association,Cai-ro-Egypt,2001:59-61.
    [307]索勋,李国清.鸡球虫病学[M].北京:中国农业大学出版社,1998.
    [308]宋小凯.柔嫩艾美耳球虫免疫调节型多价DNA疫苗的构建及免疫效果观察[D].南京农业大学博士论文,2008.
    [309]马德星,潘龙,杨静红,等.鸡堆形艾美球虫3-1E基因真核表达质粒的构建及其抗球虫免疫保护作用[J].中国兽医科学,2009,39(10):900-904.
    [310] Min WG,Lillehoj HS,Burnside J, et al.Adjuvant effects of IL-1beta, IL-2, IL-8, IL-15,IFN-alpha, IFN-gamma TGF-beta and lymphotactin on DNA vaccination against Eimeriaacervulina[J]. Vaccine,2001,20(1/2):267-274.
    [311] Liliehoj H S,Ding X,Quiroz MA,et al. Resistance to intestinal coccidiosis followingDNA immunization with the cloned3-1E Eimeria gene plus II-2, II-15andIFN-gamma[J].Avian Dis,2005,49(1):112-117.
    [312] Ovington K S,Alleva L M, Kerr E A. Cytokines and immunological control of Eimeriaspp [J]. Int J Parasitol,1995,25:1331-1351.
    [313] Lillehj H S, Choi K D. Recombinant chicken interferon-gamma-mediated inhibition ofEimeria tenella development in vitro and reduction of oocyst production and body weightloss following Eimeria acervulina challenge infection[J].Avian Dis,1998,42(2):307-314.
    [314]谢昆,李祥瑞.重组鸡IL-2的抗球虫作用[J].中国兽医杂志,2006,42(8):7-10.
    [315] Lillehoj H S. Avian gut-associated immune system: implication in coccidial vaccinedevelopment[J]. Poultry Sci,1993,72(7):1306-1311.
    [316] Kaufmann SH. How can immunology contribute to the control of tuberculosis?[J]. NatRev Immunol,2001,1(1):20-30.
    [317] Murray PJ, Aldovini A, Young RA.Manipulation and potentiation of antimycobacterialimmunity using recombinant bacille Calmette-Guerin strains that secrete cytokines [J]. ProcNatl Acad Sci USA,1996,93(2):934-939.
    [318]张梅,司履生,王理,等.应用重组PCR技术构建人单链自细胞介素12融合基因[J].免疫学杂志,2001,17(1):22-26.
    [319]陶建平,沈永林,李文超,等.11株巨型艾美耳球虫的免疫原性分析[J].南京农业大学学报,2005,28(4):104-108.
    [320] McDonald V, Shirley M W, Bellatti M A. Eimeria maxima: Characteristics of attenuatedlines obtained by selection for precocious development in the chicken[J]. Exp Parasitol,1986,61:192-200.
    [321]角田清.鸡球虫病!M].明如镜译.上海:上海科学技术文献出版社,1986.
    [322] Martin A q,Danforth H D, Barta J R, et al. Analysis of immunologicl cross-protectionand sensitivities to anticoccididial drugs among five geographical and temporal strains ofEimeria maxima [J]. Int J Parasitol,1997,27(5):527-533.
    [323] MSD Veterinary.Agricultural Technical Service “Anticoccidial Index”A measure ofcoccidiostat Efficacy. Merck Sharp&Dohme International, New York,USA,1976,1-4.
    [324] Shah MA, Song X, Xu L, et al. Construction of DNA vaccines encoding Eimeriaacervulina cSZ-2with chicken IL-2and IFN-and their efficacy against poultrycoccidiosis[J]. Res Vet Sci,2011,90(1):72-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700