猪胸膜肺炎放线杆菌感染特异性诊断方法的建立:PCR和夹心ELISA
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪传染性胸膜肺炎是由胸膜肺炎放线杆菌(Actinobacillus pleuropneumoniae, APP)引起的一种高度接触传染的呼吸道疾病,给集约化养猪业造成严重的经济损失,该病以出血性坏死性肺炎和纤维素性胸膜炎为特征,APP有两个生物型,15个血清型。
     猪传染性胸膜肺炎最急性型引致猪的急性死亡,无临床病症慢性感染猪往往是再次爆发和流行的潜在传染源,感染猪易引发其它病原的继发感染。所以APP感染的早期诊断成为防控该病的关键。
     APP致病机理非常复杂,有众多毒力因子,Apx(A. pleuropneumoniae-RTX- toxins, Apx)是最重要的毒力因子。其中apxⅣ基因只在活体内表达,体外培养则不表达该毒素,apxⅣ基因存在于所有血清型中且高度保守,具有种特异性。本研究致力于提高、完善APP感染的诊断技术,建立PCR诊断方法并开发研制夹心ELISA试剂盒。
     1、建立APP生物Ⅰ型的PCR诊断方法
     PCR是一种快速的病原学诊断方法,本研究据已发表的apxⅣ毒素基因序列(登录号:CS056137,位置:1543~2418)设计一对特异性引物,建立检测APP 1~12血清型的PCR方法。血清型1~12标准菌株和5株野毒株均能扩增出预期876bp片段,而副猪嗜血杆菌、巴氏杆菌、猪放线杆菌、猪霍乱沙门氏菌、奇异变形杆菌、支气管败血波氏菌、猪丹毒杆菌PCR扩增结果为阴性。可检出最低活菌数为2×102cfu/mL,最低检出DNA浓度为9pg。
     2、重组蛋白rApxⅣ的表达
     参照GenBank中已发表的apxⅣ序列(登录号:CS056137)设计一对特异性引物,扩增血清1型标准菌株apxⅣ基因963bp片段(位置:2518~3480),PCR产物经NdeI、NotI酶切处理后克隆到同样处理的质粒pET-22b(+)中,酶切鉴定和序列分析后将此重组质粒转化E. coli BL 21(DE3),0.1 mM IPTG诱导4h获得高效表达的重组蛋白His-ApxⅣ,SDS-PAGE、Western blot检测证实rApxⅣ分子量为35.3 KDa,以可溶状态存在,含His·Tag。融合蛋白经Novagen公司的固定化镍离子亲和层析试剂盒进一步纯化。
     3、单克隆抗体的制备及双抗体夹心ELISA方法的建立
     按常规方法制备单克隆抗体。以纯化的重组蛋白rApxⅣ免疫BALB/c小鼠,取其脾细胞与骨髓瘤细胞SP2/0进行融合,以rApxⅣ和表达宿主菌的菌体蛋白为检测抗原,进行杂交瘤细胞的筛选,三次亚克隆后挑选两株分泌稳定、为IgG的杂交瘤细胞:5B7、5C11,竞争性结合试验证明它们有不同的抗原结合表位。这两株单抗制得腹水的ELISA滴度分别为1:6.4×104,1:1.28×105,以(NH4)2SO4盐析法纯化单抗。纯化的5B7用标准生物素方法进行标记并测得标记效价为106。建立检测ApxⅣ毒素的双抗体夹心ELISA方法,方阵滴定法确定捕获抗体最佳工作浓度为4μg/mL,Biotin-5B7最佳工作浓度为0.8μg/mL,rApxⅣ最低检出量为60pg/mL。
     将建立的PCR和双抗体夹心ELISA分别检测10份猪病变肺组织和血清样品,阳性6份,与细菌分离鉴定结果一致,三种鉴定方法结果相符合。表明本研究建立的PCR和双抗体夹心ELISA方法都可用于APP感染的临床诊断。
Actinobacillus pleuropneumoniae, divided into 2 biovars and 15 serotypes, is the causative agent of porcine pleuropneumonia. The disease occurs worldwide and causes important economic losses to the swine industry. The disease is characterized by a hemorrhagic necrotizing pneumonia and fibrinous pleuritis.
     The disease course may be acute and fatal, and the infected animals sometimes died within a few hours. However, in many herds, pigs may be subclinically infected without presenting clinical signs. And it has been proposed that subclinically infected pigs are the main cause of A. pleuropneumoniae dissemination. Concomitant infections with other pathogens of the respiratory tract may also aid the development of pleuropneumonia. Early detection of infected herds is essential for control of the disease.
     The pathogenicity of A. pleuropneumoniae is considered to be multifactorial. A number of virulence factors have been identified. It is now clear that Apx toxins (A. pleuropneumoniae-RTX-toxins) play an important role in the pathogenesis of porcine pleuropneumonia. Only ApxⅣis expressed by all serotypes of A. pleuropneumoniae after infection in pigs in vivo, but not under in vitro conditions. The apxⅣgene, which is highly conserved in different A. pleuropneumoniae serotypes, was shown to be species-specific.
     This paper developed a PCR test and sandwich ELISA for detection of A. pleuropneumoniae.
     ⅠTo develop a PCR test for detection of A. pleuropneumoniae biovar I strains.
     PCR techniques that amplify well-defined sequences have been described as valuable tools for the rapid and affordable detection of pathogen. A PCR assay was developed using primers specific to apxⅣof A. pleuropneumoniae (Accession number: CS056137, Sit: 1543~2418). Test on reference strains of A. pleuropneumoniae serotypes 1~12 and 5 wild types A. pleuropneumoniae showed that a 876 bp fragment was specifically amplified, but not from other bacterial species such as H. parasuis, P. multocida, S. suis, S. choleraesuis, P. miraillis, B. bronchiseptica, E. rhusiopathiae. With this test, it was possible to detect as low as 2×102 cfu/mL and 9 pg of DNA.
     ⅡExpression and purification of rApxⅣ
     The apxⅣgene (Accession number: CS056137, Sit: 2518~3480) was amplified by PCR using the pair of primers and the template from A. pleuropneumoniae serotype 1 genomic DNA. The PCR product with the restriction enzyme sites at each end (NdeI and NotI) were digested and then cloned into the expression vector pET-22b(+) to construct recombinant plasmid, which was confirmed by the means of combination with restriction endonuclease analysis and sequencing, and then the recombinant plasmid was transformed to E. coli BL21(DE3). After IPTG inducing for 4 hours, the recombinant BL21 (DE3) with recombinant plasmid expressed the soluble ApxⅣprotein (rApxⅣ) with size of 35.5kD by SDS-PAGE and the recombinant protein was confimed by Western blotting analysis with anti-his monoclonal antibody. The fusion proteins rApxⅣwere purified by Ni-TED (tris-carboxymethyl ethylene diamine) immobilized metal iron affinity chromatography (IMAC).
     ⅢDevelopment of monoclonal antibodies and double monoclonal antibody-mediated sandwich ELISA against ApxⅣ
     Monoclonal antibodies (mAb) are used extensively in diagnosis of disease. They are typically made by fusing myeloma cells with the spleen cells. The hybridoma cell lines, which secreting mAb against rApxⅣprotein were obtained by indirect ELISA using the coated antigens of rApxⅣand E. coli BL 21(DE3) protein as a negative control. Limiting dilution method was applied to subclone positive hybridoma cells three times and two positive clones, named 5B7 and 5C11, were obtained from hybridoma cell lines. The ascites ELISA titers of 5B7 and 5C11 were 1:6.4×104 and1:1.28×105 respectivly. They were typed to be IgG and had different recognized epitopes, which were analysed by competitive binding ELISA. The mAbs were purificated using ammonium sulfate precipitation, and then the purified mAb 5B7 was labled with biotin with ELISA titers of 106. A double mAb-mediated sandwich ELISA was developed using mAb 5C11 as capture antibody and biotinylated mAb 5B7 as detection antibody. In a checker-board analysis, the optimal concentration of the capture mAb 5C11 was 4μg/mL, and the biotinylated mAb 5B7 was 0.8μg/mL. With this system, it was possible to detect rApxⅣconcentration as low as 60pg/mL.
     Furthermore, clinical samples with sera and necrotic lung lesions were tested by both methods of sandwich ELISA and PCR, the results showed that 6 samples were tested positive, which were confirmed by isolation and identification of A. pleuropneumoniae. And the result from the both assays was 100%correlation rate.
     Based on the results that apxⅣis specific to the species A. pleuropneumoniae, we make the conclution that the PCR test and double mAbs-mediated sandwich ELISA array may be valuable methods for highly sensitive detection of A. pleuropneumoniae.
引文
[1]蔡宝祥.家畜传染病(第2版)[M].北京:中国农业出版社, 1996. 144-145.
    [2] Prideax C T, lenghaus C, Krywult. Vaccination and protection of pigs against pleuropneumoniae with a vaccine strain of Acinobacllus pleuropneumoniae produced by sitr-specific mutagenesis of the ApxⅡoperon[J]. Infect Immun, 1999, 67: 1962-1966.
    [3]贝为成,陈焕春,何启盖,等.猪传染性胸膜肺炎毒素基因工程弱毒活疫苗的研究[M].全国规模化猪场疫病控制与净化资料专辑, 2002, 29-32.
    [4]李丽.胸膜肺炎放线杆菌的全球新动态[J].猪业科学, 2007, 8: 16-17.
    [5]斯特劳,阿莱尔,泰勒.猪病学(第八版)[M].赵德明,张中秋,沈建中.北京:中国农业大学出版社, 2000: 357-367.
    [6]宣长和,孙福先,朱战波.猪病学(第二版)[M].北京:中国农业大学出版社, 2003: 119-122.
    [7]杨旭夫,彭发泉.胸膜肺炎嗜血杆菌的分离和鉴定[J].中国畜禽传染病, 1990, 4(53): 1-4.
    [8] Negrete-Abascal E, Reyes M E, Garcia R M, et al . Flagella and Motility in Actinobacillus pleuropneumoniae [J]. Bacteriology, 2003, 185(2): 664-668.
    [9] Gram T, Ahrens P, Andreasen M, et al . Actinobacillus pleuropneumoniae PCR typing system based on the apx and omlA genes-evaluation of isolates from lungs tosils and of pigs[J]. Veterinaty Microbiology, 2000, 75: 43-57.
    [10] BlackallPJ, Klaasen H L, vanden Bosch H, et al . Proposalofa new serotype of Actinobacilus pleuropneumoniae: serovar 15[J]. Vetrinary Microbiol, 2002, 84 (122) :47-52.
    [11] Tadjine M, Mittal K R. Study of antigenic heterogeneity among Actinobacillus pleuro pneumoniae serotype 7 strains[J]. Vetrinary Microbiol, 2001, 78: 49-60.
    [12] Nielsen R, Andresen L O, Plambeck T, et al . Serological characterization of Actinobacillus pleuropneumoniae biotype 2 strains isolated from pigs in two Danish herds[J]. Vetrinary Microbiol, 1997, 54:35-46.
    [13]黄红亮.猪传染性胸膜肺炎鉴别诊断方法和胸膜肺炎放线杆菌外毒素单克隆抗体研究[D].武汉:华中农业大学, 2005.
    [14]罗如松.猪胸膜肺炎放线杆菌浊度与细菌计数的关系[J].畜牧与兽医, 2005, 37(10): 10-12.
    [15]逮忠新,赵萍,柳纪省等.猪传染性胸膜肺炎的流行和防制[J].中国兽医杂志, 2002, 38(5): 28.
    [16]吴家强,崔锦鹏,张秀美等.猪接触传染性胸膜肺炎研究进展[J].畜牧与兽医, 2002, 34(10): 36-38.
    [17]蔡宝祥.猪传染性胸膜肺炎的诊断与防治[J].辽宁畜牧兽医, 1996(3): 41-42.
    [18]冼琼珍,叶润全.猪胸膜肺炎放线杆菌不同菌种保存方法研究[J].佛山科学技术学院学报(自然科学版), 2005, 2(5): 70-72.
    [19]王春来,杨旭夫,刘杰.胸膜肺炎放线杆菌主要致病因子的致病性及其免疫原性研究进展[J ].预防兽医学进展, 2001, 3(2): 10-12.
    [20] Schaller A, Kuhnert P, Nicolet J, et al . Characterization of apxⅣA, a new RTX determinant of Actionbacillus pleuropneumonia[J]. Microbiol, 1999, 145: 2105-2116.
    [21] Frey J, Beck M, Stucki U, et al . Analysis of hemolysin operons in Actionbacillus pleuropmrumoniae[J]. Gene, 1993, 123: 51-58.
    [22] Kamp E M, Popma J K, Anakatta , et al . Identification of hemolytic and cytotoxic proteins of Actionbacillus pleuropneumoniae by use of monoclonal antibodier[J]. Infect Immun, 1991, 59: 3079-3085.
    [23]徐晓娟,何启盖,陈焕春.胸膜肺炎放线杆菌毒素的分子生物学[J].中国预防兽医学报, 2004, 26(3): 234-236.
    [24]李敏,姜国彦,彭永刚.猪传染性猪胸膜肺炎ApxⅣ毒素特征的研究进展[J].畜牧兽医科技信息, 2004, 09: 11-12.
    [25] Beck M, Ven Den Bosch J F, Jongendlen M C A, et al . RTX Toxin genotypes ang phenotypes in Actionbacillus pleuropneumoniae field strains[J]. Journal of Clinical Miarobilogy, 1994, 32: 2749-2751.
    [26] Labrie J,Rioux S, Wade M M, et al .Identification of genes involved biosynthesis of Actinobacillus pleuropneumoniae serotype 1 O-antigen and biological propertyes of rough mutants [J] . Endotoxin Res, 2002, 8(1): 27-38.
    [27] Dubreuil J D, Jacques M, Mittal K R, Gottschalk M. Actinobacillus pleuropneumoniae surface polysaccharides: their role in diagnosis and immunogenicity[J]. Anim Health Res Rev, 2000, 1(2): 73-93.
    [28] Bandara A B, Lawrence M L, Veit H P, et al . Association of Actinobacillus pleuropneumoniae capsular polysaccharide with virulence in pigs[J].Infect Immun,2003, 71(6): 3320-3328. [29 Archambault M, Rioux S, Jacques M. Evaluation of the hemoglobin-bioding activity of Actinobacillus pleuropneumoniae using fluorescein-labeled pig hemoglobin and flow cytometry. FEMS Microbiol Lett, 1999, 173: 17-25.
    [30]谢宝东,何后军,祝仁发.胸膜肺炎放线杆菌毒力因子研究进展[J].动物医学进展, 2005, 26(5): 10-12.
    [31] Andrew S, Julie M, Mark R. Cloning and characterisation of type 4 fimbrial genes from Actinobacillus pleuropneumoniae[J]. Veterinary Microbiology, 2003, 92: 121- 134.
    [32] Van Overbeke I, Chiers K, Charlier G, et al . Characterization of the in vitro adhesion of Actinobacillus pleuropneumoniae to swine alveolar epithelial cells[J]. Vetrinary Microbiol, 2002, 88(1): 59-74.
    [33] Negrete-Abascal E, Garcia R M, Reyes M E, et al . Membrane vesicles released by Actinobbacillus pleuropneumoniae contain proteases and Apx toxins[J]. FEMS Microbial Lett, 2000, 191: 109-113.
    [34] Vigre H, Angen O, Barfod K, et al . Transmission of Actinobacillus pleuropneumoniae in pigs under field-like conditions: emphasis on tonsillar colonization and passively acquired colostral antibodies[J]. Vetrinary Microbiol, 2002, 89(2): 151-159.
    [35]陈小玲,杨旭夫,朱士盛.猪传染性胸膜肺炎的流行现状和防制措施[J].中国兽医杂志, 2001, 37(7): 33-35.
    [36]张朝阳,刘二龙.猪传染性胸膜肺炎研究进展[J].中国畜牧兽医, 2006, 33(3): 68-70.
    [37]王贵平,何启盖,陈焕春等.猪伪狂犬病和传染性胸膜肺炎混合感染[J].河北畜牧兽医, 2004, 20(7): 33-34.
    [38]苏新福,李文昌.猪伪狂犬病并发传染性胸膜肺炎[J].中国兽医杂志, 2003, 39(7): 47-48.
    [39]晋爱兰,车京波,杨玫.猪附红细胞体和胸膜肺炎放线杆茵混合感染的诊断研究[J].中国动物检疫杂志, 2004, 21(6): 36-37.
    [40]张剑,刘顺猛,班亚臣.猪传染性胸膜肺炎与猪丹毒混合感染[J].河北畜牧兽医, 2004, 20(7): 36.
    [41]张立昌.猪传染性胸膜肺炎研究进展[J].养猪, 2001, 1: 40-42.
    [42]陆承平.兽医微生物学[M] (第三版).北京:中国农业出版社, 2001. 26-27,255-257.
    [43] Dreyfus A, Schaller A, Nivollet S, et al. Use of recombinant ApxⅣin serodiagnosis of Actinobacillus pleuropneumoniae infections, development and prevalidation of the ApxⅣELISA [J]. Vetrinary Microbiol, 2004, 99: 227-238.
    [44]姚建聪,何启盖,王娟等.猪传染性胸膜肺炎诊断方法研究进展[J].动物医学进展, 2003, 24 (2): 41-44.
    [45] Schaller A, Djordjevic S P, Eamens G J, et al. Identification and detection of Actionbacillus pleurponeumoniae by PCR based on the gene apxⅣA[J]. Vetrinary Microbiol, 2001, 79: 47-62.
    [46] Fittipaldi N, Broes A, Harel J, et al . Evaluation and field validation of PCR tests for detection of Actinobacillus pleuropneumoniae in subclinically infected pigs[J]. Clin Microbiol, 2003, 41(11): 5085-5093.
    [47]李树清,易建平,陈志飞.复合PCR鉴定胸膜肺炎放线杆菌方法的建立及初步应用[J].微生物学报, 2005, 45(6): 966-969.
    [48]张培君,孙惠玲,苗得园,等.猪胸膜肺炎放线杆菌和副猪嗜血杆菌的鉴别诊断及血清型鉴定[J].中国兽药杂志, 2002, 36(10): 18-20.
    [49]刘建杰,吴斌.猪传染性胸膜肺炎的诊断及防治新技术[J].养殖与饲料, 2003, 3: 32-33.
    [50] Haesebrouck F, Pasmans F, Chiers K, et al . Efficacy of vaccines against bacterial dieases in swine:what can we expect? [J]. Veterinary Microbiology, 2004, 100: 255-268.
    [51]刘建杰,陈焕春等.新型基因工程亚单位菌苗对猪传染性胸膜肺炎的保护效力研究[J].中国农业科学, 2005, 38(3), 596-600.
    [52] Fuller T E, Thacker B J, Duran C, Mulks M H. A genetically-defined riboflavin auxotroph of Actinobacillus pleuropneumoniae as a live attenuated vaccine[J]. Vaccine, 2000, 18(25): 2867-2877.
    [53]萨姆布鲁克J,弗里奇E F,曼尼阿蒂斯T.分子克隆实验指南[M].金冬雁,黎孟枫,侯云德,等译.第2版.北京:科学出版社, 2002.
    [54] Mateus M C, Catia S K, Raquel B, et al . Evaluation of PCR based on gene apxⅣA associated with 16S rDNA Sequencing for the identification of Actinobacillus pleuropneumoniae and related species[J]. Current Microbiology, 2004, 48: 189-1951.
    [55]庞耀珊.二温式PCR检测猪传染性胸膜肺炎放线杆菌方法的建立与应用[J].广西农业科学, 2006, 37(2): 203-205.
    [56] Schaller A, Kuhnert P, Puente-Redondo VA, et al . Apx toxins in Pasteullaceae species from animals[J]. Vetrinary Microbiol, 2000, 74: 365 -376.
    [57] Frey J. Virulence in Actionbacillus pleuroneumoniae and RTX toxins[J]. Trends Microbiol, 1995, 3: 257-261.
    [58]彭永刚,刘思国,王牟平,等.猪胸膜肺炎放线杆菌ApxⅣ基因特异片段的克隆和表达[J].中国预防兽医学报, 2004, 26(2): 103-107.
    [59]黄红亮,周锐,陈焕春,等.胸膜肺炎放线杆菌毒素apxⅣA基因的克隆与表达及间ELISA方法的建立[J].生物工程学报, 2005, 21(2): 294-299.
    [60]王方昆,王一成,袁秀芳.猪传染性胸膜肺炎放线杆菌ApxⅣ毒素基因的克隆与表达[J].中国兽医学报, 2007, 27(5): 756~066. [61 ]裴仁军,崔小强,杨秀荣,等.实时生物分子相互作用分析技术用于链霉亲和素-生物素化抗体的层层组装研究[J ].高等学校化学学报, 2002, 23(2):195-198.
    [62]徐宜为.免疫检测技术[M].北京:科学出版社, 1997: 270-289.
    [63]焦新安.实验室手册[M].江苏农学院传染病教研组, 1993, 6.
    [64]刘秀梵.单克隆抗体在农业中的应用[M].合肥:安徽科学技术出版社, 1994.
    [65]徐彬,杨国柱.生物技术药物学实验指导[M].广东药学院生命科学与生物制药学院, 2007, 6.
    [66]戴华.抗鸡IFN-γ、IL-4单克隆抗体的制备和抗鸡IFN-γ夹心ELISA的建立及其对NDV La Sota疫苗、AIV H5N1疫苗的诱导细胞免疫应答特性的评价[D].扬州:扬州大学, 2008, 11.
    [67]白宇,童铁钢,张维军,等.马γ-干扰素双抗体夹心EL ISA检测方法的建立.细胞与分子免疫学杂志[J ]. ,2008, 24(5): 464-466.
    [68]穆睎惠,童朝阳,郝兰群,等.双抗体夹心生物素-亲和素ELISA法检测相思子毒素[J ].免疫学杂志, 2007, 23(5):571-574.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700