长江口鱼类群落多样性及基于多元排序方法群落动态的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河口位于淡水和海洋生境交汇处,生产力高、环境复杂多变,是生态学重要的生态交错区,也是生态脆弱区。长江口是中国生产力最高的渔业生态系统,同时也是世界上最大的河口之一。鱼类群落是河口生态系统的重要组成部分,如鱼类通过捕食和被捕食行为直接或间接地影响着生态系统的健康。数十年来,长江口鱼类资源由于过度捕捞、环境污染、气候变化等外界胁迫作用的影响,已经受到很大程度的扰动,因而,探明这些胁迫作用下关于长江口鱼类群落多样性、鱼类主要环境驱动因子、群落结构时空动态变化及历史变动的研究有着重要的科学意义,其成果可以为科学管理和利用长江口鱼类资源并最终保持长江口生态系统健康发展提供理论依据。
     本研究通过对2010年5~6月至2011年2月长江口4个航次底拖网鱼类资源及环境因子的季度调查,首次基于多元排序方法分析了长江口全局(从淡水至海洋水体)鱼类群落结构的季度与空间分布格局及群落与环境因子的关系,探明了种类组成、生态类群、群落多样性的季节及空间分布格局及群落主要环境驱动因子;通过2010年5月至2011年4月长江口12个月张网鱼类资源的月度,分析了鱼类群落的月度时间结构特点,并探讨了不同时间尺度鱼类群落多样性分析的差异;通过对近三十年(1985~1986年;2004年;2010~2011年)3个不同时期来长江口鱼类群落分类学多样性的变动,对分类学多样性的长期变动作了探讨。
     首先分析了鱼类群落季度及空间动态。结果显示季度调查共记录62种,按照科包含种类数目的多少,鳀科(7种)、鰕虎鱼科(7种)、鲤科(7种)、石首鱼科(6种)、鲀科(5种)、舌鳎科(5种)为主要的科,有19个科为单种科(只包含1个种类)。而按照生态类群,无论是种类数目和丰富度均由海洋洄游性和河口性鱼类占据主导。根据相对重要性指数IRI,IRI排序前6种鱼类的累积比例就已达92.7%,这6种优势种按比例大小排列分别是棘头梅童鱼(Collichthyslucidus)(51.9%)、矛尾鰕虎鱼(Chaeturichthys stigmatias)(20.9%)、刀鲚(Coiliaectenes)(8.5%)、龙头鱼(Harpadon nehereus (Hamilton,1822)(4.2%))、凤鲚(Coilia mystus)(4.1%)和焦氏舌鳎(Cynoglossus joyneri(3.1%)。丰度或者相对重要性指数IRI的比例,均由小型鱼类占据主导地位。空间上,丰富度(由河段水域往外逐渐降低)、丰度由河段水域往外逐渐降低及△+(由河段水域往外逐渐升高)有明显的变化趋势,说明长江河段水域不但鱼类种类数目和数量少,而这些种类在形态学上的亲缘关系也更近。空间上群落结构体现出了一定的差异性,NMDS分析显示河段水域有明显的边界,可视作淡水鱼类群落,其特征种主要由淡水鱼类(Tachysurus nitidus)及洄游性和半洄游性鱼类(刀鲚、凤鲚)构成,但其他水域鱼类群落的空间边界并不明显。而季度上,多样性指数的差异并不明显,同时鱼类群落结构在春夏秋基本保持稳定,但到冬季有较大的变化;在全局尺度内,DCCA分析显示盐度、水温及甲壳类生物量是3个与鱼类群落关系最为密切的环境因子,而空间格局主要由盐度决定,时间格局主要由水温决定。G-独立样本检验显示群落中舌鳎属或鰕虎鱼科鱼类的丰度在空间上有错位分布现象。在全局尺度上,长江口同时还是重要的鱼类(河口性鱼类)产卵场。
     其次分析了鱼类群落的月度结构,结果显示月度调查共记录56种鱼类(与底拖网共有种为38种),鱼类丰度也由少数几种鱼类占据主导,月度调查优势种为棘头梅童鱼、龙头鱼、刀鲚、凤鲚、尖海龙(Syngnathus acus)、康氏小公鱼(Stolephorus commersonii),经济鱼类的比例均占有重要地位,但鱼类小型化也很严重。海洋洄游性鱼类与河口性鱼类的种类数目相似,但前者的丰度明显高于后者。这也反映出张网采样所在水域扮演的是鱼类的索饵场或者育幼场的角色。群落多样性(种类数目、均匀度、△+、△)的月度结构变化明显。过一般相邻月份群落结构也较为相似,一年中基本可以分为4组(第Ⅰ组:1~4月,第Ⅱ组:5~8月上半月,第Ⅲ组:11月下半月~12月;第Ⅳ组:8月下半月~11月上半月),但12月与1月群落结构有较大的变动。在局域尺度内,水体温度的时间变化影响了丰度的变化。鳀科的主要种类在时间上有错位分布现象。通过分析珍稀鱼类刀鲚丰度的月度分布特征,认为应该增加11月为张网休渔期。
     最后分析了近三十年来三段时期(1985~1986年、2004年、2010~2011年)鱼类群落分类多样性的变化,结果显示2004年所有4个航次及2010~2011年3个航次鱼类△+显著低于长江口总名录的△+,同时统计检验显示2004年及2010~2011年各航次△+的平均值低;而各个航次鱼类Λ+的分布都没有偏离长江口鱼类总名录Λ+。此外,群落△+的减低与种类数目的变化有关,但Λ+与种类数目无关。鱼类群落分类学多样性的下降反映出长江口鱼类群落分类学关系的范围变窄,鱼类群落由亲缘关系更近的物种组成。
Estuaries are critical ecotones where fresh waters and marine environment meet, theenvironmental gradients in estuaries are very steep, and biological productivity areespecially high, estuaries are also viewed as eco-crisis regions. The Yangtze Riverestuary is the most productive fishery ecological system in China and one of thebiggest estuaries in the globe. Estuarine fish assemblage takes a key role in structuringthe system, i.g. the stability of the system has been influenced directly and indirectlyby fishes via food chain and web. Recently decades, fish community of the systemchanges significantly because of human impacts and natural disturbances such asoverfishings, pollutants, climate changes and so on, which implying that it isnecessary to know community diversity, to test key structuring factors, to examine thetemporal and spatial variations of community structure and to analyze the historicalsuccessions of the community. So, our work could provide valuable information onassessing the fish resources and maintaining the sustainable development of theYangtze River estuary ecosystem.
     Firstly, fish and environmental data using bottom trawling carried across the entiresalinity gradient in the Yangtze River estuary from spring (May)2010to winter2011(February)were used, and relations in environmental variables (seven abioticinfluences and three biotic factors) and fish community, seasonal and spatial changesin fish community were firstly analyzed based on multivariate analysis. The resultsindicated that62species belonging to29families were collected, the most speciosefamilies were Enguridae (7species), Gobiidae (7species), Cyprinidae (7species),Sciaenidae (6species), Tetraodontidae (5species) and Cynoglossidae (5species),while19single family species were also captured. It is clearly that marine migrantand estuarine species dominated the fish assemblages either in total abundances or innumbers of species. Total catches were dominated by few species, for example, interms of Index of Relative importance IRI, six species (Collichthys lucidus (51.9%),Chaeturichthys stigmatias (20.9%), Coilia ectenes (8.5%), Harpadon nehereus(4.2%), Coilia mystus (4.1%), and Cynoglossus joyneri (3.1%)) were defined asdominant taxa. The increasing trends in species richness and abundance coupling with decreasing patterns in△+from riverine zone to the adjacent sea reflect that thenumbers of species and individuals are smaller, also they tend to be related moreclosely than other zones. The community structures showed spatial variation, nonmulti-dimension scaling analysis NMDS highlighted that there is a obvious boundarybetween riverine zone and other zones, and fish assemblages in this zone could bedefined as freshwater community, SIIMPER analysis further indicated that diagnosticspecies were freshwater species (Tachysurus nitidus), anadromous (C. ectenes) andsemi-anadromous (C. mystus). However, there is no clear spatial patterns among otherzones. Both Community diversity and community structure were relatively stableduring the surveys, and community structure in winter versus that in both spring andsummer did differ significantly. Detrended canonical correspondence analysis DCCAshowed that among the seven abiotic factors (temperature, salinity, depth, silt, sand,ph, grain size) and three biotic (crustacean biomass, benthos biomass, and chlorophyll)influences analyzed, salinity, temperature, and crustacean biomass were the threemost important factors driving the community, thus, spatial and temporal variationswere mainly structured by salinity and temperature, respectively. Results of G-tests ofindependence tests indicated that spatial separations occurred among the Gobiidae orCynoglossus whatever season, suggesting that one species is abundant in some sites,while the other taxon may be abundant in other sites.
     Secondly, fish and environmental factors using setnet surveyed monthly from May2010to April2011were analyzed. The results showed that56species were collectedduring the study period. In terms of species, marine migrants and estuarine speciesdominated the community, while, based on abundance, the marine migrant was themost abundant guild. Total IRI were totally represented by several small-size taxa,thus, six species (H. nehereus (34.7%), C. mystus (27.5%),C. lucidus (20.0%), C.ectenes (3.1%), Syngnathus acus (2.6%),and Stolephorus commersonii (2.2%))accounting for>90.0%of the IRI. Clearly temporal differences in communitydiversity were observed. NMDS and Cluster analysis showed community structures intwo continued months are similar, however, that in December2010differs from thatin January2011, these two techniques also illustrated a clear division into four distinctgroups of samples (GroupⅠ: samples capturing from January to April; GroupⅡ:samples capturing from May to the first half month of August; Group Ⅲ: samplescapturing from the second half month of November to December; Group Ⅳ: samplessampling between the second half month of August and the first half month of November), Results of G-tests of independence tests indicated that spatial separationsoccurred among the Enguridae during the study period, suggesting that one species isabundant in some months, while the other taxon may be abundant in other months. Itis clearly that abundance of dominant species differed among months. In order tofurther protect C. ectenes, we suggest that November should also be fishing closingtime. Multi regression demonstrated that temperature was the most importantinfluencing the monthly mean abundance across the study period. When comparedwith seasonal samplings via bottom trawlings, a stronger temporal patterns incommunity structure and diversity of the monthly samplings based setnet could befound.
     Finally the long-term changes in taxonomic diversity (average taxnomicdistinctness and variations in taxonomic distinctness) of fish community of theYangtze River estuary are examined. Fish species lists recorded between threedifferent periods (1985~1986,2004,2010~2011) and12surveys were used toestimate the∧~+and△+of per survey, the results showed that△+in2004and2010~2011(except spring survey) fell below the95%probability funnels for△+caculating the full list of fish species from the Yangtze River estuary, morever, thedecreasing trends in△+were also observed. However, patterns in∧~+was differentfrom△+, as all∧~+distributed in the95%probability funnels for∧~+calculating thefull list of fish species, mean∧~+didn’t differ significance between different periods.Declines in△+of the Yangtze River estuary was related to the overfishing, pollutantsand hydroprojects, suggesting that relations among species were more closely inrecent years than that in1985~1986, which implying that the niche similarity betweenspecies increases, and may cause the loss of stability or resilience of the community.
引文
[1].匿名.中国环境管理,199250(3):29
    [2]. Costanza R, Darge R, Degroot R etc. The value of the worlds ecosystemservices and natural capital. Nature,1997(387):253~260
    [3]. Simier M, Laurent C, Ecoutin J etc. The Gambia River estuary: A referencepoint for estuarine fsh assemblages studies in West Africa Estuarine. Coastaland Shelf Science,200669(3-4):615~628
    [4]. Whitfield A K. Ichthyofaunal assemblages in estuaries: a South African casestudy. Reviews in Fish Biology and Fisheries,1999(9):151~186
    [5]. Chícharo M A, Chícharo L, Morais P. Inter-annual differences ofichthyofauna structure of the Guadiana estuary and adjacent coastal area (SEPortugal/SW Spain): Before and after Alqueva dam construction. EstuarineCoastal and Shelf Science,2006(70):39~51
    [6]. Blaber S J M, Cyrus D P, Albaret J J etc. Effects of fishing on the structureand functioning of estuarine and nearshore ecosystems. ICES Journal ofMarine Science,2000(57):590~602
    [7]. Roessig J M, Woodley C M, Cech J J etc. Efects of global climate change onmarine and estuarine fshes and fsheries. Reviews in Fish Biology andFisheries,2004(14):251~275
    [8]. Kimmerer W J. Physical, Biological, and Management Responses to VariableFreshwater Flow into the San Francisco Estuary. Estuaries.20026(25),1275~1290
    [9].金显仕,单秀娟,郭学武等.长江口及其邻近海域渔业生物的群落结构特征.生态学报,200929(9):4761~4772
    [10]. Levin LA, Boesch DF, Covich A etc. The function of marine criticaltransition zones and the importance of sediment biodiversity. Ecosystems,2001(4):430~451
    [11]. Shenker J M, Dean J M. The utilization of an intertidal salt marsh creekby larval and juvenile fishes: abundance, diversity and temporal variation.Estuaries,1997(2):154~163
    [12]. Rakocinski C F, Lyczkowski-Shultz J, Richardson S L. Ichthyoplanktonassemblage structure in Mississippi sound as revealed by canonicalcorrespondence analysis. Estuarine Coastal and Shelf Science,1996(43):237~257
    [13]. Elliott M, Hemingway K L. Fishes in Estuaries. Blackwell Science,Oxford,2002
    [14]. McLusky D S, Elliott M. The Estuarine Ecosystem: Ecology, Threatsand Management. Oxford University Press, Oxford,2004
    [15]. Martino E J, Able K W. Fish assemblages across the marine to lowsalinity transition zone of a temperate estuary. Estuarine, Coastal and ShelfScience,2003(56):969~987
    [16].陈国阶,徐琪,杜荣桓等.三峡工程对生态环境的影响与对策研究.北京:科学出版社,1995:137~148
    [17]. Li M L, Huang S L. Management fishery resources in the Yangtze RiverEstuary. Asian Agriculture Research,2009(1):31~35,40
    [18].庄平,王幼槐,李圣法等.长江口鱼类.上海:上海科学技术出版社,2006
    [19].沈国英,施并章.海洋生态学.北京:科学出版社,2002:113~180
    [20].李圣法.东海大陆架鱼类群落生态学研究-空间格局及其多样性.[学位论文],上海:华东师范大学,2005
    [21].殷名称.鱼类生态学.北京:中国农业出版社,1997
    [22]. Evans D O, Henderson B A, Bax N J etc. Concepts and methods ofcommunity ecology applied to freshwater fisheries management. CanadianJournal of Fisheries and Aquatic Science,1987,44(supplement2):448~470
    [23]. Potter I C, Claridge P N, Warwick R M. Consistency of seasonal changesin an estuarine fsh assemblage. Marine Ecology Progress Series,1986(32):217~228
    [24]. Elliott M, Whitfield A K, Potter IC etc. The guild approach tocategorizing estuarine fish assemblages: a global review. Fish and Fisheries,2007(8):241~268
    [25]. Selleslagh J, Amara R, Laffargue P etc. Fish composition andassemblage structure in three Eastern English Channel macrotidal estuaries:A comparison with other French estuaries. Estuarine, Coastal and ShelfScience,2009(81):149~159
    [26]. Whitfeld A K, Elliott M. Fishes as indicators of environmental andecological changes within estuaries: a review of progress and somesuggestions for the future. Journal of Fish Biology,2002(61):229~250
    [27]. Harrison T D, Whitfield A K. Temperature and salinity as primarydeterminants influencing the biogeography of fishes in South Africanestuaries. Estuarine, Coastal and Shelf Science,2006(66):335~345
    [28]. Thiel R, Sepulveda A, Kafeman R etc. Environmental factors as forcesstructuring the fsh community of the Elbe estuary. Journal of Fish Biology,1995,(46):47~69
    [29]. Nagelkerken I, van der Velde G, Cocheret de la etc. Fish feeding guildsalong a gradient of bay biotopes and coral reef depth zones. Aquatic Ecology2001(35):73~86
    [30]. Malavasi S, Fiorin R, Franco A etc. Fish assemblages of Venice Lagoonshallow waters: an analysis based on species, families and functional guilds.Journal of Marine System,2004(51):19~31
    [31]. Ecoutin J M, Richard E, Simier M etc. Spatial versus temporal patternsin fsh assemblages of a tropical estuarine coastal lake: The Ebrie Lagoon(Ivory Coast). Estuarine, Coastal and Shelf Science,2005(64):623~635
    [32].马克平.生物群落多样性的测度方法.生物多样性研究的原理与方法,北京:中国科学技术出版社,141~165,1994
    [33].戈峰.现代生态学.北京:科学出版社,235~261,2002
    [34]. Rice J C. Evaluating fishery impacts using metrics of communitystructure. ICES Journal of Marine Science,2003(57):682~688
    [35]. Simier M, Blanc L, Aliaume C etc. Spatial and temporal structure of fshassemblages in an ‘‘inverse estuary’’, the Sine Saloum system. Estuarine,Coastal and Shelf Science,2004(59):69~86
    [36]. Miranda J R, Mouillot D, Hernandez D F etc. Changes in fourcomplementary facets of fish diversity in a tropical coastal lagoon after18years: a functional interpretation. Marine Ecology Progress Series,2005(304):1~13
    [37]. Rogers S I, Clarke K.R, Reynolds J D. The taxonomic distinctness ofcoastal bottom-dwelling fish communities of the Northeast Atlantic. Journalof Animal Ecology,1999,4(68):769~782
    [38]. Richard M. The use of taxonomic distinctness to assess environmentaldisturbance of insect communities from running water. Freshwater Biology,2007(52):1634~1645
    [39].张衡,陆健健.鱼类多样性估算方法在长江口的应用.华东师范大学学报:自然科学版,2007(2):11~22
    [40].黄良敏.闽江口和九龙江口及其邻近海域渔业资源现状与鱼类多样性.[学位论文].青岛:中国海洋大学,2011
    [41].蒋志刚,纪力强.鸟兽物种多样性测度的G-F指数方法.生物多样性,19997(3):220~225
    [42]. Clarke K R, Warwicl R M. A further biodiversity index applicable tospecies lists: variation in taxonomic distinctness. Mairne Ecology ProgressSeries,2001216(3):265~278
    [43].李永振,史赟荣,艾红等.南海珊瑚礁海域鱼类分类多样性大尺度分布格局.中国水产科学,201118(3):619~628
    [44].史赟荣,李永振,卢伟华等.东沙群岛珊瑚礁海域鱼类物种分类多样性研究.南方水产,2009(2):10~16
    [45].陈国宝,李永振,陈新军.南海主要珊瑚礁水域的鱼类物种多样性研究.生物多样性,200715(4):373~381
    [46].解玉浩,唐作鹏,解涵等.鸭绿江河口区鱼虾群落研究.中国水产科学,20013(8):20~26
    [47]. Akin S, Winemiller K O, Gelwick F P. Seasonal and spatial variations infish and macrocrustacean assemblage structure in Mad Island Marsh estuary,Texas. Estuarine, Coastal and Shelf Science,2003(57):269~282
    [48]. Peterson M S, Ross S T. Dynamics of littoral fishes and decapods alonga coastal river-estuarine gradient. Estuarine, Coastal and Shelf Science,1991,33:467~483
    [49].张涛,庄平,章龙珍等.长江口中华鲟自然保护区底层鱼类的群落结构特征.生态学报,201131(6):1687~1694
    [50]. Maci S, Basset A. Composition, structural characteristics and temporalpatterns of fsh assemblages in non-tidal Mediterranean lagoons: Acase study.Estuarine, Coastal and Shelf Science,2009(83):602~612
    [51]. Cabral H N, Costa M J, Salgado J P. Does the Tagus estuary fishcommunity reflect environmental changes? Climate Research,2001(18):119~126
    [52]. Potter I C, Bird D J, Claridge P N etc. Fish fauna of the Severn Estuary.Are there long-term changes in abundance and species composition and arethe recruitment patterns of the main marine species correlated? Journal ofExperimental Marine Biology and Ecology,2001(258):15~37
    [53]. Potter I C, Claridge P N, Hyndes G A etc. Seasonal, annual and regionalvariations in ichthyofaunal composition in the Inner Severn Estuary andInner Bristol Channel. Journal of the Marine Biological Association,1997(77):507~525
    [54]. Nicolas D, Lobry J, Le Pape O etc. Functional diversity in Europeanestuaries: Relating the composition of fsh assemblages to the abioticenvironment. Estuarine, Coastal and Shelf Science,2010(88):329~338
    [55]. Potter I C, Hyndes G. A. Characteristics of the ichthyofaunas ofsouthwestern Australian estuaries, including comparisons with Holarcticestuaries and estuaries elsewhere in temperate Australia: a review. AustralianJournal of Ecology,1999(24):395~421
    [56]. Elliott M, Taylor C J L. The structure and functioning of anestuarine/marine fsh community in the Forth estuary, Scotland. In:Klekowski, R. Z., Styczynska, E., Falkowski, L.(Eds.), Proceedings of the21st European MarineBiology Symposium. Gdansk: Polish Academy ofSciences,227~240,1989
    [57]. Costa M J, Elliott M. Fish usage and feeding in two industrialisedestuaries-the Tagus, Portugal, and the Forth, Scotland. In: Elliott, M.,Ducrotoy, J.P.(Ed.), Estuaries and Coasts: Spatial and Temporal InterComparisons. Fredensborg: Olsen and Olsen,289~297,1991
    [58]. McLusky D S, Bryant D M, Elliott M. The impact of land-claim on theinvertebrates, fsh and birds of the Forth estuary. Aquatic Conservation:Marine and Freshwater Ecosystems,1992(2):211~222
    [59]. Jin B S, Fu C Z, Zhong J S etc. Fish utilization of a salt marsh intertidalcreek in the Yangtze River estuary, China. Estuarine, Coastal and ShelfScience,2007(73):844~852
    [60]. Selleslagh J, Amara R. Environmental factors structuring fshcomposition and assemblages in a small macrotidal estuary (eastern EnglishChannel). Estuarine, Coastal and Shelf Science,2008(79):507~517
    [61]. Leit o R, Martino F, Cabral H N, etc. The fish assemblage of theMondego estuary: composition, structure and trends over the past twodecades. Hydrobiologia,2007(587):269~279
    [62]. Thiel R, Potter I C. The ichthyofaunal composition of the Elbe estuary:an analysis in space and time. Marine Biology,2001(138):603~616
    [63]. Pessanha A L M, Araújo F G.. Spatial, temporal and diel variations offish assemblages at two sandy beaches in the Sepetiba Bay, Rio de Janeiro,Brazil.Estuarine, Coastal and Shelf Science,2003(57):817~828
    [64].卢继武,罗秉征,薛频等.长江口区鱼类群聚结构、丰盛度及其季节变化的研究.海洋科学集刊,1992(33):303~338
    [65].杨东莱,吴光宗,孙继仁.长江口及其邻近海区的浮性鱼卵和仔稚鱼的生态研究.海洋与湖沼,海洋与湖沼,199021(4):346~355
    [66].刘淑德,线薇微,刘栋.春季长江口及其邻近海域鱼类浮游生物群落特征.应用生态学报,200819(10):2284~2292
    [67].张金屯.数量生态学.北京:科学出版社,2004
    [68].史赟荣,晁敏,全为民等.2010春季长江口鱼类群落空间分布特征.中国水产科学,201118(5):1141~1151
    [69].李永振,陈国宝,孙典荣等.珠江口游泳生物组成的多元统计分析.中国水产科学,20024(9):328~334
    [70]. Maes J, Taillieu A, Van P A etc. Seasonal Patterns in the Fish andCrustacean Community of a Turbid Temperate Estuary (Zeeschelde Estuary,Belgium). Estuarine,Coastal and Shelf Science,1998(2):143~151
    [71].李永振,陈国宝,孙典荣.珠江口鱼类组成分析.水产学报,200024(4):312~317
    [72]. Chou W R, Tew K S, Fang LS. Long-term monitoring of the demersalfish community in a steel-slag disposal area in the coastal waters ofKaohsiung, Taiwan. ICES Journal of Marine Science,2002(59):238~242
    [73]. Clarke K R. Non parametric multivariate analyses of changes incommunity structure. Australian Journal of Ecology,1993(18)117~143
    [74]. Marshall S, Elliott M. Environmental Infuences on the Fish Assemblageof the Humber Estuary, U.K. Estuarine, Coastal and Shelf Science,1998(46):175~184
    [75]. Jaureguizar A J, Menni R C, Guerrero R etc. Environmental factorsstructuring fish communities of the Río de la Plata estuary. FisheriesResearch,2004(66):195~211
    [76].于海成.长江口及邻近海域鱼类群落结构分析.[学位论文].青岛:中国科学院海洋研究所,2008
    [77]. Jongman R H G, ter Braak, C J F, Van Tongeren O F R. Data analysis incommunity and landscape ecology. Cambridge: Cambridge University Press,1995
    [78].陆健健.河口生态学.北京:海洋出版社,5,2003
    [79]. Hoss D E, Thayer G W. The importance of habitat to the early lifehistory of estuarine dependent fishes. American Fisheries SocietySymposium,1993(14):147~158
    [80]. Akin S, Buhan E, Winemiller KO etc. Fish assemblage structure ofKoycegiz lagoon-estuary, Turkey: spatial and temporal distribution patternsin relation to environmental variation. Estuarine, Coastal and Shelf Science,2005(64):671~684
    [81]. Able K W. Measures of juvenile fsh habitat quality: examples from aNational Estuarine Research Reserve. In L. R. Benaka (Ed.), Fish habitat:Essential fsh habitat and rehabilitation. American Fisheries Society,Symposium,1999(22):207~232
    [82]. Menge B A, Olson A M. Role of scale and environmental factors inregulation of community structure. Trends in Ecology Evolution,1990(5):52~57
    [83]. Sanders H L. Marine benthic diversity: a comparative study. AmericanNature,1968(102):243~282
    [84]. Harrison T D, Whitfeld A K. Temperature and salinity as primarydeterminants infuencing the biogeography of fshes in South Africanestuaries. Estuarine, Coastal and Shelf Science,200666(1-2):335~345
    [85].詹海刚.珠江口及邻近水域鱼类群落结构研究.海洋学报,1998(20):91~97
    [86]. Jaureguizar A J, Menni R, Bremec C etc. Fish assemblage andenvironmental patterns in the Río de la Plata estuary. Estuarine, Coastal andShelf Science,2003(56):921~933
    [87]. Schlacher T A, Wooldridge T H. Ecological responses to reductions infreshwater supply and quality in South Africa’s estuaries: Lessons formanagement and conservation. Journal of Coastal Conservation,1996(2):115~130
    [88].徐兆礼.夏秋季瓯江口海域鱼类数量的时空分布.动物学报,20086(54):981~987
    [89]. Velázquez-Velázquez E, Vega-Cendejas M E, Navarro-Alberto J. Spatialand temporal variation of fish assemblages in a coastal lagoon of theBiosphere Reserve La Encrucijada, Chiapas, Mexico. Revista de BiologiaTropical,2008(56):557~574
    [90]. Marais J F K. The effects of river flooding on the fsh populations of twoeastern Cape estuaries. South Africa Journal of Zoology,1982(17):96~104
    [91]. Lankford T E, Targett T E. Suitability of estuarine nursery zones forjuvenile weakfsh (Cynoscion regalis): effects of temperature and salinity onfeeding, growth and survival. Marine Biology,1994(119):610~620
    [92]. Ogburn-Matthews M V, Allen D M. Interactions among some dominantestuarine nekton species. Estuaries,1993(16):840~850
    [93]. Blaber S J M.‘‘Fish in hot water’’: the challenges facing fsh andfsheries research in tropical estuaries. Journal of Fish Biology,200261:(Supplement A):1~20
    [94]. Myers R A, Worm B. Extinction, survival or recovery of large predatoryfishes. Philosophical Transactions of the Royal Society B,2005360(1):13~20
    [95].金显仕,邓景耀.莱州湾渔业资源群落结构和生物多样性的变化.生物多样性,20001(8):65~72
    [96]. Jones P D. ater quality and fsheries in the Mersey estuary, England: Ahistorical perspective. Marine Pollution Bulletin,2006(53):144~154
    [97]. Thomas M. In: Attrill, M.J.(Ed.), A Rehabilitated Estuarine Ecosystem.The Environment and Ecology of the Thames Estuary. Dordrecht: KluwerAcademic Publishers,1998
    [98].陈亚瞿,徐兆礼.长江河口生态渔业和资源合理利用研究.中国水产科学,19996(5):83~86
    [99]. Gao X, Brosse S, Chen Y B, etc. Effects of damming on populationsustainability of Chinese sturgeon, Acipenser sinensis: evaluation of optimalconservation measures. Environmental Biology of Fish,200986(2):325~336
    [100].线薇薇,刘瑞玉,罗秉征.(2004).三峡水库蓄水前长江口生态与环境.长江流域资源与环境,2(13):119-123
    [101].朱鑫华.河口生态系统动力学与生物资源持续发展生态学研究.海洋科学,200024(6):55
    [102].卢秉征,薛频,卢继武等.三峡工程对河口及邻近海域渔业应的初步探讨.海洋科学集刊,1992(33):341~351
    [103]. Chen C-T A. The Three Gorges Dam: Reducing the Upwelling and thusProductivity in the East China Sea. Geophysical research letters,20003(27):381-383
    [104]. Chen C-T A. Chapter16.The Impact of Dams on Fisheries: Case of theThree Gorges Dam.Challenges of a Changing Earth,2004
    [105].薛频,兰永伦.三峡工程对长江口区渔业资源影响的数值模拟.海洋科学集刊,1992(33):352~359
    [106].邓景耀,金显仕.莱州湾及黄河口水域渔业生物多样性及其保护研究.动物学研究,200021(1):76~82
    [107]. Hamza W. The Nile Estuary. Hdbrological Environmental Chemistry,2006Part H(5):149~173
    [108]. Morais P, Chícharo A M, Chícharo L. Changes in a temperate estuaryduring the filling of the biggest European dam. Science of The TotalEnvironment,2009(407):2245~2259
    [109]. Yu H C, Xian W W. The environment effect on fish assemblage structurein waters adjacent to the Changjiang (Yangtze) River estuary (1998~2001).Chinese Journal of Oceanology and Limnology,20093(27):443~456
    [110]. Doornbos G. Changes In The Fish Fauna of The Former GrevelingenEstuary, Before And After The Closure In1971. Hydro Biological Bulletin,1992(16):279~283
    [111]. Rowell K, Flessaa K W, Dettmana D L etc. Diverting the Colorado Riverleads to a dramatic life history shift in an endangered marine fsh. BiologicalConservation,2008(141):1138~1148
    [112]. Garcia A M, Vieira J P, Winemiller K O. Effects of1997-1998El Niňoon the dynamics of the shallow-water fish assemblage of the Patos LagoonEstuary (Brazil). Estuarine, Coastal and Shelf Science,2003(57):489~500
    [113]. Ter Morshuizen L D, Whitfield A K, Paterson A W. Influence offreshwater flow regime on fish assemblages in the Great Fish River andestuary. Southern African Journal of Aquatic Science,1996(22):52~61
    [114]. Gillsona J, Scandol J, Suthersa I. Estuarine gillnet fshery catch ratesdecline during drought in eastern Australia. Fisheries Research,2009(99)26~37
    [115]. Martinho F, Leit o R, Viegas I etc. The infuence of an extreme droughtevent in the fsh community of a southern Europe temperate estuary.Estuarine, Coastal and Shelf Science,2007(75):537~546
    [116]. Loneragan N R, Bunn S E. River flows and estuarine ecosystems:implications for coastal fisheries from a review and a case study of the LoganRiver, southeast Queensland. Australian Journal of Ecology,199924:431~440
    [117]. Whitfield A K, Harrison T D. River fow and fsh abundance in a SouthAfrican estuary. Journal of Fish Biology,2003(62):1467~1472
    [118]. Costa M J, Vasconcelos R P, Costa JL etc. River flow influenceon the fish community of the Tagus estuary (Portugal).Hydrobiologia,2007(587):113~123
    [119]. Poizat G., Rosecchi E, Chauvelon P etc. Long-term fsh andmacro-crustacean community variation in a Mediterra-nean lagoon. Estuarine,Coastal and Shelf Science,2004(59):615~624
    [120]. Power M, Attrill M J. Long-term trends in the estuarine abundance ofNilsson’s pipefsh (Syngnathus rostellatus Nilsson). Estuarine, Coastal andShelf Science,2003(57):325~333
    [121]. Sheaves M. Is the timing of spawning in sparid fishes a response to seatemperature regimes?.Coral Reefs,200625(5):655~669
    [122].张国祥,张雪生.长江口定置张网渔业调查.水产学报,19859(2):186~198
    [123]. Jin B S, Qin H M, Xu W etc. Nekton use of intertidal creek edges in lowsalinity salt marshes of the Yangtze River estuary along a stream-ordergradient. Estuarine, Coastal and Shelf Science,2010(88):419~428
    [124].唐文乔,诸廷俊,陈家宽等.长江口九段沙湿地的鱼类资源及其保护价值.上海水产大学学报,200312(3):193-200
    [125].全为民,倪勇,施利燕等.游泳动物对长江口新生盐沼湿地潮沟生境的利用.生态学杂志,200928(3):560~564
    [126].张衡,何文珊,童春富等.崇西湿地冬季潮滩鱼类种类组成及多样性分析.长江流域资源与环境,200716(3):308~313
    [127].张衡,何文珊,童春富等.长江口低盐淡水区潮间带鱼类群落结构季节及半月相变化.应用生态学报,200819(5):1110~1116
    [128].冯广朋,庄平,刘健等.祟明东滩团结沙鱼类群落多样性与生长特性.海洋渔业,20071(29):38~43
    [129].刘凯,徐东坡,张敏莹等.崇明北滩鱼类群落生物多样性初探.长江流域资源与环境,200514(4):418~421
    [130].李建生,李圣法,任一平.长江口渔场渔业生物群落结构的季节变化.中国水产科学,200411(5):432~439
    [131].李建生,李圣法,程家骅.长江口渔场鱼类组成和多样性.海洋渔业,200628(1):37~41
    [132]. Zhang h, He w s, Tong c f etc. The effect of fshing the anguillid elver(Anguilla japonica) on the fshery of the Yangtze estuary. Estuarine, Coastaland Shelf Science,200876(4):902-908.
    [133]. Xian W W; Kang B; Liu R Y. Jellyfish blooms in the Yangtze Estuary,Science,2005307(5706):41
    [134].郑颖,戴小杰,朱江峰.长江河口定置张网渔获物组成及其多样性分析.安徽农业科学,200937(20):9510~9513
    [135].田明诚,沈友石,孙宝铃.长江口及其邻近海区鱼类区系研究.长江口区鱼类群落结构、丰盛度及其季节变化的研究.海洋科学集刊,1992(33):265~280
    [136].杨伟祥,罗秉征,卢继武等.长江口鱼类资源调查与研究.海洋科学集刊,1992(33):281~300
    [137].长江渔业资源管理委员会.长江渔业资源管理回顾与展望.1997
    [138]. Clarker K R,Warwick R M. The taxonomic distinctness measure ofbiodiversity:weighting of step lengths between hierarchical levels. MarineEcology Progress Series,1999184(1):21~29
    [139].余卫鸿.大型水利工程对长江口生态环境的叠加影响.[学位论文].郑州:郑州大学,2007
    [140]. Milliman J D, Syvitski J P M. Geomorphic/tectonic control of sedimentdischarge to the ocean: The importance of small mountainous rivers, Journalof Geology,1992(100):525~544
    [141].杨光复,吴景阳,高明德等.三峡工程对长江口区沉积结构及地球化学特征的影响.海洋科学集刊,1992(33):69~108
    [142]. Yang Z, Wang H, Saito Y etc. Dam impacts on the Changjiang (Yangtze)River sediment discharge to the sea: The past55years and after the ThreeGorges Dam. Water Resources Research,2006(42):1~10
    [143].刘瑞玉,罗秉征.三峡工程对长江口及邻近海域生态与环境的影响.海洋科学集刊,1992(33):1~13
    [144]. He Q, Li J F, Li Y. Field measurement of bottom boundary layerprocesses and sediment resuspension in Changjiang Estuary. Science inChina (Series B),2001(44):80~86
    [145]. Chen J Y, Zhu H F, Dong Y F. Development of the Changjiang Estuaryand its submerged delta. Continental Shelf Research,1985(4):47~56
    [146]. Liu H, He Q,. Wang Z B etc. Dynamics and spatial variability ofnear-bottom sediment exchange in the Yangtze Estuary, China. Estuarine,Coastal and Shelf Science,2010(86):322~330
    [147]. Chai C, Yu Z M,, Song X X etc. The status and characteristics ofeutrophication in the Yangtze River (Changjiang) Estuary and the adjacentEast China Sea, China. Hydrobiologia,2006(563):313~328
    [148].康斌.鮻对生源要素循环的作用及长江河口渔业资源现状.[学位论文].青岛:中国科学院海洋研究所,2006
    [149]. Nelson J S. Fishes of the World.4th edn. New York: John Wiley&Sons,2006
    [150]. Froese R, Pauly D. Editors. FishBase. World Wide Web electronicpublication. www.fishbase.org, version (07/2010).2010
    [151]. Pinkas L, Oliphant M S, Iverson I L K. Food habitats of albacore,blue-fin tuna, and bonito in California waters. Fish Bulletin,1971(152):1~10
    [152]. Warwick R M, Clarke K R. Taxonomic distinctness and environmentalassessment. Journal of Applied Ecology,1998,(35):532~543
    [153]. Clarke K R, Warwick R M. A taxonomic distinctness index and itsstatistical properties. Journal of Applied Ecology,1998,(35):523~531
    [154]. Clarke K R, Warwick R M. Change in marine communities: AnApproach to statistical analysis and interpretation.2nd edition. Plymouth:PRIMPER-E,2001
    [155].唐启义. DPS数据处理系统.(第二版).北京:科学出版社,2009
    [156]. Ter Braak C F J, milauer P. CANOCO Reference Manual and User'sGuide to CANOCO for Windows: Software for Canonical CommunityOrdination (Version4). Microcomputer Power. New York: Ithaca,1998
    [157]. Ramos S, Cowen R K, RéP etc. Temporal and spatial distribution oflarval fish assemblages in the Lima estuary (Portugal). Estuarine, Coastal andShelf Science,2009(66):303~313
    [158]. Elliott M, Dewailly F. The structure and components of Europeanestuarine fsh assemblages. Netherlands Journal of Aquatic Ecology,1995(29):397~417
    [159]. Jump C M. Duffy-Anderson J T, Mier K L. Comparison of theSameoto, Manta, and MARMAP neustonic ichthyoplankton samplers in theGulf of Alaska. Fisheries Research,2008(89):222~229
    [160]. Chen D G, Shen W Q, Liu Q etc. The geographical characteristics andfish species diversity in the Laizhou Bay and Yellow River estuary. Journal ofFisheries Science of China,20003(7):46~52
    [161].沈盎绿,徐兆礼.瓯江口海域夏秋季鱼类初步调查.海洋渔业,200830(3):285~290
    [162].沈焕庭,潘安定.长江河口最大浑浊带.北京:海洋出版社,2001
    [163]. Beck M W, Heck K L, Able K W. A better understanding of the habitatsthat serve as nurseries for marine species and the factors that createsite-specifc variability in nursery quality will improve conservation andmanagement of these areas. BioScience,2001(51):633–641
    [164]. Maes J, Stevens M, Ollevier F. The composition and communitystructure of the ichthyofauna of the upper Scheldt estuary: synthesis of a10-year data collection (1991–2001). Journal of Applied Ichthyology,2005(21):86~93
    [165]. Whitfeld AK. Biology and ecology of fshes in southern Africanestuaries.(2nd). Ichthyological Monogro: Smith Institute of Ichthyology.version,1998
    [166].陆新康.基于底拖网采样的珠江口鱼类资源.渔业信息情报,1993(20):82~84
    [167].朱鑫华,缪锋,刘栋等.黄河口及邻近海域鱼类群落时空格局与优势种特征研究.海洋科学集刊,2001(43):142~151
    [168]. Hagan S M, Able K W. Seasonal changes of the pelagic fish assemblagein a southern New Jersey estuary. Estuarine, Coastal and Shelf Science,2003(56):15-29
    [169]. Loneragan N R, Potter I C, Lenanton R C etc. Influence ofenvironmental variables on fish fauna of the deeper waters of largeAustralian estuary. Marine Biology,1987(94):631~641
    [170].郭玉洁,潘友联.长江口区初级生产力的研究.海洋科学集刊,1992,33:191~199
    [171].郁尧山,张庆生,陈卫民等.浙江北部岛礁周围海域鱼类群聚特征值的初步研究.水产学报,198610(17):305~314
    [172].徐宾铎,金显仕,梁振林.黄海鱼类群落分类学多样性的研究.中国海洋大学学报,2005,35(4):629~634
    [173].沈国英,施并章.海洋生态学.北京:科学出版社,2002.410~41
    [174]. Cyrus D P, Blaber S J M. Turbidity and salinity in a tropical northernAustralian estuary and their influence on fish distribution. Estuarine, Coastaland Shelf Science,1992(35):545~563
    [175].赵保仁.长江冲淡水锋面变动及其与径流量的关系.海洋科学集刊,1992(33):27~36
    [176]. Menni RC, López HL (1984) Distributional patterns of Argentine marinefishes. Physis (Buenos Aires) A,198442(103):71~85
    [177]. Menni R C, Stehmann M F W. Distribution, environment and biology ofbatoid fishes off Argentina, Uruguay and Brasil: a review. Revista del MuseoArgentino de Ciencias Naturales,2001(2):69~109
    [178]. Mati-Skoko S, Peharda M, Pallaoro A etc.2005. Species composition,seasonal fluctuations, and residency of inshore fsh assemblages in the Pantanestuary of the eastern middle Adriatic. Acta Adriatica,2005(46):201~212.
    [179]. Mati-Skoko S, Peharda M, Pallaoro A etc. Infralittoral fsh assemblagesin the Zrmanja estuary, Adriatic Sea. Acta Adriatica,2007(48):45~55.
    [180]. Koutrakis ET, Tsikliras A C, Sinis A I. Temporal variability of theichthyofauna in a northern Aegean coastal lagoon (Greece). Influence ofenvironmental factors. Hydrobiologia,2005(543):245~257
    [181].孙儒泳.动物生态学原理.(第2版).北京:北京师范大学,1992
    [182]. http://www.116.com.cn/zt/392007.shtml
    [183]. Whitfield A K. Factors influencing the utilization of southern Africanestuaries by fishes. South Africa Journal of Marine Science,1983(79):362~365
    [184]. Marais J F K. Some factors that influence fish abundance in SouthAfrican estuaries. South Africa Journal of Marine Science,1988(6):67~77
    [185]. López-López E, Sedeň-Díaz J E, Romero etc. Spatial and seasonaldistribution patterns of fish assemblages in the Río Champótn, southeasternMexico. Review of Fish Biology and Fisheries,2009(19):127~142
    [186]. Paperno R, Brodie R B. Effects of environmental variables upon thespatial and temporal structure of a fish community in a small, freshwatertributary of the Indian River Lagoon, Florida. Estuarine, Coastal and ShelfScience,2004(61):229~241
    [187]. Whitfield A K. Fish species diversity in southern African estuarinesystems: an evolutionary perspective. Environmental Biology of Fish,1994(40):37~48
    [188]. Deaton L E, Greenberg M J. There is no horohalinicum. Estuaries,19869:20~30
    [189].单乐州,邵鑫斌,闫茂仓.棘头梅童鱼幼鱼生物学特性的初步观察.水产养殖,200728(6):4~6
    [190]. Laffaille P, Feunteun E, Lefeuvre J C etc. Composition of fishcommunities in a European macrotidal salt marsh (the Moint Saint-Michelbay, France). Estuarine, Coastal and Shelf Science,2000(51):429~438
    [191].罗秉征,韦晟,窦硕增.长江口鱼类食物网与营养结构的研究.海洋科学集刊,1997(38):143~153
    [192].苏纪兰,唐启升.中国海洋生态系统动力学研究П:渤海生态系统动力学过程.北京:科学出版社,2002
    [193]. Tokeshi M. Species Coexistence. Ecological and Evolutionaryperspectives. Oxford: Blackwell Science,1999
    [194]. Sala E, Ballesteros E. Partitioning of space and food resources by threefish of the genus Diplodus (Sparidae) in a Mediterranean rocky infralittoralecosystem. Marine Ecology Progress Series,1997(152):273~283
    [195]. Bouchon-Navaro Y. Partitioning of food and space resources bychaetodontid fishes on coral reefs. Journal of Experimental Marine Biologyand Ecology,1986(103):21~40
    [196].沈新强,史赟荣,晁敏等.夏、秋季长江口鱼类群落结构.水产学报,201135(5):700~710
    [197]. Cardona L. Effects of salinity on the habitat selection and growthperformance of Mediterranean flathead mullet Mugil cephalus. Estuarine,Coastal and Shelf Science,2000(50):727~737
    [198]. Weinstein M P, Weiss S L, Walters M F. Multiple determinants ofcommunity structure in shallow marsh habitats, Cape Fear River Estuary,North Carolina, USA. Marine Biology1980(58):227~243
    [199].李建生,李圣法,丁峰元等.长江口近海渔业生物多样性的年际变化.中国水产科学,200714(4):637~643
    [200].程家骅,丁峰元,李圣法等.夏季东海北部近海鱼类群落结构变化.自然资源学报,200621(5):775-782
    [201].李美玲,黄硕琳.关于长江口渔业资源管理的探讨.安徽农业科学,2009,37(13):6196~6198,6204
    [202]. Greenstreet S P R, Hall S J. Fishing and the ground fish assemblagestructure in the north-western North Sea: an analysis of long!term and spatialtrends. Journal of Animal Ecology.1996,65(5):466~487
    [203].刘凌云,郑光美.普通动物学.(第3版).北京:高等教育出版社,659~673,1999
    [204].单秀娟,金显仕.长江口近海春季鱼类群落结构的多样性研究.海洋与湖沼.2011,42(1):32~40
    [205].陈新军.渔业资源与渔场学.北京:海洋出版社,2004
    [206].沈新强,晁敏,全为民等.长江河口生态系现状及修复研究.中国水产科学,200617(4):624~630
    [207].王幼槐,倪勇.上海市长江口区渔业资源及其利用.水产学报,19848(2):147~159
    [208].黎雨轩,何文平,刘家寿等.长江口刀鲚耳石年轮确证和年龄与生长研究.水生生物学报,201034(4):787~793
    [209]. Martinho F, Viegas I, Dolbeth M etc. Assessing estuarine environmentalquality using fish-based indices: Performance evaluation under climaticinstability. Marine Pollution Bulletin,2008(56):1834~1843
    [210]. Breine J J, Maes J, Quataert P etc. A fish-based assessment tool for theecological quality of the brackish Scheldt estuary in Flanders (Belgium).Hydrobiologia,2007(575):141~159

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700