大麦黄矮病毒GPV株系(BYDV-GPV)ORF4基因的原核表达及抗血清的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大麦黄矮病毒(Barley yellow dwarf virus, BYDV)是一种十分重
    要的禾谷类作物病毒。尽管有研究推测 BYDV 的 ORF4 与病毒在寄
    主体内的运动有关,但关于病毒在寄主体内的运转机制尚不了解。本
    研究首次对我国特有的BYDV-GPV株系的ORF4基因进行原核表达,
    并制备特异性的抗血清,成功用于 BYDV-GPV 侵染后燕麦体内表达
    的 17kDa 蛋白的检测,为进一步的研究奠定基础。
     根据已测定的 BYDV-GPV 的相关序列设计合成含有适宜酶切位
    点的相应引物,通过 RT-PCR 方法扩增出ORF4 基因片段并将其插入
    到 pGEM-T Easy 质粒中,获得了重组质粒pGEM-T-O4。对基因片段
    进行序列分析结果表明,ORF4 全长 456 个核苷酸,可编码 152 个氨
    基酸,分子量为 17kDa 的蛋白质。pGEM-T-O4 经 Nde I和 BamH I 双
    酶切后插入到质粒 pET-5a 中获得原核表达载体pET-O4。经 IPTG 诱
    导基因表达及 SDS-PAGE结果分析,与作为对照的(i)未经诱导的含有
    pET-O4 质粒的和(ii)诱导的含 pET-5a 质粒的 BL21(DE3)pLysS 相比,
    诱导后的 pET-O4 中的 ORF4 基因在大肠杆菌 BL21(DE3)pLysS 中得
    到了特异性的表达,诱导表达的蛋白质分子量大小约为 17kDa,与通
    过基因序列推导的大小一致。试验对不同浓度的 IPTG、以及不同时
    间诱导的蛋白表达水平进行了研究,结果显示,不同浓度的 IPTG 对
    蛋白的诱导表达影响不大,而不同诱导时间对蛋白的诱导表达量有一
    定的影响,8h 以前时间越长表达量越高,但 8h 以后表达量的增长不
    明显。
     将 ORF4基因编码的蛋白从聚丙烯酰胺凝胶上切下后,经圆盘电
    泳进行回收纯化。通过免疫家兔获得了 BYDV-GPV ORF4 基因非融
    合蛋白的特异性抗血清,用微量滴定法测定抗血清的效价为 1/2048。
    
    
    BYDV-GPV ORF4基因在 E.coli 中表达蛋白的 Western blot 检测结果
    表明,所制备的抗血清能与诱导的 pET-O4/BL21(DE3)pLysS 及作为
    阳性对照的 17kDa 蛋白发生特异性反应,而与阴性对照 pET-5a/
    BL21(DE3)pLysS 无特异性反应。BYDV-GPV 侵染燕麦后的 Western
    blot 分析结果表明,所获得的抗血清与接毒1d、2d、3d 和4d 的
    燕麦叶片中提取的蛋白样品均呈阳性反应,而与未接毒的燕麦叶片中
    提取的蛋白样品不产生任何阳性反应,并且随着接毒天数的增加反应
    呈增强趋势。
Barley yellow dwarf virus (BYDV) is one of the most
    economically important cereal viruses. Up to now, the mechanism of BYDV moving
    in vivo isn’t clear, although ORF4 gene of BYDV was proposed being related to virus
    movement in hosts. In this study, ORF4 gene of BYDV-GPV was cloned and
    expressed in Escherichia coli. The antiserum against protein expressed by BYDV-
    GPV ORF4 was raised and used in detection of the 17kDa protein of BYDV-GPV in
    infected oats.
     Fragment of ORF4 was amplified through RT-PCR after the primers been
    designed and synthesized according to the published nucleotide sequence. The
    fragment was inserted into pGEM-T Easy vector and the recombinant plasmid was
    obtained and named of pGEM-T-O4. Sequence analysis showed that ORF4 contains
    456 nucleotides that can code a protein of 152 amino acids with Mr about 17kDa.
    pET-O4, the prokaryotic expression plasmid (containing ORF4), was obtained by
    inserting the fragment, when it was recovered from pGEM-T-O4 by digested with
    Nde I and Bam HI, into pET-5a plasmid. After induced with IPTG, the proteins were
    analyzed via SDS-PAGE. 17kDa protein was expressed in BL21(DE3)pLysS which
    containing pET-O4 plasmid, compared with that of not induced pET-O4 and induced
    pET-5a. The expression results of pET-O4 induced with different concentration of
    IPTG or in different time course showed that the concentration of IPTG had no
    obvious effect on the induced expression, but there was a stronger expression along
    with the time increase before 8 hours.
     The antiserum with titer of 1:2048 was obtained from rabbit after injections with
     68
    
    
    purified 17kDa protein, which had a specific reaction with 17kDa protein, purified or
    induced in pET-O4/BL21(DE3)plysS. The antiserum was also used to detect the
    existence of 17kDa protein in oat after infected with BYDV-GPV. The result showed
    that the antiserum had a positive reaction with all of the samples of infected for 1 day,
    2 days 3 days and 4 days, and the reaction was stronger when time prolonged after
    infection.
引文
1. 常胜军. 大麦黄矮病毒 GAV 株系 ORF1-5 基因的克隆、测序及通读蛋白基因的表达,
     中国农业科学院博士学位论文.
    2. 陈定虎. 美洲商陆抗病毒蛋白基因克隆、表达和遗传转化研究,中国农业科学院博士
     学位论文.
    3. 陈撰桢,苗洪芹,吴和平,等. 河北省春麦区长小麦黄矮病的主要介体种群和病毒流行
     株系的研究,植物病毒与病毒病防治研究[M]. 中国农业科技出版社,1997,59-63.
    4. 成卓敏,郝麟惠,周广和.大麦黄矮病毒 GPV株系外壳蛋白基因在 E.coli 中的表达及抗
     血清制备[J]. 植物病理学报,1996,26(4):297~300.
    5. 成卓敏. 抗病毒转基因小麦研究进展[J]. 生物技术通报,1997,(4):11-13.
    6. 成卓敏,何小源,陈彩层,等. 大麦黄矮病毒外壳蛋白基因合成及用花粉管途径获得
     小麦转基因植株[J]. 自然科学进展--国家重点实验室通讯, 1993,3(6):560-564.
    7. 杜志强,周广和,王锡锋. 我国小麦黄矮病发展趋势及防治对策,中国植物保护研究
     进展[M]. 中国科学技术出版社, 1996,196-201.
    8. 刘太国. BYDV-GPV 株系正向串联体结构复制酶基因介导的转基因小麦研究,中国农
     业科学院博士学位论文.
    9. 刘玉乐,田波. 抗病毒基因工程的研究进展[J]. 中国病毒学,1993,8(1):7-15.
    10. 田苗英,吴茂森,陈彩层,等. 大麦黄矮病毒缺失复制酶基因植物表达载体的构建及
     转基因小麦的获得[J]. 中国农业科学,1999,32(5):49-54.
    11. 温孚江. 大麦黄矮病研究进展[J]. 山东农业科学,1993,(1):4-10.
    12. 吴茂森. 大麦黄矮病毒 GPV株系复制酶基因介导的抗病毒转基因小麦的研究, 中国农
     业科学院博士学位论文.
    13. 夏光敏,陈惠民,成卓敏,等. BYDV CP 基因转化小麦原生质体及转基因植株再生[J].
     山东大学学报(自然科学版),1996,31(3):357-360.
    14. 项瑜. 改造的马铃薯 Y 病毒复制酶基因介导高度抗性[J]. 生物工程学报,1996,12
     (3)258-265.
    15. 张成良. 植物病毒分类与命名[M]. 国家动植物检疫局, 1997.
    16. 张淑香,周广和. 一种由麦二叉蚜、禾缢管蚜非专化性传播的小麦黄矮病毒株系鉴定[J].
     植物病理学报,1987,17(2):102-105.
    17. 周广和,成卓敏,张向才,等. 麦类病毒病及其防治[M]. 上海科学技术出版社,1987.
    18. 周广和. 世界大麦黄矮病研究概况[J]. 世界农业,1989,( 7):36-38.
    19. Adam G. Structural differences between pea enation mosaic virus strains affecting
     transmissibility by Acyrthosiphon pisum[J]. Virology,1979,92(1):32-37.
     61
    
    
    20. Ayala-L,Ginkel-M-van,Khairallah-M,et al. Expression of Thinopyrum intermedium-derived
     Barley yellow dwarf virus resistance in elite bread wheat backgrounds [J].
     Phytopathology.2001,91(1) : 55-62.
    21. Ayala-L,Henry-M,Gonzalez-de-Leon-D,et al. A diagnostic molecular marker allowing the
     study of Th. intermedium-derived resistance to BYDV in bread wheat segregating
     populations[J]. Theoretical-and-Applied-Genetics,2001,102 (6-7):942-949.
    22. Bahner I. Expression of the genome of potato leafroll virus: readthrough of the coat protein
     termination codon in vivo[J]. J. Gen. Virol,1990,71:2251-2256.
    23. Baulcombe D. Replicase-mediated resistance: a novel type of virus resistance in transgenic
     plants[J]. Trents in Microbiology, 1994, 2(2):60-63.
    24. Baunoch A D,Das P ,Browning M E,et al. A temporal study of the expression of the
     capsid ,cytoplasmic inclusion and nuclear inclusion protein of tabacco etch potyvirus in
     infected plants[J]. J. Gen. Virol., 1991, 72:487-492.
    25. Burnett P A, Comeau A, Qualset C O. Host plant tolerance or resistance for control of barley
     yellow dwarf. In: Barley Yellow Dwarf : 40 Years of Progress. C. J. D'Arcy and P. Burnett,
     eds. The American Phytopathological Society[M]. St. Paul. MN., 1995:29-53.
    26. Carrington J C,kasschau K D,Mahajan S K,et al. Cell-to-cell and long-distant transport of
     viruses in plants[J]. Plant Cell,1996,8:1669-1681.
    27. Deom C M. Molecular characterization and biological function of the movement protein of
     tobacco mosaic virus in transgenic plants[J]. Proc. Natl. Acad. Sci. U.S.A. 1990,87:3284-
     3290
    28. Deom C M. Plant virus movement protein[J]. Cell,1992,69:221-226.
    29. Chay C A,Gunasinge U B,Dinesh-Kumer S P,et al. Aphid transmission and systemic plant
     infection determinants of barley yellow dwarf luteovirus-PAV are contained in the coat
     protein readthrough domain and 17-kda protein respectively[J]. Virology,1996a, 219:57-65.
    30. Chay C A,Smith D M,Vaughan R,et al. Diversity among isolates within the PAV serotype of
     yellow dwarf virus[J]. Phytopathology,1996b,86:370-377.
    31. Cheng M, Fry J E, Peng S, et al. Genetic transformation of wheat mediated by
     Agrobacterium tumefaciens[J]. Plant Physiol.,1997,115:971-980.
    32. Cheng Z, He X, Chen C, et al. Resistance to virus gene expression in transgenic wheat
     plants[J]. High Technology Letters, 1996, 2(2):103-106.
    33. Cheng Z, He X, Chen C, et al. Transgenic wheat plants resistant to barley yellow dwarf virus
     obtained by pollen tube pathway-mediated transformation. Chinene Agricultural Science--
     For the Compliments to the 40th Anniversary of the Chinese Academy of Agriculteral
     Sciences[M]. China Agricultural Scientech Press, 1997,98-108.
    34. Cheng Z, He X, Chen C, et al. Transgenic wheat plants resistant to barley yellow dwarf virus
     obtained by pollen tube pathway-mediated transformation. In: Agricultural Biotechnology:
     62
    
    
    Laboratory,Field and Market.----Proceedings of the 4th Asia-Pacific Conference on
     Agricultural Biotechnology. P. J. Larkin, ed. Darwin Australia, 1998,21-23.
    35. Dinesh-Kumar S P. Precise mapping and in vitro translation of a trifunctional subgenomic
     RNA of barley yellow dwarf virus[J]. Virology, 1992,187:711-717.
    36. Citovsky V,McLean B G,Zupan J R,et al. Phosphorylation of tobacco mosaic virus cell-to-
     cell movement protein by a developmentally regulated plant cell wall-associated protein
     kinase[J].Genes and Development, 1993,7:904-910.
    37. Conti M. The “Yellow plague” of cereals, barley yellow dwarf virus, in : World
     Perspectives on Barley yellow Dwarf[M]. P. A. Burnet, Ed., CIMMYT, Mexico D. F.
     1990:1-5.
    38. Cooper B,lapldot M,Heick J A,et al. A defective movement protein of TMV in transgenic
     plants confers resistance to multiple viruses whereas the functional analog increases
     susceptibility[J]. Virology, 1995,206:307-313.
    39. Edwards-MC,Fetch-TG Jr.,Schwarz-PB,et al. Effect of Barley yellow dwarf virus infection
     on yield and malting quality of barley[J]. Plant-Disease. 2001, 85(2):202-207.
    40. Golemboski D B, Lomonossoff G P, Zaitlin M. Plants transformed with a tobacco mosaic
     virus nonstructural gene sequence are resistant to the virus[J]. Proc. Natl. Acad. Sci. USA,
     1990, 87:6311-6315.
    41. Guilley H. Nucleotide sequence of cucurbit aphid-borne yellows luteovirus[J]. Virology,
     1994,202:1012-1018.
    42. Habili N,Symons R H. Evolutionary relationship between Luteoviruses and other RNA plant
     viruses based on sequence motifs in their putative RNA polymerases and nucleic acid
     helicases[J]. Nucleic Acids Res, 1989,17:9543-9548.
    43. Hull R. Movement of viruses in plants[J]. Annu. Rev. Phytopathol, 1989,27:213-218.
    44. Huth-W. Tolerance to BYDV: factors influencing reactions of plants on infections[J].
     Zeitschrift-fur-Pflanzenkrankheiten-und-Pflanzenschutz. 2000, 107(4):415-426.
    45. Jansen K A J,Wolfs C J A M,Lohuis H,et al. Characterization of the brome mosaic virus
     movement protein expressed in E.coli[J]. Virology, 1998,38:387-394.
    46. Jolly C A, Mayo M A. Changes in the amino acid sequence of the coat protein readthrough
     domain of potato leafroll luteovirus affect the formation of an epitope and aphid
     transmission[J]. Virology, 1994,201:182-189.
    47. Kamer G,Argos P. Primary structural comparison of RNA-dependent RNA polymerases
     from plant,animal and bacterial viruses[J]. Nucleic Acids Res. 1984,12:7269-7275.
    48. Koev G,Mohan B R,Dinesh-Kumar S P,et al. Extreme reduction of disease in oats
     transformed with the 5’ half of the barley yellow dwarf virus-PAV genome[J].
     Phytopathology, 1998, 88:1013-1019.
     63
    
    
    49. Koonin E V,Dolja V V. Evolution and taxonomy of positive-strand RNA viruses:
     implications of comparative analysis of amino acid sequences[J].Crit.Rev.Biochem.Mol.Biol.
     1993,28:375-380.
    50. Koonin E V. The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA
     viruses[J]. J. Gen. Virol. 1991,72:2197-2202.
    51. Lapidot M,Gafny R,Ding B,et al. A dysfunctional movement protein of tobacco mosaic virus
     that partially modifies the plasmodesmata and limits virus spread in transgenic plans[J]. Plant
     J. 1993,4:959-970.
    52. Leiser R M, Ziegler-Graff V, Reutenaur A, et al. Agroinfection as an alternative to insects for
     infecting plants with beet western yellows luteovirus[J]. Proc. Natl.Acad. Sci. U.S.A.
     1992,89:9136-9140
    53. Leiser R M, Ranieri R. Distribution and economic importance of barley yellow dwarf, in:
     Barley Yellow Dwarf: 40 Years of Progress[M]. C. J. D’Arcy and P. Burnett, eds. The
     American Phytopathological Society, St. Paul, MN. 1995, 29-53.
    54. Li Q ,alukaitis P F. Comparison of the nucleic acid- and NTP-binding properties of the
     movement protein of cucumber mosaic cucumovirus and tobacco mosaic
     tobamovirus[J].Virology, 1996,216:71-79
    55. Malyshenko S I, Kondakova O A,Nazarova J V,et al. Reduction of tobacco mosaic virus
     accumulation in transgenic plants producing nonfunctional viral transport
     proteins[J].J.Gen.Virol,1993,74:1149-1156.
    56. Martin R R. Evolution and molecular biology of luteoviruses[J]. Annu. Rev. Phytopathol,
     1990,28:341-349.
    57. Mayo M A,Ziegler-Graff V. Molecular biology of Luteoviruses[J]. Advances in Virus
     Reaserch 1996,46:413-418.
    58. Mayo M A,Barker H,Robinson D J,et al. Evident that potato leafroll virus RNA is positive-
     stranded,is linker to a small protein and does not contain
     polyadenylate[J].J.Gen.Virol,1982,59:163-168.
    59. McCarthy P L, Hanson J, Shiel P J, et al. Coat protein-mediated resistance to wheat streak
     mosaic and barley yellow dwarf viruses in soft white winter wheat[J]. Presented at Int. Congr.
     Virol., Jerusalem, 10th, 1996:184-190.
    60. McGrath P F. Coat protein-mediated resistance to isolates of barley yellow dwarf in oats and
     barley[J]. Eur. J. Plant Pathol. 1997,103:695-701.
    61. Miles-EJ,Bluett-DJ,Mann-DH,et al. The influence of seed rate on the efficacy of
     imidacloprid seed treatment against BYDV in winter cereals[J]. Seed-treatment:-challenges-
     and-opportunities.-Proceedings-of-an-international-Symposium,-Wishaw,-North-
     Warwickshire,-UK 2001, 47-52.
    62. Miller W A.Rasochova L Barley tallow dwarf viruses[J]. Annu. Rev. Phytopathol., 1997, 35:
     167-190.
     64
    
    
    63. Miller W A,Young M J. Prospects for genetically engineered resistance to barley yellow
     dwarf virus[J]. in: Barley Yellow Dwarf : 40 Years of Progress. (C. J. D’Arcy and P. A.
     Burnett. Eds.). APS Press. St. Paul. MN. 1995a,345-351.
    64. Miller W A. Luteovirus gene expression[J]. Crit. Rev. Plant Sci. 1995b,14:179-186.
    65. Miller W A. Sequence and identification of the barley yellow dwarf virus coat protein
     gene[J]. Virology, 1988b,165:306-311.
    66. Miller W A. Sequence and organization of barley yellow dwarf virus genomic RNA[J].
     Nucleic Acids Research, 1988a,16:6097-6102.
    67. Murphy J F,D’Arcy C J,Clark J M J. Barley yellow dwarf virus RNA has a 5’-terminal
     genomelinked protein[J].J.Gen.Virol., 1989,70:2253-2256.
    68. Nass-PH,Domier-LL,Jakstys-BP,et al. In situ localization of barley yellow dwarf virus-PAV
     17-kDa protein and nucleic acids in oats[J] . Phytopathology.,1998, 88(10):1031-1039.
    69. Nehra N S. Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues
     following mcroprojectile bombardment with two distinct gene constructs[J]. Plant Journal,
     1994, 5:285-297.
    70. Ortiz J P A, Reggiardo M I, Ravizzini R A, et al. Hygromycin resistance as an efficient
     selectable marker for wheat stable transformation[J]. Plant Cell Reports, 1996, 15:877-881.
    71. Oswald J W,Houston B R. A new virus disease of cereals, transmissible by aphid[J]. Plant
     Disease Reporter, 1951,35:471-475.
    72. Palucha A, Zagórski W, Chrzanowska M, et al. An antisense coat protein gene confers
     immunity to potato leafroll virus in a genetically engineered potato[J]. Eur. J. Plant Pathol.,
     1998, 104:287-293.
    73. Rathjen J P. Soybean dwarf luteovirus contains the third variant genome type in the
     luteovirus group[J].Virology,1994,198:571-578.
    74. Reutenauer A. Identification of beet western yellows Luteoviruses genes implicated in viral
     replication and partite morphogenesis[J]. Virology, 1993,105:692-697.
    75. Rizzo T M,Gray S M. Localization of a surface domain of the capsid protein of barley yellow
     dwarf virus[J]. Virology,1992,186:300-306.
    76. Rochow W F. Biological propertyes of four isolates of barley yellow dwarf virus[J].
     Phytopatholopy, 1969,59:1580-1589.
    77. Rochow W F,Muller I. A fifth variant of barley yellow dwarf virus in New York[J].Plant
     Dis.,1971,55:874-877.
    78. Schmitz J,Stussi-Garaud C,Tacke E,et al. In situ localization of the putative movement
     protein (pr17) from potato leafroll luteovirus(PLRV) in infected and transgenic potato
     plants[J].Virology,1997,235:311-322.
    79. Schoumacher F,Erny C,Berna A,et al. Nucleic acid binding properties of the alfalfa mosaic
     virus movement protein produced in yeast[J].Virology, 1992,188:896-899.
     65
    
    
    80. Silver S L. Replication of barley yellow dwarf virus satellite RNA transcripts in oat
     protoplasts[J]. Virology, 1994,198:331-338.
    81. Smith O P,Harris K F. Potato leafroll virus 3’genome organization: Sequence of the coat
     protein gene and identification of a viral subgenomic RNA[J]. Phytopathology, 1990,80:609-
     615.
    82. Sokolova M,Prufer D,Tacke E,et al. The potato leafroll virus 17K movement protein is
     phosphrylated by a membrane-associated protein kinase from potato with biochemical
     features of protein kinase C[J].FEBS Letters, 1997,2:201-205.
    83. Tacke E,Prufer D,Salamini F,et al. Characterization of a potato leafroll luteovirus
     subgenomic RNA:differential expression by internal translation initiation and UAG
     suppression[J].Journal of General Virology, 1990,71:2265-2272.
    84. Tacke E. The potato leafroll luteovirus 17K is a single-stranded nucleic acid-binding
     protein[J]. J. Gen. Virol,1991,72:2035-3042.
    85. Tacke E. Mutational analysis of the nucleic acid-binding 17kDa phosphoprotein of potato
     leafroll luteovirus identifies an amphipathic α-helix as the domain for protein/protein
     interactions[J]. Virology, 1993,197:274-279.
    86. Ueng P P. Nuecleotide sequence analysis of the genomes of the MAV-PS1 and P-PAV
     isolates of barley yellow dwarf virus[J]. J. Gen. Virol, 1992,73:487-493.
    87. Van der Wilk. Transgenic potato plants expressing PLRV ORF1[J]. IXth. Int. Congr. Virol.,
     Glasgow, 1993,64-65.
    88. Veidt I. Nucleotide sequence of beet western yellows virus RNA[J]. Nucleic Acids
     Research ,1988,16:9917-9919.
    89. Veidt I. Synthesis of full-length transcripts of beet western yellows virus RNA: messenger
     properties and biological activity in protoplasts[J]. Viology, 1992,186:192-198.
    90. Vincent J R. Nucleotide sequence analysis and genomic organization of the NY-RPV isolate
     of barley yellow dwarf virus[J]. J. Gen. Virol. 1991,72:2347-2354.
    91. Wang G-L, Song W-Y, Ruan D-L, et al. The cloned gene, Xa21, confers resistance to
     multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants[J]. Mol. Plant-Microbe
     Interact., 1996, 9:850-855.
    92. Wang-MB,Cheng-Z,Keese-P,et al. Comparison of the coat protein, movement protein and
     RNA polymerase gene sequences of Australian, Chinese, and American isolates of barley
     yellow dwarf virus transmitted by Rhopalosiphum padi[J]. Archives-of-Virology. 1998, 143
     (5) : 1005-1010
    93. Waterhouse P M. BYDV-PAV virions contain readthrough protein[J]. Phytopathology
     (Abstr.) 1989,79:1215.
    94. Whitham S, McCormick S, Baker B. The N gene of tobacco confers resistance to tobacco
     mosaic virus in transgenic tomato[J]. Proc. Natl. Acad. Sci. USA., 1996, 93:8776-8781.
     66
    
    
    95. Wisniewski L A,Powell P A,Nelson R S,et al. Lacal and systemic spread of tobacco mosaic
     virus in transgenic tobacco[J].Plant Cell,1990,2:559-567.
    96. Xia Guang-Min, Li Zhong Yi, He Chen-Xia, et al. Transgenic plants regeneration from
     wheat (Triticum aestivus L.) mediated by Agrobacterium tumefaciens[J]. Acta
     Phytophysiologica Sinica ,1999,25(1):22-28.
    97. Young M J. Infections in vitro transcripts from a cloned cDNA of barley yellow dwarf
     virus[J]. Virology,1991,180: 372-377.
    98. Zambryski P, Joos H, Genetello C, et al. Ti plamid vector for the introduction of DNA into
     plant cells without alteration of their normal regeneration capacity[J]. EMBO J. 1983,2:2143-
     2150.
    99. Zhang W,Wu R. Efficient regeneration of transgenic plants from rice protoplasts and
     correctly regulated expression of the foreign gene in the plants[J]. Theor. Appl. Genet, 1988,
     76:835-840.
    100. Zhou Guang-he, Qian You-ting, Cheng Zhuo-min, et al. A Cereal Germplasm, "Zhong 4" for
     resistance to barley yellow dwarf virus in China. in: World Perspective on Barley Yellow
     Dwarf[M]. Burnett,P. A. eds., CIMMYT, Mexico, D. F., Mexico, 1990,394-395.
    101. Ziegler-Graff V,Guilford P J,Baulcombe D C.Tobacco rattle virus RNA129K gene product
     potentates viral movement and also affects symptom induction intobacco[J]. Virology,
     1991,182:145-155.
    102. Ziegler-Graff V,Brault V,Mutterer D,et al. The coat protein of beet western yellows
     luteovirus is essential for systemic infection but the viral gene products P29 and P19 are
     dispensable for systemic infection and aphid transmission[J].Molecular plant-Microbe
     Interactions ,1996,9:501-510.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700