山茶蜂花粉多糖的分离纯化和免疫活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
山茶(Camellia japonica)属于山茶科山茶属植物,根和花可入药。山茶蜂花粉是一种营养丰富的物质,具有很好的保健作用。目前,山茶蜂花粉多糖的研究主要集中在活性上,对山茶蜂花粉多糖分离纯化上的研究尚未见报道。本论文主要研究了山茶蜂花粉多糖的分离纯化及免疫活性。
     山茶蜂花粉经过热水煮提,过滤,浓缩,乙醇沉淀,获得山茶蜂花粉总多糖(WCPP),经分析得到山茶蜂花粉多糖的单糖组成为:2.5% Man、7.8% Rha、3.0% GlcA、37.0% GalA、12.5% Glc、15.1% Gal和22.1% Ara,并通过凝胶柱对其进行检测,发现分子量分布不均一。
     本论文采用两种方法对WCPP进行分级:
     第一,采用乙醇沉淀的方法对WCPP进行分级,分别用30%、50%、70%和80%乙醇对WCPP进行沉淀,获得四个级份WCPP-30、WCPP-50、WCPP-70和WCPP-80。单糖组成分析表明:WCPP-30含有4.3% Man、7.4% Rha、45.4% GalA、10.6% Glc、10.3% Gal、2.1% Xyl和20.2% Ara;WCPP-50含有2.0% Man、9.1% Rha、42.7% GalA、8.8% Glc、11.5% Gal、2.0% Xyl和23.9% Ara;WCPP-70含有2.1% Man、8.7% Rha、1.9% GlcA、15.5% GalA、16.3% Glc、20.6% Gal、1.5% Xyl和33.5% Ara;WCPP-80含有6.3% Man,4.7% Rha、4.8% GalA、42.6% Glc、12.2% Gal和29.4% Ara。采用凝胶柱层析方法对四个级份进行了均一性鉴定,发现其分子量分布范围较宽,不易根据分子量进一步分级。
     第二,采用离子交换柱层析方法对WCPP进行分级,分别用水、0.1 mol/l NaCl、0.3 mol/l NaCl和0.5 mol/l NaCl进行洗脱,获得四个级份:WCPP-N、WCPP-1、WCPP-2和WCPP-3。对四个级份进行单糖组成分析得到:WCPP-N含有4.1% Man、1.0% Rha、69.0% Glc、13.4% Gal和12.7% Ara;WCPP-1含有5.4% Man、4.3% Rha、2.5% GlcA、45.0% GalA、22.7% Gal、18.0% Ara和2.0% Glc;WCPP-2含有1.0% Man、9.5% Rha、1.9% GlcA、30.2% GalA、1.9% Glc、19.3% Gal和36.5% Ara;WCPP-3含有2.1% Man、18.8% Rha、1.1% GlcA、33.2% GalA、17.9% Glc、19.1% Gal和23.9% Ara。凝胶柱层析检测发现四个级份分子量分布比较广泛。WCPP-1和WCPP-3含量比较低,未对其进行分离纯化,主要对WCPP-N和WCPP-2进行了进一步纯化。
     采用Sephadex G-100凝胶柱层析方法对WCPP-N进行分离纯化,获得WCPP-N-Ⅰ和WCPP-N-Ⅱ两个级份。经检测发现,WCPP-N-Ⅱ的分子量均一性比WCPP-N-Ⅰ好,因此对WCPP-N-Ⅱ进行了结构分析,核磁结果显示,这个级分的主链由α-1,4-Glucan,侧链由α-1,6-Glucan构成,具有支链淀粉样结构。
     采用Sepharose Cl-6B凝胶柱层析方法对WCPP-2进行纯化,得到WCPP-2-Ⅰ、WCPP-2-Ⅱ、WCPP-2-ⅡⅠ、WCPP-2-ⅠV和WCPP-2-V。经检测发现,WCPP-2-Ⅰ比较均一,其他四个级份不均一。因此对WCPP-2-Ⅰ进行了结构分析,核磁结果显示,WCPP-2-Ⅰ可能含有α-1,2-Rha或α-1,2,4-Rha与α-1,4-GalA交替形成的主链,Rha的4位带有侧链分支,侧链主要为α-1,5-Ara形成的阿拉伯聚糖,还有少量β-1,4-Gal形成的半乳聚糖。
     通过体内和体外巨噬细胞吞噬实验可知,山茶蜂花粉WCPP-3级份可以促进机体的巨噬细胞吞噬,但是这种促进作用并不是直接作用在细胞上,可能通过作用于其他细胞,产生相应的细胞因子,最终促进了巨噬细胞的吞噬功能。
Camellia japonica belongs to the Camellia of Theaceae. Camellia japonica bee pollen is well known as a natural nutrition and health food. The research about polysaccharides of camellia japonica bee pollen is rare and mainly focuses on their biological activity, while the study about isolation and purification of polysaccharides from camellia japonica is very rare. In this paper, we reported the isolation and purification of camellia japonica pollen polysaccharides and immunological activity.
     Camellia japonica pollen polysaccharides (WCPP) was extracted with hot water,filtered, consentrated and precipitated with 80% ethanol. The monosaccharide composition of WCPP is 2.5% Man, 7.8% Rha, 3.0% GlcA, 37.0% GalA, 12.5% Glc, 15.1% Gal和22.1% Ara. The molecular weight distribution of WCPP was very wide and heterogeneous.
     Two methods were adopted in this paper to fractionate WCPP.
     First, stepwise ethanol precipitation (30%, 50%, 70% and 80%) was performed to fractionate WCPP and four fractions WCPP-30, WCPP-50, WCPP-70 and WCPP-80 were obtained. Monosaccharide composition analysis indicated that WCPP-30 was composed of 4.3% Man, 7.4% Rha, 45.4% GalA, 0.6% Glc, 10.3% Gal, 2.1% Xyl and 20.2% Ara; WCPP-50 was composed of 2.0% Man, 9.1% Rha, 42.7% GalA, 8.8% Glc, 11.5% Gal, 2.0% Xyl and 23.9% Ara; WCPP-70 was composed of 2.1% Man, 8.7% Rha, 1.9% GlcA, 15.5% GalA, 16.3% Glc, 20.6% Gal, 1.5% Xyl and 33.5% Ara; WCPP-80 was composed of 6.3% Man, 4.7% Rha, 4.8% GalA, 42.6% Glc, 12.2% Gal and 29.4% Ara. Gel permeation chromatography results implied that the molecular weight distributions of the four fractions were very wide and heterogeneous, so this method was not suitable for fractionation of WCPP.
     Next, anion-exchange chromatography was performed and eluted with H2O, 0.1 mol/l NaCl, 0.3 mol/l NaCl and 0.5 mol/l NaCl. Four fractions WCPP-N, WCPP-1, WCPP-2 and WCPP-3 were obtained. Monosaccharide composition analysis indicated that WCPP-N was composed of 4.1% Man, 1.0% Rha, 69.0% Glc, 13.4% Gal and 12.7% Ara; WCPP-1 was composed of 5.4% Man, 4.3% Rha, 2.5% GlcA, 45.0% GalA, 22.7% Gal, 18.0% Ara and 2.0% Glc; WCPP-2 was composed of 1.0% Man, 9.5% Rha, 1.9% GlcA, 30.2% GalA, 1.9% Glc, 19.3% Gal and 36.5% Ara; WCPP-3 was composed of 2.1% Man, 18.8% Rha, 1.1% GlcA, 33.2% GalA, 17.9% Glc, 19.1% Gal and 23.9% Ara. Gel permeation chromatography results implied that the molecular weight distributions of the four fractions were heterogeneous. In this paper, WCPP- 1 and WCPP-3 have a little content, WCPP-N and WCPP-2 were further purified mainly.
     WCPP-N was separated by Sephadex G-100 and two fractions WCPP-N-I and WCPP-N-II were obtained. WCPP-N-II was homogeneous and NMR results indicated that it containedα-1,4-Glucan as the main chain, andα-1,6-Glucan as side chains. So WCPP-N-II had an amylopectin structure. WCPP-2 was separated by Sepharose CL-6B and five fractions WCPP-2-I, WCPP-2-II, WCPP-2-III, WCPP-2-IV and WCPP-2-V were obtained. Among these fractions, WCPP-2-I was homogeneous and NMR results indicated that the main chain containedα-1,2-Rha andα-1,4-GalA repeating units, and the side chains ofα-1,5-Arabinan and minorβ-1,4-Galactan were linked to the C-4 of Rha. So WCPP-2-I was a RG-I type pectin.
     WCPP-3 could promote macrophage phagocytosis in vivo, but not in vitro. This result implied that WCPP-3 did not act directely on macrophages. It might work via stimulating other cells to produce cell factors which affected macrophage phagocytosis.
引文
[1]陶遵威,郑夺,邸明磊,等.植物多糖的研究进展[J].药物评价研究.2010(02): 148-152.
    [2]何余堂,潘孝明.植物多糖的结构与活性研究进展[J].食品科学.2010(17): 493-496.
    [3]张桂征,张雨丽,苏红梅,等.桑叶多糖提取方法的研究进展[J].广西农业科学. 2010(04): 357-359.
    [4]Chattopadhyay N, Nosál'OváG, Saha S, et al.Structural features and antitussive activity of water extracted polysaccharide from Adhatoda vasica[J]. Carbohydrate Polymers. 2011,83(4):1970-1974.
    [5]Lai F, Wen Q, Li L, et al. Antioxidant activities of water-soluble polysaccharide extracted from mung bean (Vigna radiata L.) hull with ultrasonic assisted treatment[J]. Carbohydrate Polymers. 2010, 81(2): 323-329.
    [6]Zhang Y j, Zhang L x, Yang J f, et al.Structure analysis of water-soluble polysaccharide CPPS3 isolated from Codonopsis pilosula[J]. Fitoterapia. 2010, 81(3): 157-161.
    [7]张梦娟,徐怀德,牛素哲,等.天麻多糖水提取工艺优化研究[J].食品工业科技. 2006(11): 119-121.
    [8]高丽君,王汉忠,崔建华,等.白首乌可溶性多糖提取工艺研究[J].食品科学. 2004(10): 178-180.
    [9]邓泽元,刘娟,余迎利,等.决明子水溶性多糖提取的研究[J].食品科学. 2002(01): 72-75.
    [10]endahou A, Dufresne A, Kaddami H, et al. Isolation and structural characterization of hemicelluloses from palm of Phoenix dactylifera L[J]. Carbohydrate Polymers. 2007, 68(3): 601-608.
    [11]Chattopadhyay K, Mandal P, Lerouge P, et al.Sulphated polysaccharides from Indian samples of Enteromorpha compressa (Ulvales, Chlorophyta): Isolation and structural features[J]. Food Chemistry. 2007, 104(3): 928-935.
    [12]Le Goff A, Renard C M G C, Bonnin E, et al.Extraction, purification and chemical characterisation of xylogalacturonans from pea hulls[J]. Carbohydrate Polymers. 2001, 45(4): 325-334.
    [13]Maiti D, Chandra K, Mondal S, et al. Isolation and characterization of a heteroglycan from the fruits of Astraeus hygrometricus[J]. Carbohydrate Research. 2008, 343(4): 817-824.
    [14]付娟妮,刘兴华,蔡福带,等.真姬菇菌丝体多糖碱提取工艺优化[J].农业机械学报. 2008(06): 98-101+93.
    [15]刘贝贝,李小定,谭正林,等.菜籽饼粕中多糖的酸提取工艺优化[J].农业工程学报. 2006(11):213-216.
    [16]陈学伟,马书林.酶法提取黄芪多糖的研究[J].上海中医药杂志.2005(01): 56-58.
    [17]刘伟,徐雅琴.果胶酶法提取黑穗醋栗果实中多糖工艺的研究[J].农产品加工(学刊). 2009(09): 27-28+43.
    [18]闫巧娟,韩鲁佳,江正强.纤维素酶法提取黄芪多糖[J].中草药.2005(12): 1804-1807.
    [19]包怡红,秦蕾.超声波辅助提取沙棘叶多糖的工艺条件及抑菌、毒理性研究.2009.中国北京.
    [20]樊亚鸣,罗月霞,陈永亨,等.春砂仁多糖的微波-水溶液提取及纯化工艺研究[J].农业工程学报. 2007(07): 218-221.
    [21]廖建民,张瑾,沈子龙.超声波法提取海带多糖的研究[J].药物生物技术.2002(03): 157-160.
    [22]吕帮玉,徐东生,田春元,等.超声波法提取黄芪多糖的工艺研究[J].中国饲料.2009(09): 37-39.
    [23]吴广枫,张拥军,汤坚.超声波用于芦荟多糖提取的研究[J].食品科技.2001(06): 23-24.
    [24]薛芳,颜瑞,王承明.超声辅助碱提取花生多糖的研究[J].食品科学.2008(08): 158-163.
    [25] Zhang X, Yu L, Bi H, et al.Total fractionation and characterization of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer[J]. Carbohydrate Polymers. 2009, 77(3): 544-552.
    [26]高丽君,王建华,崔建华,等.白首乌多糖-1a的免疫调节作用研究[J].中国中药杂志. 2005(17): 1352-1355.
    [27]李江滨,侯敢.翡翠贻贝多糖免疫调节作用研究[J].食品研究与开发.2009(05): 3-5.
    [28]吕小华,王会敏,韩红霞,等.猫爪草多糖免疫调节及抗氧化活性研究[J].中国中药杂志. 2010(14): 1862-1865.
    [29]单铁英,关华,苏安英,等.枸杞多糖对人外周血淋巴细胞免疫调节功能的影响[J].实用医学杂志. 2010(03): 361-363.
    [30]安晓丽,赵敏,董露璐,等.斜生褐孔菌多糖诱导人肝癌HepG-2细胞凋亡的研究[J].菌物学报. 2009(06): 819-824.
    [31]蔡寅,刘敏,吴勋贵,等.苦瓜多糖抗肿瘤及免疫增强活性的研究[J].药学与临床研究. 2010(02): 131-134.
    [32]王培胜,刘宪丽,刘东颖,等.刺松藻多糖对肝癌Hca-F荷瘤小鼠的抑瘤作用[J].中国海洋药物. 2010(05): 40-43.
    [33]余杰,陈美珍,许肇成,等.海萝多糖对肝癌H_(22)荷瘤小鼠的抑瘤作用研究[J].中国海洋药物. 2009(05): 40-43.
    [34]蔡文娥,张志伟,王乃平,等.玉郎伞多糖对肉瘤荷瘤小鼠的体内抗肿瘤作用[J].中国新药与临床杂志. 2010(02): 119-122.
    [35]郜玉钢,于文影,李然,等.鹿角盘多糖抗病毒的研究[J].安徽农业科学.2010(22): 11857-11858.
    [36]刘玥.硒化麒麟菜多糖的抗肿瘤和抗病毒研究[D]:[硕士学位论文].暨南大学,2008.
    [37]马忠兵.刺参粘多糖抗病毒作用的初步研究[D]:[硕士学位论文].青岛大学,2006.
    [38]门晓媛,王一飞,郑文杰,等.纳米硒化裙带菜多糖的制备及其体外抗CVB_3病毒作用研究[J].中国卫生检验杂志. 2005(10): 1153-1155.
    [39]王长云,管华诗.多糖抗病毒作用研究进展Ⅰ.多糖抗病毒作用[J].生物工程进展. 2000(01): 17-20.
    [40]于敬沂.几种海藻多糖的提取及其抗氧化、抗病毒(TMV)活性研究[D]:[硕士学位论文].福建农林大学,2005.
    [41]Li F, Shi Y, Guan X, et al. A study on antivirus effect of polysaccharides of brewer yeast in vitro[J]. Zhongguo Zhongyao Zazhi. 1998, 23(3): 171-173.
    [42]Tian G Y, Li S T, Song M L, et al. Synthesis of Achyranthes bidentata polysaccharide sulfate and its antivirus activity[J]. Acta Pharmaceutica Sinica. 1995, 30(2): 107-111.
    [43]陈旭健,张原琪.红菇多糖的提取及其降血糖、血脂作用研究[J].食品科学. 2010(09): 255-258.
    [44]刘丽平.紫球藻及其胞外多糖降血糖和提高免疫活性的研究[D]:[硕士学位论文].福建师范大学,2005.
    [45]孙世利,苗爱清,潘顺顺,等.茶多糖的降血糖作用机理研究进展[J].茶叶通讯. 2010(01): 34-36+43.
    [46]夏秀华.银杏叶多糖的分离纯化和降血糖功效研究[D]:[硕士学位论文].江南大学,2006.
    [47]黄智璇,欧阳蒲月.灵芝多糖降血糖作用的研究[J].食用菌.2009(01): 60-61.
    [48]朱明磊,唐微,官守涛.山药多糖对糖尿病小鼠降血糖作用的实验研究[J].现代预防医学. 2010(08): 1524+1527.
    [49]明建,曾凯芳,赵国华,等.羊肚菌水溶性多糖PMEP-1降血脂作用研究[J].食品科学. 2009(17): 285-288.
    [50]王晓燕.黑加仑多糖抗氧化及降血脂实验研究[D]:[硕士学位论文].新疆医科大学,2009.
    [51]周慧萍,蒋巡天,王淑如,等.浒苔多糖的降血脂及其对SOD活力和LPO含量的影响[J].生物化学杂志. 1995(02).
    [52]Kwak Y S, Kyung J S, Kim J S, et al. Anti-hyperlipidemic effects of red ginseng acidic polysaccharide from Korean red ginseng[J].Biological and Pharmaceutical Bulletin. 2010, 33(3): 468-472.
    [53]陈立,董俊兴.多糖抗辐射作用研究进展[J].癌变.畸变.突变.2004(06): 380-382.
    [54]陈寅生,李武营.茜草中多糖成分的提取分离与抗辐射作用的实验研究[J].河南大学学报(医学科学版). 2004(01): 32-34.
    [55]田生礼,邴文贵,李健超,人参多糖对X射线照射小鼠骨髓细胞染色体畸变和造血干、祖细胞的影响[J].白求恩医科大学学报. 1992(03): 230-232.
    [56]田生礼,赵勇,李健超,等.人参多糖对X射线照射小鼠免疫功能的影响[J].辐射研究与辐射工艺学报. 1992(03): 160-164.
    [57]赵先英,刘毅敏,赵华文.多糖抗辐射作用研究进展[J].西南国防医药. 2007(02): 253-254.
    [58]李德远,徐战,王海滨,等.海带岩藻糖胶及褐藻胶抗辐射效应研究[J].武汉食品工业学院学报. 1999(02).
    [59]孙元琳,蔺毅峰,高文庚,等.当归多糖抗辐射功能的构效关系探讨[J].中国食品学报. 2009(03): 33-37.
    [60]马佩佩,王洪新,童军茂.库尔勒香梨多糖的分离纯化及抗氧化性质的研究[J].食品研究与开发. 2010(06): 53-55.
    [61]史亚丽,杨立红,蔡德华,等.杏鲍菇多糖对力竭小鼠抗氧化、抗损伤的作用[J].体育学刊. 2005(01): 56-58.
    [62]吐尔干乃义·吐尔逊,热衣木·马木提,阿不都拉·阿巴斯.中国树花中地衣多糖的抗氧化活性研究[J].食品与发酵工业. 2009(11): 119-121.
    [63]张强,宫璐婵,孟凡荣,等.双孢菇多糖抗氧化活性的研究[J].中国林副特产. 2010(01): 16-19.
    [64]郑宝东,曾绍校.余甘多糖对小鼠的抗氧化作用[J].福建农业大学学报. 2004(01): 110-112.
    [65]王宗君,廖丹葵.茶树菇多糖抗氧化活性研究[J].食品研究与开发. 2010(01): 50-55.
    [66]刘婷,陈韩飞,赵文彬,等.紫草多糖的体外抗氧化活性研究[J].时珍国医国药. 2010(01): 97-99.
    [67]龚燕波,方崇波,邵青.海地瓜多糖的抗衰老生物活性研究[J].基层中药杂志. 2001(05): 17-18.
    [68]蒋万志,张洪泉.枸杞多糖在免疫和抗衰老方面的研究进展[J].中国野生植物资源. 2010(02): 5-7+14.
    [69]彭施萍,侯陈.茯苓多糖具有抗衰老作用,中国医药报. 2005:7.
    [70]郑媛,沈业寿.桑黄胞内多糖抗衰老作用的研究[J].中国食用菌. 2006(03): 38-41.
    [71]谢学渊,晁衍明,杜珍,等.天麻多糖的抗衰老作用[J].解放军药学学报. 2010(03): 206-209.
    [72]许彬,程清洲,陈平,等.竹节参多糖抗衰老作用研究[J].中国医院药学杂志. 2009(13): 1082-1085.
    [73]Lothar Brecker,Daniel Wicklein,Hermann Moll,et al.Structural and immunological properties of arabinogalactan polysaccharides from pollen of timothygrass (Phleum pratense L.)[J]. Carbohydrate RESEARCH. 2005(340): 657-663.
    [74]李道荣,李魁,段雪梅.蒲黄花粉多糖提取工艺研究[J].郑州工程学院学报.2002(23:55-57).
    [75]张国锋,刁其玉,屠焰.荷花蜂花粉多糖提取条件的研究[J].饲料工业.2009(30):4-7.
    [76]耿越,王开发.玉米蜂花粉多糖对小白鼠免疫功能影响[J].山东师大学报.1999(14):184-186.
    [77]杨晓萍,吴谋成.油菜蜂花粉多糖抗肿瘤作用的研究[J].营养学报.2006(28):160-162.
    [78]曾志将,汪礼国,饶波,等.蜂花粉多糖对大鼠降血脂效果研究[J].江西农业大学学报.2004(26):406-408.
    [79]杨群,曾志将,邬向东,等.蜜蜂花粉多糖抑菌效果的初步研究[J].江西农业学报. 2005, 17 (4) : 156-158.
    [80]刘伟.山茶蜂花粉多糖的提取及生物活性的研究[D]:[硕士学位论文].福建农林大学,2008.
    [81]刘伟,付中民,杨文超,等.山茶蜂花粉多糖对四氧嘧啶致小鼠糖尿病的降血糖作用研究[J].蜜蜂杂志,2009(2):4-5.
    [82]姚继霞.保健食品黄豆芽.山东食品科技,2000(1):36.
    [83]倪维华.人参多糖免疫活性及抗肿瘤作用[D]:[博士学位论文].东北师范大学,2010.
    [84]YAN J,VETV ICKA V,XIA Y, et al.Betar glucan,a"specific"biologic response modifier that uses antibodies to target tumors ofr cytotoxic recognition by leulocyte complement receptor type3(CD11b/CD18)[J].The Journal of Immunology, 1999,163:3045-3052.
    [85]齐春会,张永祥.枸杞多糖体外对正常及衰老小鼠免疫细胞功能的作用研究及作用机制的研究[J].中药免疫学杂志,1999,15(9):419-421.
    [86]李明春,霍林生,梁东升,等.灵芝多糖对小鼠巨噬细胞白介素1a和肿瘤坏死因子a mRNA表达的影响[J].中国药理学与毒理学杂志,2000,14(3):237-240.
    [87]王立生,潘令嘉,施理,等.双歧杆菌的全肽聚糖对裸鼠腹腔巨噬细胞产生IL-6、IL-12及一氧化氮的影响[J].中国病理生理杂志,2000,16(2):153-156.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700