鹿角冒中有效物质的提取、分离及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国是世界上的鹿产业大国,而吉林省的特色产业之一就是养鹿业。鹿角冒(Antler base)是梅花鹿或马鹿鹿茸根部骨质部分,鹿茸被锯掉后,于第二年的春天新鹿茸长出后脱落。它长得像一个圆盘,故命名为鹿角盘或鹿角冒。鹿角冒在2000年前就被记载在中国药典《神农本草经》上,认为其具有强筋健体、补肾、行血消肿和滋阴的功效。在中国,鹿角冒被广泛地用于中药中,用于治疗一系列的疾病,如乳腺炎、乳腺增生、恶性溃疡、儿童流行性腮腺炎及子宫肿瘤等。多年以来,很多研究人员主要集中在鹿茸的药理价值上。相对于鹿角冒蛋白的研究较少,范围较窄,严重阻碍了鹿角冒产业的发展。因此,本文以鹿角冒为原料,更广泛、更深入的研究鹿角冒蛋白,以促进鹿角冒产业的开发,带来更高的经济和药用价值。
     本文通过三条途径分别考察了鹿角冒中肽聚糖识别蛋白的提取、分离及性能检测;抗氧化活性多肽的制备及精制;胶原蛋白的提取及性能检测等。主要研究内容分为以下五个部分:
     (1)鹿角冒识别蛋白1(cnPGRP1)是从梅花鹿鹿角冒中提取分离出的一种新的抗微生物蛋白,它在切掉鹿茸的创面上高度表达。文中采用预冷的5mM的乙酸钠缓冲溶液进行匀浆提取鹿角冒可溶性蛋白,可溶性蛋白经两倍体积的乙醇沉淀除杂,40℃旋转蒸发除乙醇后,冻干得鹿角冒粗多肽。并采用凝胶葡聚糖G-25、CM阳离子吸附树脂及高效液相色谱柱对粗多肽进行分离纯化。纯化后的多肽经SDS-PAGE电泳分析,其分子量为17.2kDa。鹿角冒多肽经MALDI-TOF-MS鉴定为肽聚糖识别蛋白1,匹配序列为RLYEIIQKWPHYRA。我们定义该纯化蛋白为cnPGRP1。
     在本文的体外抑菌试验中,我们提取分离纯化的cnPGRP1,在浓度为50-250μg/mL,作用4h时,均能在不同程度上杀死革兰氏阳性菌和革兰氏阴性菌。通过微生物绑定试验表明,鹿角冒肽聚糖识别蛋白能够绑定到革兰氏阳性菌(金黄色葡萄球菌和枯草杆菌)、革兰氏阴性菌(大肠杆菌和志贺氏菌)以及真菌(酵母菌)。cnPGRP1是直接从组织中提取、分离纯化得到的单体,与通过克隆、分离纯化的小鼠及人类的PGRP1不同,其杀菌活性不依赖于Zn2+等阳离子,类似于牛科的PGRP1。
     (2)采用碱性蛋白酶、中性蛋白酶、复合蛋白酶、菠萝蛋白酶和胰蛋白酶五种酶酶解鹿角冒蛋白,制备抗氧化活性多肽。文中探讨了各种酶的水解能力,及产物的抗氧化活性,其中碱性蛋白酶的水解能力和酶解后产物的抗氧化活性均较高,最终选择碱性蛋白酶作为最佳用酶。
     根据单因素试验结果,对影响鹿角冒蛋白水解工艺的酶浓度(X1)、温度(X2)和pH值(X3)三个因素进行优化,并以酶解液对DPPH自由基的清除率为响应值(Y),进行三因素五水平的响应面分析,得出显著性水平α﹤0.05下的数学模型:Y=73.45+3.49X1-1.18X2-1.21X1X2-2.47X1X3-3.89X21-4.03X22-2.57X23。在模型的基础上,计算得出最佳酶解工艺参数:底物浓度15%、加酶量6%、温度53℃、pH8.5的参数条件下酶解4h,在此条件下,酶解液清除DPPH·自由基的能力为74%(5mg/ml)。
     (3)抗氧化活性多肽的精制主要体现在脱色和脱盐两个方面。通过研究各脱色因素(多肽的pH、脱色温度、脱色时间、活性炭用量)对活性碳脱色效果的影响,确定了活性碳的脱色最佳条件为活性碳用量2%,pH5,脱色温度50℃时,脱色3h,在此最优条件下,活性炭对鹿角冒多肽的脱色率达到79.86±0.26%。
     通过研究各吸附因素(pH、温度、浓度、料液比)对DA201-C大孔树脂吸附能力的影响,确定了树脂的静态吸附的最优条件:取pH4.0,温度25℃,多肽浓度10mg/mL,料液比1:5,振荡吸附24h,在此条件下,树脂对鹿角冒多肽的吸附率达到78.52±1.05%。根据DA201-C树脂的动态吸附与解析试验对多肽进行脱盐处理,多肽的脱盐率达到98.64±2.45%,多肽的回收率为86.31±0.97%。采用抗氧化活性试验检测脱盐后多肽的抗氧化活性,得出多肽经DA201-C树脂除盐后,鹿角冒多肽仍具有较高的抗氧化活性。所以,采用DA201-C树脂对鹿角冒多肽的除盐和初步的粗分具有良好的工业前景。
     (4)通过研究加酶量、电场强度及脉冲数三个因素对提取鹿角冒中胶原蛋白的影响,并以提取胶原蛋白的浓度为试验指标,并联合提取液的电泳条带,确定了胶原蛋白的最佳提取条件为电场强度20kV/cm,脉冲数为8,胃蛋白酶的浓度2%,在此最佳条件下胶原蛋白的提取率为73.41±1.07%,电泳条带较纯,没有小分子多肽条带。
     对提取的胶原蛋白进行体外成纤维及变性温度检测,得出所提取的胶原蛋白具有很好的体外成纤维能力,其变性温度为36℃。红外检测表明,所提取蛋白具有胶原蛋白的特征。
Antler base is the ossified and rudimental antler on the pedicle of male sika deer(Cervus nippon) after sawing off the velvet antler, which then falls off by itself everyspring when the new velvet antler begins to germinate. It looks like a plate, so it istherefore named ‘antler base’. Antler base has high medicinal value according to theShen Nong Ben Cao Jing and is believed to tonify the liver and kidneys, andinvigorate the circulation of blood and detumescence. Over years, many researchershave focused on the antler base pharmacological value, which less than the researchof antler base protein. The range of research was narrow, that seriously hindered thedevelopment of antler base at industry. In this paper, antler base as the object of study,a broader and more in-depth study of antler base protein were carried out, to promotethe development of industry, and bring more economic and medicinal value.
     Through three channels to research the antler base protein: extraction, isolationand characteristic of antler base PRGPs; preparation and purification of antler baseantioxidant peptide; extraction and characteristic of antler base collagen. The researchcontents are as follows:
     (1) CnPGRP1is a novel antimicrobial protein from antler base of the sika deerCervus nipp, expressed at high levels to protect the wound of velvet antler frombacterial infections after removal. The samples were ground with10volumes ofprecooled solvent A (5mM sodium acetate, pH4.5) by using a colloidal mill. Theimpurity was removed from peptide by ethanol precipitation. The supernatant wasthen removed ethanol using a rotary evaporator at40℃, and lyophilized. The antlerbase antimicrobial proteins (AAP) were subjected to consecutive chromatographicmethods connected to Sephadex G-25gel filtration column,(CM) anion exchangecolumn, and RP-HPLC. The molecular weight of cnPGRP1was17.2kDa underSDS-PAGE, and peptide mass fingerprint analysis by MALDI-TOF-MS aspeptidoglycan recognition protein1matched to dasypus novemcinctus. The matchedamino acids sequences were RLYEIIQKWPHYRA.
     In a standard liquid assay in vitro, both Gram-positive bacteria andGram-negative bacteria are killed by cnPGRP-S, at a dose of50-250μg/mL withrange at4hours of incubation. Our results indicate that cnPGRP binds toGram-positive bacteria (S. aureus and B. subtilis), Gram-negative bacteria (E. coli andS. dysenteriae), and fungus (S. cerevisia). The requirement for Zn2+or Ca2+for microbicidal activity may explain why previously murine and human recombinantPGRP-S was only bacteriostatic, and not microbicidal. Our isolated cnPGRP from theantler base of the sika deer, a native protein, was the same as bovine PRGP-S, and theprobable retained Zn2+that was likely bound to them in vivo.
     (2) The protein of antler base was enzymatic hydrolyzed by alkaline protease,neutral protease, compound protease, pineapple protease and trypsin, and topreparated antioxidant peptides. The enzyme hydrolysis ability and antioxidantactivity of peptide were discussed, the hydrolysis active of alkaline protease and theantioxidant active of the peptide which were hydrolyzed by alkaline protease werehigher than other proteases, so the alkaline protease was chosen to hydrolyze antlerbase.
     According to the results of single factor experiment, enzyme concentration (X1),reaction temperature (X2) and pH (X3) were chosen to optimize the conditions ofenzymatic hydrolysis of antler base protein by three factors five levels of responsesurface analysis, and the clearance ratio of DPPH free radical by peptides as theresponse value (Y). The mathematical model was established based on the test result,as follow: Y=73.45+3.49X1-1.18X2-1.21X1X2-2.47X1X3-3.89X21-4.03X22-2.57X23, forthe significant level α<0.05. The optimal conditions of enzymatic hydrolysis as follow:the substrate concentration15%, enzyme concentration6%, temperature53℃, pH8.5,the clearance ratio of DPPH free radical by peptides was74%.
     (3) The dispose of antioxidant peptides mainly reflected in two aspects ofdecoloring and desalination. The peptide pH, reaction temperature, reaction time andactive carbon concentration were studied about the factors of decolorizing of effectson the decoloring of active carbon. The best conditions of active carbon decoloringwere determined as follow: the peptide pH5, reaction temperature50℃, reaction time3h and active carbon concentration4%, the decoloring rate of antler base peptides byactive carbon was79.86±0.26%.
     The pH, reaction temperature, peptide concentration and the ratio of peptide tomaterial were studied about the factors of adsorption of effects on the adsorptioncapacity of macroporous resin DA201-C. The best conditions of static adsorption ofmacroporous resin DA201-C were determined as follow: the peptide pH4, reactiontemperature25℃, peptides concentration10mg/mL the ratio of peptide to material5:1and adsorption time24h. Under this optimal condition, the adsorption rate ofantler base peptides by macroporous resin DA201-C was78.52±1.05%.
     According to the dynamic adsorption and elution experiment of resin DA201-Cof desalination processing of antler base peptides, the desalination rate of peptideswas98.64±2.45%, and the recovery of peptides was86.31±0.97%. The antioxidant activity of peptides which were desalted by resin DA201-C, still had high antioxidantactivity. So the resin DA201-C was suitable for desalting and purification of antlerbase peptides, and has a good industrial prospect.
     (4) The effects of enzyme concentration, electric field intensity and pulse numberon extraction of antler base collagen were studied, with the collagen concentration astest indexes, and jointed the collagen banding in the SDS-PAGE. The optimalconditions of extraction of collagen were confirmed as follow: electric filed intensity20kV/cm, pulse number8and pepsin concentration2%, under this optimal conditionof extraction, the extraction rate of antler base collagen was73.41±1.07%, and thebandings of collagen were more pure, there was not peptide banding under thecollagen bandings.
     The denaturation temperature and in vitro fibrillogenesis test of antler base collagen werestudied, the test showed that the denaturation temperature of collagen was36℃, the in vitrofibrillogenesis was good. The infrared spectrum showed that the extraction wascollagen.
引文
[1]黄彬彬,赵越,徐峰,等.鹿花盘营养成分及蛋白多肽提取工艺的研究进展[J].吉林医药学院学报,2013,34(4):305-308.
    [2]吴菲菲,金礼吉,李化强,等.鹿角盘天然活性成分和药理功能研究的新进展[J].黑龙江畜牧兽医(科技版),2013(1):23-25.
    [3]张程程.鹿角盘提取物抗炎作用的研究[D].大连理工大学,2011,pp:3.
    [4]李泽鸿,武丽敏,姚玉霞,等.梅花鹿鹿茸不同产品中氨基酸含量的比较[J].氨基酸生物资源,2007,29(3):16.
    [5]张宝香,金春爱,赵延平.鹿角盘的化学成分与开发利用[J].特种经济动物植物,2005(12):7.
    [6]苏凤艳,李慧萍,王艳梅,等.鹿花盘蛋白质的提取与生物活性测定[J].动物科学与动物医学,2001,18(2):18-20.
    [7]张旭霞,田玉华,齐琳,等.梅花鹿鹿角脱盘化学成分地研究[J].吉林畜牧兽医,2013(8):11-15.
    [8]李银清,曲毅,赵雨,等.梅花鹿鹿角脱盘研究进展[J].安徽农业科学,2009,37(28):13632-13633.
    [9]黄萍,赵雨,牛放,等.鹿角托盘总蛋白的提取工艺研究[J].安徽农业科学,2010,38(14):7305-7307.
    [10]王艳梅.东北梅花鹿茸主要成分系统性比较研究[D].东北林业大学,2004.
    [11]邱芳萍,马波,王志兵,等.鹿角盘蛋白的分离纯化与活性研究[J].长春工业大学学报(自然科学版),2007,28(3):144-147.
    [12]黄金凤,王维,王莘.鹿茸及鹿花盘蛋白提取物的抑菌比较[J].吉林农业,2010(9):43-44.
    [13]苏凤艳,李慧萍,王艳梅,等.鹿花盘蛋白质的提取与生物活性测定[J].动物科学与动物医学,2001,18(2):18-20.
    [14]田玉华.梅花鹿角脱盘蛋白多肽的分离纯化及活性研究[D].吉林农业大学,2011.
    [15]王志兵,邱芳萍,解耸林.鹿角盘蛋白多肽的制备与活性研究[J].中国食品学报,2008,8(3):28-32.
    [16]郝玉刚,于文影,李然,等.鹿角冒多糖抗病毒的研究[J].安徽农业科学,2010,38(22):11857-11858.
    [17]张旭霞,田玉华,齐琳,等.梅花鹿鹿角脱盘化学成分的研究[J].吉林畜牧兽医,2013(8):1-16.
    [18]王芳,赵余庆.鹿花盘中胆固醇的HPLC测定[J].中草药,2009,40:286-287.
    [19]王莘,苏玉春,董浩,等.9种中药提取物对乙型溶血性链球菌的抑菌作用比较[J].中草药,2004,35(3):309-310.
    [20]王志兵,邱芳萍,李治民,等.鹿角盘活性成分对小鼠吞噬功能及对大鼠乳腺增生激素水平的影响[J].食品科技,2007(11):225-226.
    [21]陈玉山,王振玉,王本祥.鹿花盘注射液治疗乳腺增生的药理实验研究[J].生化药物杂志,,1987(2):12-15.
    [22]王莘,姚艳飞.鹿花盘蛋白对乳腺增生模型小鼠作用研究[J].食品科学,2012,33(19):295-297.
    [23]赵向上.复方鹿花盘胶囊对试验性乳腺增生的治疗研究[J].黑龙江中医药大学,2008.
    [24]王丽虹,高志光.鹿花盘水溶性成分地药理活性与临床应用[J].经济动物学报,1999,3(3):18-22.
    [25]陈玉山,王淑贤,王本祥.鹿花盘注射液的药理实验[J].特产研究,1989(4):9-12.
    [26]胡薇,田玉华,孟星宇,等.梅花鹿角脱盘多肽的分离纯化及对乳腺癌细胞端粒酶活性的影响[J].上海中医药杂志,2014,(01).
    [27]邱芳萍,马波,王志兵,等.鹿角盘蛋白的分离纯化与活性研究[J].长春工业大学学报(自然科学版),2007,28(3):144-147.
    [28]牛放.梅花鹿鹿角盘蛋白质成分药理活性研究[J].长春中医药大学,2011.
    [29]史小青,刘金哲,姚艳飞,等.梅花鹿鹿花盘对小鼠抗疲劳作用的研究[J].吉林农业大学学报,2011,33(4):408-410.
    [30]孔庆芝.増免升白冲剂的提升白细胞的作用研究[J].中药材,1998,15(6):18-22.
    [31]黄金凤,王维,王莘.鹿茸及鹿花盘蛋白提取物的抑菌比较[J].吉林农业,2010,(09):43-44.
    [32]肖宇奇.梅花鹿角盘粉体外抑菌试验初报[J].西部中医药,2012,25(2):18-19.
    [33]黄凤杰,吉静娴,钱璟,等.鹿角脱盘多肽的分离纯化及其降糖活性的研究[J].药物生物技术,2010,17(2):151-156.
    [34]陆燕.鹿角冒对大鼠骨质疏松症治疗作用的研究[J].大连理工大学,2010.
    [35] Kang D,Liu G,Lundstrom A,Gelius E,Steiner H:A peptidoglycanrecognition protein in innate immunity conserved from insects tomamma)[J].Proc Natl Acad Sci USA,1998,95:10078-10082.
    [36] Werner T,Liu G,Kang D,Ekengren S,Steiner H,Hultmark D:A familyof peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster[J].Proc Natl Acad Sci USA,2000,97:13772-13777.
    [37] Niranji Sumathipala,Haobo Jiang.Involvement of Manduca sextapeptidoglycan recognition protein-1in the recognition of bacteria andactivation of prophenoloxidase system[J].Insect biochemistry and molecularbiology,2010,40:487-495.
    [38] Liu C,Xu Z,Gupta D,Dziarski R.Peptidoglycan recognition proteins:anovel family of four human innate immunity pattern recognition molecules[J].J Biol Chem,2001,276:34686–34694.
    [39] Royet J,Dziarski R.Peptidoglycan recognition proteins: pleiotropic sensorsand effectors of antimicrobial defenses [J].Nat Microbiol Rev2007,5:264–277.
    [40] Dziarski R,Gupta D.The peptidoglycan recognition proteins (PGRPs)[J].Genome Biol,2006,7:232.1–13.
    [41]许平震,张美蓉,钱平,等.昆虫先天免疫的肽聚糖识别蛋白的研究进展[J].安徽农业科学,2011,39(23):13962-13964.
    [42]李新娜.关于人类肽聚糖识别蛋白的试验研究[D].中国医科大学,2004.
    [43]姚峰.文昌鱼肽聚糖识别蛋白基因的表达及功能[D].中国海洋大学,2012.
    [44] Guan R,Malchiodi ML,Wang Q,Schuck P,Mariuzza RA.Crystal structureof the C-terminal peptidoglycan-binding domain of human peptidoglycanrecognition protein Iα [J].J Biol Chem,2004,279:31873–31882.
    [45] Guan R,Wang Q,Sundberg EJ,Mariuzza RA.Crystal structure of humanpeptidoglycan recognition protein S (PGRP-S) at1.7resolution[J].J MolBiol,2005,347:83–91.
    [46] Wang ZM,Li X,Cocklin RR,et al.Human peptidoglycan recognitionprotein-L is an N-acetylmuramoyl-L-alanine amidase [J].J Biol Chem,2003,278:49044–49052.
    [47] Gelius E,Persson C,Karlsson J,Steiner H.A mammalian peptidoglycanrecognition protein with N-acetylmuramoyl-L-alanine amidase activity[J].Biochem Biophys Res Commun,2003,306:988–994.
    [48] Xu M,Wang Z,Locksley RM.Innate immune responses in peptidoglycanrecognition protein L-deficient mice [J].Mol Cell Biol,2004,24:7949–7957.
    [49] Zhang Y,vander Fits L,Voerman J Setal.Identification of serumN-acetylmuramoyl-L-alanine amidase as liver peptidoglycan recognitionprotein2[J].Biochim Biophys Acta,2005,1752:34–46.
    [50]何智.小鼠PGRP-L分子的克隆、表达、体内分布及其功能的初步探索[D].第一军医大学,2006.
    [51] Lu X,Wang M,Qi J,et al.Peptidoglycan recognition proteins are a newclass of human bactericidal protein[J].J Biol Chem2006,281,5895–5907.
    [52] De Pauw P,Neyt C,Vanderwinkel E,Wattiez R,FalmagneP.Characterization of human serum N-acetylmuramyl-L-alanine amidasepurified by affinity chromatography[J].Protein Expr Purif,1995,6:371–378.
    [53] Tydell CC,Yount N,Tran D,Yuan J,Selsted M.Isolation,characterization,and antimicrobial properties of bovine oligosaccharide-binding protein[J].JBiol Chem,2002,277:19658–19664.
    [54] Tydell CC,Yuan J,Tran P,Selsted ME.Bovine peptidoglycan recognitionprotein-S:antimicrobial activity,localization,secretion,and bindingproperties[J].J Immunol,2006,176:1154–1162.
    [55] Wang M,Liu LH,Wang S,et al.Human peptidoglycan recognition proteinsrequire zinc to kill both Gram-positive and Gram-negative bacteria and aresynergistic with antibacterial peptides[J].J Immunol,2007,178:3116–3125.
    [56] Liu C,Gelius E,Liu G,Steiner H,Dziarski R.Mammalian peptidoglycanrecognition protein binds peptidoglycan with high affinity,is expressed inneutrophils, and inhibits bacterial growth[J].J Biol Chem,2000,275:24490–24499.
    [57] Tydell CC,Yount N,Tran D,Yuan J,Selsted M.Isolation,characterization,and antimicrobial properties of bovine oligosaccharide-binding protein[J].JBiol Chem,2002,277:19658–19664.
    [58] Tydell CC,Yuan J,Tran P.Selsted ME.Bovine peptidoglycan recognitionprotein-S:antimicrobial activity,localization,secretion,and bindingproperties[J].J Immunol,2006,176:1154–1162.
    [59] Wang M,Liu LH,Wang S,et al.Human peptidoglycan recognition proteinsrequire zinc to kill both Gram-positive and Gram-negative bacteria and aresynergistic with antibacterial peptides[J].J Immunol,2007,178:3116–3125.
    [60] Dziarski R,Gupta D.Mammalian PGRPs:novel antibacterialproteins[J].Cell Microbiol,2006,8:1056–1069.
    [61] Cho S,Wang Q,Swaminathan CP,et al.Structural insights into thebactericidal mechanism of human peptidoglycan recognition proteins [J].ProcNatl Acad Sci USA,2007,104:8761–8766.
    [62] Kim M-S,Byun M,Oh B-H.Crystal structure of peptidoglycan recognitionprotein LB from Drosophila melanogaster[J].Nat Immunol,2003,4:787–793.
    [63] Guan R,Malchiodi ML,Wang Q,Schuck P,Mariuzza RA.Crystal structureof the C-terminal peptidoglycan-binding domain of human peptidoglycanrecognition protein Ia[J].J Biol Chem,2004,279:31873–31882.
    [64] Guan R,Wang Q,Sundberg EJ,Mariuzza RA.Crystal structure of humanpeptidoglycan recognition protein S (PGRP-S) at1.7resolution[J].J MolBiol,2005,347:83–91.
    [65] Guan R,Roychowdhury A,Ember B,Kumar S,Boons G-J,MariuzzaRA.Structural basis for peptidoglycan binding by peptidoglycan recognitionproteins[J].Proc Natl Acad Sci USA,2004,101:17168–17173.
    [66] Kumar S,Roychowdhury A,EmberB et al.Selective recognition of syntheticlysine and meso-diaminopimelic acid-type peptidoglycan fragments by humanpeptidoglycan recognition proteins Iα and S[J].J Biol Chem,2005,280:37005–37012.
    [67] Swaminathan CP,Brown PH,Roychowdhury A et al.Dual strategies forpeptidoglycan discrimination by peptidoglycan recognition proteins (PGRPs)[J].Proc Natl Acad Sci USA,2006,103:684–689.
    [68] Guan R,Brown PH,Swaminathan CP,Roychowdhury A,Boons GJ,Mariuzza RA.Crystal structure of human peptidoglycan recognition protein Iαbound to a muramyl pentapeptide from Gram-positive bacteria[J].ProteinSci,2006,5:1199–1206.
    [69] Liu C,Gelius E,Liu G,Steiner H,Dziarski R.Mammalian peptidoglycanrecognition protein binds peptidoglycan with high affinity,is expressed inneutrophils, and inhibits bacterial growth[J].J Biol Chem,2000,275:24490–24499.
    [70] Tydell CC,Yuan J,Tran P,Selsted ME.Bovine peptidoglycan recognitionprotein-S: antimicrobial activity, localization, secretion, and bindingproperties[J].J Immunol,2006,176:1154–1162.
    [71] Lim J-H,KimM-S,KimH-Eetal.Structural basis for preferential recognitionof diaminopimelic acid-type peptidoglycan by a subset ofpeptidoglycan-recognition proteins[J].J Biol Chem,2006,281:8286–8295.
    [72] Chang CI,Chelliah Y,Borek D,Mengin-Lecreulx D,DeisenhoferJ.Structure of tracheal cytotoxin in complex with a heterodimericpattern-recognition [J].receptor. Science,2006,311:1761–1764.
    [73] Mathur P,Murray B,Crowell T,et al.Murine peptidoglycan recognitionproteins PglyrpIa and PglyrpIβ are encoded in the epidermal differentiationcomplex and are expressed in epidermal and hematopoietic tissues[J].Genomics,2004,83:1151–1163.
    [74] Hoijer MA,Melief M-J,Debets R,Hazenberg MP.Inflammatory propertiesof peptidoglycan are decreased after degradation with humanN-acetylmuramyl-L-alanine amidase[J].Eur Cytokine Network,1997,8:375–382.
    [75] Mellroth P,Karlsson J,Steiner H.A scavenger function for a Drosophilapeptidoglycan recognition protein[J].J Biol Chem,2003,278:7059–7064.
    [76] Zaidman-Remy A,Herve M,Poidevin M,et al.The Drosophila amidasePGRP-LB modulates the immune response to bacterial infection[J].Immunity2006,24:463–473.
    [77] Bischoff V,Vignal C,Duvic B,Boneca IG,Hoffmann JA,Royet J.Downregulation of the Drosophila immune response by peptidoglycan-recognitionproteins SC1and SC2[J].PLoS Pathog,2006,2:e14.139–147.
    [78] Biragyn A,Ruffini PA,Leifer CA,et al.Toll-like receptor4-dependentactivation of dendritic cells by b-defensin2[J].Science,2002,298:1025–1029.
    [79] Clemente A.,Vioque J.,Millan F.Vegetable protein hydrolysates [J].Nutriciony obesidad,1999,2:289-296.
    [80]谢正军.苜蓿叶蛋白和酶法制备抗氧化肽[D].江南大学,2009.
    [81]曾婷.酶法制备大豆抗氧化肽的研究[D].东北农业大学,2009.
    [82]梅辉,王海滨.畜禽及水产蛋白抗氧化肽的酶法制备及其构效关系研究进展[J].肉类研究,2012,26(11):31-35.
    [83]芦鑫,朱巧梅,孙强,等.高温压榨花生饼粕酶法制备抗氧化肽的研究[J].中国粮油学报,2013,28(3):99-104.
    [84] Eresha Mendis,Niranjan Rajapakse,SE-Kwon Kim.Antioxidant propertiesof a radical-scavenging peptide purified from enzymatically prepared fish skingelatin hydrolysate [J].Agricultural and Food Chemistry,2005,53:581-587.
    [85] Jae-Young Je,Zhong-Ji Qian,Hee-Guk Byun,Se-Kwon Kim.Purificationand characterization of an antioxidant peptide obtained from tuna backboneprotein by enzymatic hydrolysis[J].Process Biochemistry2007,42:840–846.
    [86] Chen H.M.,Kiji M.,Fumio Y.Structal analysis of antioxidative peptidesfrom soybeanβ-conglycinin [J].J. Agri. Food Chem.,1995,43:574–578.
    [87] Cao G,Sofic E.,Prior R.Antioxidant and prooxidant behaviour of flavonoids:structureactivity relationships [J].Free radical Biology and Medicine,1997,22:749-76.
    [88] Andersen M. and Skibsted L..Detection of early events in lipid oxidation byelectron spin responance spectroscopy [J].European Journal of Lipid Scienceand Technology,2002,104:65-68.
    [89]朴姗善.乳清抗氧化肽的工艺探索与活性分析[D].吉林大学,2012.
    [90] Kim S.K.,Kim Y.T.,Byun H.G.,et al.Isolation and characterization ofantioxidative peptides from gelatin hydrolysate of alaska pollack skin [J].J.Agric. Food Chem.,2001,49:1984-1989.
    [91]周雪松,赵谋明,马中苏.鸡肉蛋白酶解产物的组成与清除DPPH活性[J].吉林大学学报(工学版),2006,36(1):128-132.
    [92]高科翔.酶解鹿茸肽的制备分离纯化及其抗氧化活性的研究[D].吉林大学,2009.
    [93]林金莺.火麻仁蛋白水解及其抗氧化肽的研究[D].华南理工大学,2010.
    [94] Adamson N.J.,Reynolds E.C..Characterization of casein phosphopeptidesprepared using alacalase [J].Enzyme Microbial Technol.,1996,19:202-207.
    [95]张君慧,张晖,王兴国,等.抗氧化活性肽的研究进展[J].中国粮油学报,2008,23(6):227-233.
    [96]丁晓雯,李洪军,章道明.抗氧化肽研究进展[D].食品研究与开发,2003,24(3):36-38.
    [97]包斌,得力格尔桑,许勤.抗氧化肽的研究进展[J].内蒙古农业大学报,2004,25(1):121-124.
    [98]赵保路.氧自由基和天然抗氧化剂[M].北京,科学出版社,1999.
    [99] Sjodin B.Bisohemical mechanisms for oxygen free radical formation duringexereise[J].Sports Medidne,1990,10:2361-2365.
    [100] Gelse K,Poschl E,Aigner T.Collagen-structure,function andbiosynthesis[J].Adv. Drug Deliv. Rev.,2003,55:1531-1546.
    [101] Bateman J. E,Lamande S.R.,Ramshaw J. A. M..Collagen superfamily,in:Comper W.D.(Ed.),Extraeellular Matrix,Harwood Aeademie Press,Melboume,1996:22-67.
    [102] C. Giudici,M. Viola,M. E. Tira,A. Forlino,R. Tenni.Molecularstability of chemically modified collagen triple helices [J].FEBS Letters2003,547:170-176.
    [103] R. Berisio,V. Granata,L. Vitagliano,A. Zagari.Imino Acids andCollagen Triple Helix Stability: Characterization of Collagen-likePolypeptides Containing Hyp-Hyp-Gly Sequence Repeats [J].Journal of theAmerican chemical society,2004,126(37):11402-11403.
    [104]王丽娜,黄素珍.胶原蛋白的研究进展[J].肉类研究,2010(1):16-22.
    [105] Holzer,David.Gelatin production.US Patent5484888,1996.
    [106]陈武勇,黄瓒,林亮,等.废革屑提取胶原蛋白的研究[J].中国皮革,2002,31(23):1-5.
    [107] S. Morimura,H. Nagata,Y. Uemura,et al.Development of an effectiveprocess for utilization of collagen from livestock and fish waste[J].ProcessBiochemistry,2002,37(12):1403-1412.
    [108] Shigeru Kimura,Hideyuki Tanaka.Partial Characterization of MuscleCollagens from Prawns and Lobster[J].Journal of Food Science,1986,51(2):330-332.
    [109]申铉目,夏光华,董正华.明胶科学与技术[J].明胶科学与技术,2013,33(1):1-8.
    [110] Maria Sadowska,Ilona Kolodziejska,Celina Niecikowska.Isolation ofcollagen from the skins of Baltic cod.Food Chemistry,2003,81:257-262.
    [111]曾江南.提取鱼鳞中胶原蛋白的工艺研究[D].南昌大学,2012.
    [112] Xiurong Su,Bei Sun,Yanyan Li,Qiuhui Hu.Characterization ofacid-soluble collagen from the coelomic wall of Sipunculida[J].FoodHydrocolloids,2009,23:2190-2194.
    [113]张俊杰,段蕊,陈璐.鲤鱼磷酸溶性胶原蛋白提取的研究[J].水产科学,2006,25(12):640-643.
    [114]户业丽,吴浩,张瑞,等..酸法提取人工养殖鲟鱼皮中胶原蛋白工艺的研究[J].食品科技,2008,(2):209-212.
    [115] Ilona Kolodziejska,Zdzislaw E. Sikorski,CelinaNiecikowska.Parameters affecting the isolation of collagen from squid (Illexargentinus) skins[J].Food Chemistry,1999,66:153-157.
    [116]涂灿时,李正军.鱼鳞胶原蛋白的提取技术[J].西部皮革,2010,32(19):27-30.
    [117] Yung Kai Lin,Deng Cheng Lin.Effects of pepsin digestion at differenttemperatures and times on properties of telopeptide-poor collagen from birdfeet[J].Food Chemistry,2006,94:621-625.
    [118] Sitthipong Nalinanon,Soottawat Benjakul,Wonnop Visessanguan,Hideki Kishimura.Use of pepsin for collagen extraction from the skin ofbigeye snapper (Priacanthus tayenus)[J].Food Chemistry,2007,104:593-601.
    [119] Fonseca M.J.,Alsina M.A.,Reig F..Coating lipo-somes with collagen(Mr50000) increases uptake into liver[J].Biochim. Biophys. Acta,1996,1279(2):259–265.
    [120] A. Erikson,H.N. Andersen,S.N. Naess,et al..Physical and chemicalmodifications of collagen gels: impact on diffusion[J].Biopolymers,2007,89(2):135-143.
    [121] Smith K J,Skelton H G,Barrett T L.Histologic andimmunohistochemical features in biopsy sites in which bovine collagen matrixwas used for hemostasis [J].Am Acad Dermatol,1996,34(3):434-438.
    [122] D.I. Zeugolis,R.G.Paul,G. Attenburrow.Extruded collagen fibres fortissue-engeering applications: influence of collagen concentration and NaClamount[J].Journal of biomaterial science,2009,20(2):219-234.
    [123] Smith K J,Skelton H G,Barrett T L.Histologic andimmunohistochemical features in biopsy sites in which bovine collagen matrixwas used for hemostasis [J].Am Acad Dermatol,1996,34(3):434-438.
    [124] Chapman WC,Wren SM,Lebovic GS,Malawer M,Sherman R,BlockJE.Effective management of bleeding during tumor resection with acollagen-based hemostatic agent[J].The American Surgeon,2002,68(9):802-807.
    [125]叶真铭.胶原蛋白止血海绵的研制[D].哈尔滨工业大学,2013.
    [126]王碧,王坤余,叶勇.胶原材料在药物缓释和组织工程中的研究进展[J].中国修复重建外科杂志,2004,18(2):112-114.
    [127] S Wakitani,T Kimura,A Hirooka,et al.Repair of rabbit articularsurfaces with allograft chondrocytes embedded in collagen gel[J].The Bone&Joint Journal,1989,71-B(1):74-80.
    [128]陈晓东,袁即山,祁少海,等.胶原蛋白海绵在多种创面修复中的应用[J].中国临床康复,2004,8(32):7200-7203.
    [129] Lynn A K,Yannas I V,Bonfield W.Antigenicity and immunogenicty ofcollagen[J].Biomed Mater Res,2004,71:343-354.
    [130]赵雄,曹晓函,马玉媛,等.纤维蛋白止血敷料的免疫安全性研究[J].中国输血杂志,2010,23:112-113.
    [131]米钰,惠俊峰,范代娣,等.类人胶原蛋白生物相容性实验研究[J].西北大学学报(自然科学版),2004,34(1):66-69.
    [132]马忠仁,冯玉萍,李明生,等.新生牛皮胶原蛋白海绵的制备及其体外细胞相容性[J].中国组织工程研究与临床康复,2007,11(26):5147-5150.
    [133]何竑超,戴军,吴稼晟,等.复合生物支架胶原蛋白/壳聚糖及聚乙烯醇/丝胶在大鼠膀胱扩大手术中的应用[J].组织工程与重建外科杂志,2011,7(4):202-206.
    [134] Frederick H S,David L C.Collagen scaffolds for tissue regeneration in:donald LW biomaterials and bioengineering handbook marcel dekker[J].IncUSA,2000,761-772.
    [135] Rehn A P.ADAMTS-1Increase the three-dimensional growth ofosteoblasts through Type I Collagen processing[J].Bone,2007,41(2):231-238.
    [136]许云辉,黄晨,陈宇岳,林红.棉纤维经胶原蛋白涂覆处理后的结构[J].纺织学报,2007,28(6):1-4.
    [137] Takaku Kazihiko,Kuriyama Takashi,Narisawa. Ikuo loop strength ofspin collagen fibers[J].Journal of Applied Polymer Science,1996,61(12):2437-2445.
    [138] Hirane Shigehiro,Zhang Min,Nakagawa Masuo.Wet-spunChitosan-Collagen Fibers, Their chemical modifications, and bloodcompatibility[J].Biomaterials,2000,21(10):997-1003.
    [139]崔新爱.静电纺胶原/丝素复合微纳米纤维支架的制备及性能研究[D].天津医科大学,2012.
    [140]李志洲.超声波条件下胰蛋白酶提取鳝鱼皮中胶原蛋白的工艺研究[J].精细化工,2010,27(6:553-561.
    [141]杨萌萌,郭兆斌,余群力,等.超声波辅助法提取胶原蛋白工艺研究[J].甘肃农业大学学报,2013,48(3):121-126.
    [142]夏陈,陈建,曹阳.超声波辅助酶法水解鱼鳞胶原蛋白的工艺研究[J].食品工业,2012,33(7):63-65.
    [143]刁雪洋.猪皮胶原蛋白提取及理化特性的研究[D].西南大学,2010.
    [144]李兴武.猪皮胶原蛋白的提取及琥珀酰化改性研究[D].西南大学,2011.
    [145]陈瑞战.超高压提取人参皂苷工艺及机理研究[D].吉林大学,2005.
    [146]励建蓉,俞坚.超高压对酶活的影响[J].食品科技,2006(9):18-20.
    [147]庄永亮,李八方,赵雪,等.高压辅助提取海蜇胶原蛋白的工艺[J].食品与发酵工业,2009,35(5):79-81.
    [148]张宇昊,马良,师萱.鱼皮明胶的超高压辅助提取工艺[J].食品科学2011,32(6):99-103.
    [149] S.Y. Ho,G.S. Mittal.J.D. Cross.Effects of High Field Electric Pulses onthe activity of selected enzymes[J].Journal of Food Engineering,1997,(31):69-84.
    [150]赫桂丹,殷涌光,孟力,等.高电压脉冲电场下的牛骨胶原蛋白酶法提取[J].农业机械学报,2010,41(11);124-128.
    [151] R. Dziarski.Peptidoglycan recognition proteins (PGRPs)[J].MolecularImmunology,2004,40:877-886.
    [152] R. Dziarski,D. Gupta.The peptidoglycan recognition proteins (PGRPs)[J].Genome Biology,2006,7:232.1-13.
    [153] J. Royet,R. Dziarski.Peptidoglycan recognition protein: pleiotropicsensors and effectors of antimicrobial defenses [J].Nature ReviewsMicrobiology,2007,5:264-277.
    [154] T. Werner,G. Liu,D.W. Kang,S. Ekengren,H. Steiner,D. Hultmark.Afamily of peptideglycan recognition protein in the fruit fly Drosophilamelanogaster [J].Proceedings of the National Academy of Sciences of theUnited States of America,2000,97:13772-13777.
    [155] R. Dziarski.Peptidoglycan recognition proteins (PGRPs)[J].MolecularImmunology,2004,40:877-886.
    [156] E. Gelius,C. Persson,J. Karlsson,H. Steiner.A mammalianpeptidoglycan recognition protein with N-acetylmuramoyl-L-alanineamidase activity [J].Biochemical and Biophysical ResearchCommunications,2003,306:988–994.
    [157] D. Kang,G. Liu,A. Lundstrom,E. Gelius,H. Steiner.A peptidoglycanrecognition protein in innate immunity conserved from insects to mammals[J].Proceedings of the National Academy of Sciences of the United States ofAmerica,1998,95:10078-10082.
    [158] S.R. Kappeler,C. Heuberger,Z. Farah,Z. Puhan.Expression of thepeptidoglycan recognition protein, PGRP, in the lactating mammary gland[J].Journal of Dairy Science,2004,87:2660–2668.
    [159] C.C. Tydell,N. Yount,D. Tran,D. Tran,J. Yuan.Isolation,characterization, and antimicrobial properties of bovineoligosassharide-binding protein [J].The Journal of Biological Chemistry,2002,277:19658-19664.
    [160] D. Lo,W. Tynan,J. Dickerson,et al.Isolation, characterization, andantimicrobial properties of bovine oligosassharide-binding protein[J].CellularImmunology,2003,224:8-16.
    [161] A. Ghosh,S. Lee,R. Dziarski,S. Chakravarti.A novel antimicrobialpeptidoglycan recognition protein in the cornea [J].InvestigativeOphthalmology&Visual Science,2009,50:4185–4891.
    [162] A. Uehara,Y. Sugawara,S. Kurata,et al.Chemically synthesizedpathogen-associated molecular patterns increase the expression ofpeptidoglycan recognition proteins via toll-like receptors, NOD1and NOD2in human oral epithelial cells [J].Cellular Microbiology,2005,7:675–686.
    [163] M.H. Wang.L.H. Liu.S.Y. Wang,X.N. Li,X.F. Lu,G. Dipika,R.Dziarski.Human peptidoglycan recognition protein require zinc to kill bothGram-positive and Gram-negative bacteria and are synergistic withantibacterial peptides [J].The journal of immunology,2007,178:3116-3125.
    [164] R. Dziarski,K.A. Platt,E. Gelius,H. Steiner,D. Gupta.Defect inneutrophil killing and increased susceptibility to infection with nonpathogenicgram-positive bacteria in peptidoglycan recognition protein-S(PGRP-S)-deficient mice [J].Blood,2003,10:689-697.
    [165] R. Dziarski.Peptidoglycan recognition proteins (PGRPs)[J].MolecularImmunology,2004,40:877-886.
    [166] C.C. Tydell,J. Yuan,P. Tran,M.E. Selsted.Bovine PeptidoglycanRecognition Protein-S: Antimicrobial Activity, Localization, Secretion, andBinding Properties[J].The journal of immunology,2006,176:1154-1162.
    [167] M.H. Wang,L.H. Liu,S.Y. Wang,X.N. Li,X.F. Lu,G. Dipika,R.Dziarski.Human peptidoglycan recognition protein require zinc to kill bothGram-positive and Gram-negative bacteria and are synergistic withantibacterial peptides[J].The journal of immunology,2007,178:3116-3125.
    [168] C. Liu,E. Gelius,G. Liu,H. Steiner,R. Dziarski.Mammalianpeptidoglycan recognition protein binds peptidoglycan with high affinity, isexpressed in neutrophils, and inhibits bacterial growth [J].The Jouranl ofBiological Chemistry,2000,275:24490–24499.
    [169] C.C. Tydell,N. Yount,D. Tran,D. Tran,J. Yuan.Isolation,characterization, and antimicrobial properties of bovineoligosassharide-binding protein [J].The Journal of Biological Chemistry,2002,277:19658-19664.
    [170] C. Liu,Z. Xu,D. Gupta,R. Dziarski.Peptidoglycan recognition proteins:a novel family of four human innate immunity pattern recognitionmolecules[J].The Jouranl of Biological Chemistry,2001,276:34686-34694.
    [171] R. Dziarski,K.A. Platt,E. Gelius,H. Steiner,D. Gupta.Defect inneutrophil killing and increased susceptibility to infection with nonpathogenicgram-positive bacteria in peptidoglycan recognition protein-S(PGRP-S)-deficient mice[J].Blood,2003,10:689-697.
    [172] C.C. Tydell,N. Yount,D. Tran,D. Tran,J. Yuan.Isolation, characterization,and antimicrobial properties of bovine oligosassharide-binding protein[J].The Journal of Biological Chemistry,2002,277:19658-19664.
    [173] A. Rehman,P. Taishi,J. Fang,J.A. Majde,J.M. Krueger The cloningof a rat peptidoglycan recognition protein (PGRP) and its induction in brainby sleep deprivation[J].Cytokine,2001,13:8–17.
    [174] S. R. Kappeler,C. Heuberger,Z. Farah,Z. Puhan.Expression of thepeptidoglycan recognition protein, PGRP, in the lactating mammary gland[J].Journal of Dairy Science2004,87:2660–2668.
    [175] H. Takemura,M. Kaku,S. Kohno,Y. Hirakata,H. Tanaka,etal.Evaluation of susceptibility of Gram-positive and Negative bacteria tohuman defensins by using radial diffusion assay[J].Antimicrobial Agents andChemotherapy,1996,40:2280-2284.
    [176] X.F. Lu,M.H. Wang,J. Qi,H.T. Wang,X.N. Li,D. Gupta,R.Dziarski.Peptidoglycan recognition proteins are a new class of humanbactericidal proteins[J].Journal of Biological Chemistry,2006,281:5895-5907.
    [177] R.F. Li,H.H. Yu,R.G. Xing,et al.Isolation, identification andcharacterization of a novel antioxidant protein from the nematocyst of thejellyfish Stomolophus meleagris[J].International Journal of BiologicalMacromolecules,2012,51:274-278.
    [178] N. Sumathipala,H.B. Jiang.Involvement of Manduca sextapeptidoglycan recognition protein-1in the recognition of bacteria andactivation of prophenoloxidase system[J].Insect Biochemistry and MolecularBiology40(2010)487-485.
    [179] Halliwell B.Effect of diet on cancer development: is oxidative DNAdamage a biomarker[J].Free Radical Biology&Medicine,2002,32,968-974.
    [180] Stadtman E. R. Protein oxidation and aging[J].Free Radical Research,2006,40,1250-1258.
    [181] Higashi-Okai K,Kanbara K,Amano K,Hagiwara A,Sugita C,Matsumoto N, Okai Y.Potent antioxidative and antigenotoxic activity inaqueous extract of Japanese rice bran–association with peroxidase activity[J].Phytotherapy Res,2004,18:628–633.
    [182] Miliauskas G,Avan Beek T,Venskutonis PR,Linssen JPH,de WaardP,Sudh olter EJR.Antioxidant activity of Potentilla fruticosa [J].J Sci FoodAgric,2004,84:1997–2009.
    [183] Karel M,Tannenbaum SR,Wallace DH,Maloney H.Antioxidation ofmethyl linoleate in freeze-dried model systems. III. Effects of added aminoacids [J].J Food Sci.1966,31:892–896.
    [184] Jung M-Y,Kim S-K,Kim S-Y.Riboflavin-sensitized photooxidation ofascorbic acid: kinetics and amino acid effects [J].Food Chem,1995,53:397–403.
    [185] Yokomizo A,Takenaka Y,Takenaka T.Antioxidative Activity ofPeptides Prepared from Okara Protein[J].Food Sci Technol Res,2002,8:357–359.
    [186] Suetsuna K,Ukeda H,Ochi H.Isolation and characterization of freeradical scavenging activities peptides derived from casein n[J].J NutrBiochem,2000,11:128–131.
    [187] Hattorii M,Yamaji-Tsukamoto K,Kumagai H,Feng Y,TakahashiK.Antioxidative activity of soluble elastin peptides [J] J Agric Food Chem,1998,46:2167–2170.
    [188] Saito K,Jin D-H,Ogawa T,Muramoto K,Hatakeyama E,YasuharaT,Nokihara K.Antioxidative properties of tripeptide libraries prepared by thecombinatorial chemistry [J].J Agric Food Chem,2003,51:3668–3674.
    [189] Pihlanto-Lepp l A.Bioactive peptides derived from bovine wheyproteins: Opioid and ace-inhibitory[J].Trends Food Sci Tech,2000,11:347–56.
    [190] Chen HM,Muramoto K,Yamauchi F,Nokihara K.Antioxidativeproperties of histidine-containing peptides designed from peptide fragmentsfound in the digests of a soybean protein [J]. J Agric Food Chem,1998,46:49–53.
    [191] Lin YJ,Le GW,Wang JY,et al.Antioxidant peptides derived fromenzyme hydrolysis of bone collagen after microwave assisted acidpre-treatment and nitrogen protection[J].International journal of molecularscience,2010,11:4297-4308.
    [192] Kim S-K,Kim Y-T,Byun H-G,Nam K-S,Joo D-S.Isolation andcharacterization of antioxidative peptides from gelatin hydrolysate of Alaskapollack skin [J].J Agric Food Chem2001,49:1984–1989.
    [193] Chen J,Suetsuna K,Yamauchi F.Isolation and characterization ofimmunostimulative peptides from soy bean[J].J Nutr Biochem,1995,6:310–3.
    [194] Tsuruki T,Kishi K,Takahashi M,Tanaka M,Matsukawa T,YoshikawaM.Soymetide an immunostimulating peptide derived from soybeanb-con-glycinin, is an fMLP agonist[J].FEBS Lett,2003,540:206–10.
    [195] Mendis E,Rajapakse N,Kim SK.Antioxidant properties of a radicalsscavenging peptide purified from enzymatically prepared fish skin gelatinhydrolysate[J].J Agric Food Chem,2005,53:581–7.
    [196] Suetsuna K,Maekawa K,Chen J.Antihypertensive effects of Undariapinnatifida (wakame) peptide on blood pressure in spontaneously hypertensiverats[J].J Nutr Biochem,2004,15:267–72.
    [197] Kim SK,Jeon YJ,Byun HG,KimYT,Lee CK.Enzymatic recoveryof cod frame proteins with crude proteinase from tuna pyloric caeca[J].FishSci,1997,63:421–7.
    [198]方焕,生吉萍,吴显荣.工业生产中木瓜蛋白酶的活性检测方法比较[J].食品与机械,2000,6(80):27-29.
    [199] D. Spellman,E. McEvoy,G.O’Cuinn,R.J. FitzGerald.Proteinase andexopeptidase hydrolysis of whey protein: Comparison of the TNBS, OPA andpH stat methods for quantification of degree of hydrolysis[J].InternationalDairy Journal,2003,13:447-453.
    [200] Qian Z.J.,Jung W.K.,Byun H.G.,et al.Protective effect of anantioxidative peptide purified from gastrointestinal digests of oyster,Crassostrea gigas against free radical induced DNA damage [J].Biores.Technol.,2008,99:3365-3371.
    [201] Cacciuttoloa M.A.,Trinha L.,Lumpkina J.A.,et al.Hyperoxia inducesDNA damage in mammalian cells [J].Free Rad. Biol. Med.,1993,14:267-276.
    [202] Saito M,Kunisaki N,Urano N,et al.Collagen as the major ediblecomponent of sea cucumber (Stichopus japonicus)[J].Journal of FoodScience,2002,67(4):1319-1322.
    [203]刘闪,刘培勇,刘良忠,等.鲟鱼皮胶原蛋白肽酶解液脱色工艺的研究[J].食品工业,2013,9(34):120-123.
    [204] Francisco López,Francisco Medina,Marin Prodanov,Carme Güell.Oxidation of activated carbon: application to vinegardecolorization[J].Journal of Colloid and Interface Science,2003,2(257):173-178.
    [205]周凤娟,许时婴,杨瑞金,等.纳滤技术在丝素活性肽生产中的应用[J].膜科学与技术,2008,28(3):83-86.
    [206]段冷昕.梅花鹿茸多肽的化学结构及其抗肝纤维化作用[D].吉林大学,2007.
    [207]汪学荣,郑炯,阚建全.利用猪血粉制备多肽的工艺研究[J].食品与发酵工业,2008,34(3):49-51.
    [208]宫霞,赵俊.大孔吸附树脂对酪蛋白酶解液的脱盐作用研究[J].食品科学,2006,27(11):301-303.
    [209]夏光华,申铉目,酒志强,等.大孔树脂对罗非鱼皮胶原蛋白抗氧化肽脱盐作用的研究[J].现代食品科技,2013,29(5):1052-1056.
    [210] Tang Z.H.,Zou R.Q,Duan Z.T..Adsorption and desorption behaviourof taurine on macroporous adsorption resins[J].Journal of ChemicalTechnology and Biotechnology,2001,76,752–756.
    [211]刘志东,王荫榆,曲映红,等.大孔吸附树脂对酪蛋白酶解物的吸附特性研究[J].食品工业科技,2008,29(6):88-94.
    [212] Fang Zhong,Xiaomei Zhang,Jianguo Ma,Charles F. Shoemaker.Fractionation and identification of a novel hypocholesterolemic peptidederived from soy protein Alcalase hydrolysates[J].Food researchinternational,2007,40:756-762.
    [213]辛志宏,吴守义,马海乐,代春华。从麦胚蛋白质中制备降血压肽的研究[J].食品科学,2003,24(10):120-123.
    [214]刘唯佳.鹿茸中水溶性蛋白质的提取及鹿茸综合利用的研究[D].吉林大学,2013.
    [215] Lijun You, Mouming Zhao, Joe M.Regenstein, et al. Changes in theantioxidant activity of loach (Misgurnus anguillicaudatus) proteinhydrolysates during a simulated gastrointestinal digestion [J]. Food Chemistry,2010,210:810-816.
    [216]任清,张晓平,赵世峰,等.利用大孔吸附树脂DA201-CⅡ对燕麦蛋白水解液脱盐的研究[J].食品科学,2009,30(10):118-122.
    [217]赵利,王璋,许时婴.大孔吸附树脂对酪蛋白非磷肽的脱盐和色谱分离[J].无锡轻工大学学报,2003,22(4):69-71.
    [218] Fengxiang Zhang,Zhang Wang,Shiying Xu.Macroporous resinpurification of grass carp fish (Ctenopharyngodon idella) scale peptides within vitro angiotensin-I converting enzyme (ACE) inhibitory ability[J].FoodChemistry,2009,(117):387-392.
    [219]夏树花,王璋,许时婴.采用大孔吸附树脂提纯螺蜘腹足几酶解产物的研究[J].食品与发酵工业,2006,32(2):116-120.
    [220] Rong-rong L,Ping Qian,Zhen Sun,et al.Hempseed protein derivedantioxidative peptides: Purification, identification and protection fromhydrogen peroxide-induced apoptosis in PC12cells[J].Food chemistry,2010,123:1210-1218.
    [221] Lee C. H.,Singla A.,Lee Y..Biomedical applications ofcollagen[J].International Journal of Pharmaceutics,2001,221:1–22.
    [222] Angele P.,Abke J.,Kujat R.,Faltermerier H.,Schumann D.,NerlichM.,et al.Influence of different collagen species on physicochemicalproperties of crosslinked collagen matrices[J].Biomaterials,2004,25:2381–2841.
    [223] Werkmeister J. A.,Ramshaw J. A. M.Immunology of collagen-basedbiomaterials[M].In D. L. Wise (Ed.),Biomaterials and bioengineeringhandbook,New York:Marcel,2000,(pp.739–759).
    [224] Yoshinage I.G.,Dekker S.K.,Mihm,et al.Differential effect ofmagnesium and calcium on integrin-mediated melanoma cell migration ontype Ⅳ collagen and fibronectin[J].Melanoma research,1994,4(6).
    [225] Wu A. B.,Cheng H. W.,Chen S. J.,Lin L. H.,Lu H. K.,Lin C. W.,et al.Preparation of telopeptide-poor collagen from pig skin[J].Journal ofAgricultural Association of China,1999,187,93–100.
    [226]何兰.牛骨胶原蛋白的提取及复合海绵的制备研究[D].华中农业大学,2012.
    [227] Nomura Y.,Sakai H., Ishii Y.,Shirai K.Preparation and someproperties of type I collagen from fish scales[J].Bioscience Biotechnologyand Biochemistry,1996,60:2092–2094.
    [228] Yungkai Lin,Dengcheng Liu.Effects of pepsin digestion at differenttemperature and times on properties of telopeptide-poor collagen from birdfeet[J].Food Chemistry,2006,94:621-625.
    [229] A. Angersbach,V. Heinz,D. Knorr,Effects of pulsed electric fields oncell membranes in real food systems [J].Innovative Food Science﹠EmergingTechnologies,2000,2(1):135–149.
    [230] S. Y. Ho,G. S. Mittal,J. D. Cross.Effects of High Field ElectricPulses on the Activity of Selected Enzymes[J].Journal of FoodEngineering,1997,(31):69.
    [231] Alexander A.,Volke H.,Dietrich K.Effects of pulsed electric fields oncell membranes in real food systems[J].Innov. Food Sci. Emerg.,2000,2(1):135–149.
    [232] Kimura S.,Miura S.,Park Y. H..Collagen as major edible componentof jellyfish (Stomolophus nomural)[J].Journal of Food Science,1983,48,1758–1760.4.
    [233] Sivakumar P.,Chandrakasan G..Occurrence of a novel collagen withthree distinct chains in the cranial cartilage of the squid Sepia officinalis:comparison with shark cartilage collagen[J].Biochimica et Biophysica Acta,1998,1381,161–169.
    [234]李小勇.猪肺中胶原蛋白的提取及理化特性研究[D].西南大学,2007.
    [235] Muyonga J.H.,Cole C.G.B.,Duodu K.G..Characterisation of acidsoluble collagen from skins of young and adult Nile perch (Latesniloticus)[J].Food Chemistry,2004,85,81–89.
    [236] Muyonga J.H.,Cole C.G.B.,Duodub K.G..Fourier transform infrared(FTIR) spectroscopic study of acid soluble collagen and gelatin from skinsand bones of young and adult Nile perch(Lates niloticus)[J].Food Chemistry,2004,86:325–332.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700