基于PWM整流器和异步电机直接转矩控制的交流变频动态电力测功机的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
测功机是电机性能测试台、机械传动测试台、以及发动机性能测试台等试验装置中的核心设备。常用的有电涡流测功机、磁滞测功机、机械测功机、水力测功机等,均是将测试中所产生的能量转化为热能而消耗掉,不仅造成能量浪费,而且还需配置散热设备。本论文在系统阐述各种类型测功机的基本原理和特点的基础上,基于PWM整流技术和异步电机直接转矩控制技术提出了一种新型交流变频动态电力测功机的构成方案,它不仅能将测试中所产生的能量回馈给电网,而且还可用作测功电动机,这是其它型测功机所不具备的。该测功机电机采用交流鼠笼三相异步电机,其结构简单,性能可靠,克服了直流电力测功机存在换向器所带来的低可靠性、噪声等问题。该测功机的变频控制主电路为“交—直—交”结构,为实现高功率因数、能量双向流动和高的动静态性能,采用三相PWM整流控制策略作为前级“交—直”转换控制;对后级的“直—交”采用具有高转矩动态响应性能的直接转矩控制策略来控制,把三相PWM整流技术和异步电机的直接转矩有机结合用于测功机具有较大的工程实用价值。
     本文建立了电压型三相PWM整流器的数学模型,采用直流电流控制技术,设计了电压电流双闭环控制的控制器,在dq坐标系下引入了电流状态反馈,同时用电网电压对其进行前馈补偿,实现了对电流的解耦。解耦后电流变成了独立的dq直流分量,不仅在稳态时能够精确地跟踪电流指令,实现无静差,而且动态响应速度快。
     采用空间电压矢量定向的PWM整流控制策略,提出了一种便于实现空间电压矢量定向的数字化算法,大大简化了计算。仿真和实验结果说明该控制策略下的三相PWM整流器,其电压和电流都具有良好的响应性能,电流畸变程度小,电压稳定,不仅能实现单位功率因数的PWM整流,而且可实现单位功率因数的能量反向流动。
     从异步电机的数学模型出发,深入研究分析了直接转矩控制磁链控制和转矩控制原理,提出了一种较合理的直接转矩控制电压矢量开关状态表。对不同磁链模型下的直接转矩控制进行对比研究,提出了一种适合全速度范围的定子磁链观测u-i-n数字化模型,较好的改善了直接转矩控制系统的性能。
     针对常规直接转矩控制系统在低速运行时转矩脉动比较大和电流畸变厉害的问题,在传统直接转矩控制的基础上,提出了一种转矩预测控制策略,预测下一个控制周期所需要的转矩,根据其转矩分配下一个控制周期的电压空间矢量作用时间。实验结果表明该控制策略没有增加系统的复杂程度,在低速时能够在很大程度上减小转矩的脉动,且没有改变传统直接转矩控制良好的动静态性能。
     针对传统直接转矩控制Bang-Bang控制器的不足,本文把模糊算法用于直接转矩控制,提出一种全速度模糊模型直接转矩控制策略,用模糊控制器来优化开关表的选择,实验结果表明该方法动态性能好,能在全速度范围内有效地减小转矩脉动,在低速运行时效果更明显,为改善异步电机的直接转矩控制性能,提供个一种切实可行的智能控制方法。
The dynamometer is core equipment of motor performance test station, mechanical drive test station and engine performance test station. The typical dynamometers including hysteretic dynamometer, eddy current dynamometer, mechanic dynamometer and waterpower dynamometer transfer generating energy into heat energy, so not only waste energy but also need some equipment to dispel heat energy. A type of novel AC VF dynamic power dynamometer project is presented based on PWM rectifier and direct torque control (DTC) of induction machine in this dissertation, on the basis of systemic expatiation the basic theory and characteristic of all kinds of dynamometers. The dynamometer not only can feed back generating energy to AC mains, but also can run in electro motion state, the others have no this function. A squirrel cage induction machine is used as its dynamo eclectic machine of testing power because of its simple construction and high reliability, which resolves lower reliability and noise of direct current power dynamometer on account of commutator. The variable-frequency main circuit of the dynamometer is AC-DC-AC configuration. In order to realize high power factor, bi-directional power flow and better dynamic and static performance, it adopts three-phase PWM technology for AC-DC conversion control and direct torque control of induction machine for DC-AC conversion control. This dynamometer that uses PWM rectifier and DTC possess biggish practicality value.The dissertation sets up the mathematical model of voltage source three-phase PWM rectifier, adopts direct current control technology, and designs the controller which consists of voltage and current double closed loop control. The controller inducts current state feedback and carries through forward compensation with AC main voltage to dismiss current coupling in dq coordinate. The dismissed-coupling current becomes separate dq current component, it can accurately track the current without static error in steady state, but also has quickly dynamic respond performance.Adopting voltage-oriented control (VOC) PWM commute control strategy, the dissertation puts forward an easy digital arithmetic to realize VOC, so calculation is reduced greatly. The simulated and experimental results show that the voltage and current of the three-phase PWM rectifier have better respond preference, the current aberrance is smaller and the voltage is steady under this control strategy. The PWM rectifier can implement PWM commute with unity power factor, but also feed back the energy to AC mains with unity power factor.Based the mathematics model of induction machine, the dissertation deeply analyzes flux linkage and torque control theory of DTC and presents a reasonable voltage- vector switch table. After studying on all kinds of flux observation model of DTC, the dissertation put forwards a type of full speed range stator flux observation u-i-n digital model, to improve the performance of DTC.The large torque ripple exists in induction machine based on conventional DTC, especially at a low speed. On the basis of traditional DTC, the dissertation presents a torque prediction strategy. Torque of the next control period is predicted by the proposed equation, and operational time of voltage space-vector in the corresponding
    period is determined based on the predicted torque as well. The experimental results show that the proposed strategy can quickly converge on the given torque and decrease the torque ripple effectively, and also keep a better dynamic performance as the conventional DTC.In order to overcome the weakness of Bang-Bang controller in conventional DTC, the fuzzy logic idea is adopted in the dissertation. The dissertation presents a full-speed fuzzy model DTC strategy, adopt fuzzy controller to optimize select of the voltage vector. The experimental results show that the torque response is improved, and torque ripple is effectively decreased in full-speed range, especially at a low speed, The system has a better dynamic and static performance. The dissertation provides a feasible intel
引文
[1] 严兆大.内燃机测试技术.杭州:浙江大学出版社,1993.
    [2] 叶剑凯,周光天,黄伟国等.水力测功机群供水新系统试验.柴油机,2001(2):14-16,31.
    [3] Aghili F, Buehler M, Hollerbach J. M. Motion Control Systems with H~∞ Positive Joint Torque Feedback. IEEE Transactions on Control Systems Technology, 2001, 9(5): 685-695.
    [4] 潘清水.柴油发动机动态性能试验.筑路机械与施工机械化,2003,20(4):12-13.
    [5] 陈家起.水力测功机测力装置的误差分析及其改进.武汉工学院学报.1989(1):87-94.
    [6] 王宏伟,刘清华.电涡流测功机扭矩波动原理浅析.机械产品与科技.2001(1):46-48.
    [7] 周超,卢青春,金振华.基于PC/104的电涡流测功机控制系统的开发.车用发动机.2003(1):27-29,31.
    [8] Junzhi Zhang, Qingchun Lu. Study on the engine dynamic test bed. IEEE Vehicle Electronics Conference (IVEC'99) Proceedings, 1999, 1: 406-409.
    [9] Bunker B. J, Franchek M. A. Thomason B. E. Robust multivariable control of an engine-dynamometer system. IEEE Transactions on Control Systems Technology, 1997, 5(2): 189-199.
    [10] 袁先达.小功率测功机国内外现状及发展趋势.电动工具.1997(3):9-13.
    [11] 严隽琪,沈军营.基于WWW的磁粉制动器CAD系统.机械科学与技术(西安),2000,19(3):463-465.
    [12] Sinha N, Laskar S. H, Goyal K, etl. Design of a microprocessor based novel braking of three phase induction motor. International Energy Management and Power Delivery Conference(EMPD '95), 1995, 2: 620-623.
    [13] 胡培钧.小型电动机转矩测试台的研制.浙江丝绸工学院学报,1996,13(4):25-28.
    [14] 麦俊杰.电机转矩、转速模糊控制器.浙江大学硕士学位论文,2003年3月.
    [15] 余苏胜,麦俊杰,黄进.基于磁滞测功机的异步电机T-n曲线自动测试方法.中小型电机,2001,28(1):48-52.
    [16] 袁先达.ZC数字式磁滞测功机系列的设计与制造.电机技术,1995(4):41-44.
    [17] 黄凯,袁先达.小功率同步电动机的同步牵入时间及牵出转矩检测系统.微特电机,1998,26(2):35-37.
    [18] 蒋强,张光辉.基于计算机的电力测功机自动测控系统.机械,2002,29(5):51-53,55.
    [19] 孙玉德,沈立柱.直流电力测功机特性及工作稳定性分析.小型内燃机,1994,23(4):37-44
    [20] Hewson C. R, Asher G. M, Sumner M. Dynamometer control for emulation of mechanical loads. IEEE Industry Applications Conference, Thirty-Third IAS Annual Meeting, 12-15 Oct. 1998, 2: 1511-1518.
    [21] Strangas E. G, Wagner V. E, Unruh T. D. Variable speed drives evaluation test. IEEE Industry Applications Magazine, 1998, 4(1): 53-57.
    [22] 张树军,任京乐,吉学东等.立式直流电力测功机的研制.小型内燃机与摩托车,2001,30(4):44-45.
    [23] 卓菡.同步测功机扩大容量和应用范围的探讨.福州大学学报(自然科学版),1998,26(5):43-47.
    [24] 何湘吉.双气浮轴承高速无刷同步测功机研制.电机电器技术,1994(3):15-17,48.
    [25] Williamson A. C, Al-Khalidi K. M. S. An improved engine-testing dynamometer. Fourth International Conference on Electrical Machines and Drives, 13-15 Sep 1989: 374-378.
    [26] 张桂香,罗乾超.交流电力测功机的方案研究.铁道学报,1999,21(1):102-104.
    [27] 袁先达,黄凯.大马力电机的一种有效的转矩,转速测试方法:静止变频控制的异步测功机系统.电动工具.1997(4):2-5,11.
    [28] 何湘吉.异步测功机双馈变频电源的技术原理设计.电机电器技术,1999(2):2-7.
    [29] Collins E. R, Jr, Huang Y. A programmable dynamometer for testing rotating machinery using a three-phase induction machine. IEEE Transactions on Energy Conversion, 1994, 9(3): 521-527.
    [30] Sousa G. C. D, Errera D. R. A high performance dynamometer for drive systems testing, the 23rd International Conference on Industrial Electronics, Control and Instrumentation, 9-14 Nov. 1997, vol. 2: 500-504.
    [31] Wieser R. S, Lechner A. Four-quadrant drive as fast operating and precise dynamometric brake. Industry Applications Conference, Thirty-First IAS Annual Meeting, IAS '96., Conference Record of the 1996 IEEE, 6-10 Oct. 1996, vol. 1: 180-185
    [32] Byron J. Bunker, Matthew A. Franchek, and Bruce E. Thomason. Robust multivariable control of an engine-dynamometer system. IEEE Transactions on Control Systems Technology, 1997, 5(2): 189-199.
    [33] Byron J. Bunker, Matthew A. Franchek, and Bruce E. Thomason. Robust multivariable control of an engine-dynamometer system. IEEE Transactions on Control Systems Technology, 1997, 5(2): 189-199.
    [34] 张树军,任京乐,吉学东等.立式直流电力测功机的研制.小型内燃机与摩托车,2001,30(4):44-45.
    [35] 陈伯时.电力电子器件和变流器是现代电机控制发展的先锋.电机与控制学报,1997,1(3):146-149.
    [36] 陈伯时,陈敏逊,编著.交流调速系统.北京:机械工业出版社,1998.
    [37] 许大中编著.交流调速理论.杭州:浙江大学出版社,1991.
    [38] 李序葆,赵永健编著.电力电子器件及其应用.北京:机械工业出版社,2000.
    [39] 吴守箴,臧英杰胸小林等著.电气传动的脉宽调制控制技术.北京:机械工业出版社,2003
    [40] A Nabae, K. Otuka, H Uchino, etal. An Approach to Flux Control of Induction Motor Operated with Variable-Frequency Power Supply. IEEE Transactions on Industry Applications 1980, 16(2): 342-350.
    [41] W Leonhard. Processing with Controled AC-Drives. EPE Journal, 1991(1).
    [42] R Gabriel, W Leonhard and C J Nordby. Field-Oriented control of a standard ac motor using microprocessors. IEEE Transactions on Industry Applications 1980, 16(2): pp. 186-192.
    [43] Lessmeier, R., Schumacher, W, Leonhard, W. Microprocessor controlled acservo-drives with synchronous or induction motors-which is preferable. Proc. IEEE-IAS Ann. Conf. 1985.
    [44] Schauder, C. Adaptive speed identification for vector control of induction motors without rotational transducers. IEEE Transactions on Industry Applications, 1992, 28(5): 1054-1061.
    [45] Fang-Zheng Peng, Fukao T. Robust speed identification for speed-sensorless vector control of induction motors. IEEE Transactions on Industry Applications, 1994, 30(5): 1234-1240.
    [46] Ba-Razzouk A, Cheriti A, Olivier G, etal. Field-oriented control of induction motors using neural-network decouplers. IEEE Transactions on Power Electronics, 1997, 12(4): 752-763.
    [47] Mohamadian M, Nowicki E, Ashrafzadeh F, etal. A novel neural network controller and its efficient DSP implementation for vector-controlled induction motor drives. IEEE Transactions on Industry Applications, 203, 39(6): 1622-1629.
    [48] 张伟.无速度传感器异步电机矢量控制系统控制方法的研究.浙江大学博士学位论文,2001.
    [49] Depenbrock M.. Direkte selbstregelung (DSR) fuhrhochdy-namische Drehfeldantriebe mit Stromrichterspeisung ETZ Archiv, 1985, Bd, 7(7): 211-218.
    [50] Depenbrock M.. Direct self-control (DSC) of inverter-fed induction machine. IEEE Transactions on Power Electronics, 1988, 3(4): 420-429.
    [51] Takahashi I, Noguchi T. A New Quick Response and High Efficiency Control Strategy of an Induction Motor. IEEE Transactions on Industry Applications,, 1986, 22(5): 820-827.
    [52] Takahashi I, Ohmori Y. High-performance direct torque control of an induction motor. IEEE Transactions on Industry Applications,, 1989, 25(2): 257-264.
    [53] Takahashi I, Ide Y. Decoupling control of thrust and attractive force of a LIM using a space vector control inverter. IEEE Transactions on Industry Applications,, 1993, 29(1): 161-167.
    [54] 冯江华等.异步电动机的直接转矩控制.电工技术学报,1999,14(3):29-33.
    [55] Rodic, M, Jezernik, K. Continuous approach to the direct torque and flux control of induction motor. 2002. 7th International Workshop on Advanced Motion Control, Page(s): 279-284.
    [56] Habetler T. G, Divan D. M. Control strategies for direct torque control using discrete pulse modulation. IEEE Transactions on Industry Applications,, 1991, 27(5): 893-901.
    [57] Habetler T. G, Profumo F, Pastorelli M, etal. Direct torque control of induction machines using space vector modulation. IEEE Transactions on Industry Applications,, 1992, 28(5): 1045-1053.
    [58] Habetler T. G, Profumo F, Pastorelli M. Direct. torque control of induction machines over a wide speed range. IEEE Industry Applications Society Annual Meeting,, 1992, (1): 600-606.
    [59] Kenny B. H, Lorenz R. D. Stator- and rotor-flux-based deadbeat direct torque control of induction machines. IEEE Transactions on Industry Applications,, 2003, 39(4): 1093-1101.
    [60] Idris N. R. N, Yatim A. H. M.. An improved stator flux estimation in steady-state operation for direct torque control of induction machines. IEEE Transactions on Industry Applications, 2002, 38(1): 110-116.
    [61] Kang J. W.; Sul S. K.. Analysis and prediction of inverter switching frequency in direct torque control of induction machine based on hysteresis bands and machine parameters. IEEE Transactions on Industrial Electronics, 2001, 48(3): 545-553.
    [62] 李永东主编.交流电机数字控制系统.北京:机械工业出版社,2002.
    [63] 王兆安等编著.谐波抑制和无功功率补偿.北京:机械工业出版社,1998.
    [64] 王兆安,刘进军.电力电子装置谐波抑制及无功补偿技术的进展.电力电子技术,1997,31(1):100-104.
    [65] 华中理工大学应用电子技术教研室,三相高频整流系统研究报告,1999
    [66] 贺益康,潘再平编著.电力电子技术基础.杭州:浙江大学出版社,2001.
    [67] 王离九,黄海潜编著.晶体管脉宽直流调速系统.武汉:华中理工大学出版社,1988.
    [68] Kataoka T, etal. A pulsewidth controlled AC-to-DC converter to improve power factor and waveform of AC line current. IEEE Trans AI, 1979, ia-15: 670-675.
    [69] Busse Alfred, Holtz Joachim. Multiloop control of a unity power factor fast switching AC to DC converter.. IEEE Proc, Power Electr Specilalist Conf, 1982: 171-179.
    [70] Akagi H, etal. Instantaneous reactive power compensators comprising switching devices without energy storage components. IEEE Transactions on Industrial Electronics, 1984, IA-20: 625-630.
    [71] Green A. W, Boys J. T, Gates G. F. 3-phase voltage sourced reversible rectifier. IEE Proceedings-Electric Power Applications, 1988, 135(6): 362-370.
    [72] Akagi H, Fujita H. A new power line conditioner for harmonic compensation in power systems. IEEE Transactions on Power Delivery, 1995, 10(3): 1570-1575.
    [73] Zhong-Chao zhang, Boon-Teck Ooi. Multimodular current-source SPWM converters for superconducting a magnetic energy storage system. IEEE Transactions on Power Electronic, 1993, 8(3): 250-255.
    [74] Thomas G, Habetler. A space vector-based rectifier regulator for AC/DC/AC converters. IEEE Transactions on Power Electronics, 1993, 8(1): 30-36.
    [75] Boon Teck Ooi, Xiao Wang. Voltage angle lock loop control of the boost type PWM converter for HVDC application. IEEE Transactions on Power Electronics, 1990, 5(2): 229-235.
    [76] Fujita H, Watanabe Y, Akayi H. Control and analysis of a unified power flow controller. IEEE PELS PESC'98, 1998, (1): 805-811.
    [77] Wu R, Dewan S B, Slemon G R. Analysis of an ac to dc voltage source converter using PWM with phase and amplitude control. IEEE Transactions on Industry Applications, 1991, 27(2),: 355-364.
    [78] Wu R, Dewan S B, Slemon G R. A PWM AC-to-DC converter with fixed switching frequency. IEEE Transactions on Industry Applications, 1990, 26(5): 880-885.
    [79] Chun T Rim, Dong Y Hu, Gyu Hcho. Transformers as equivalent circuits for switches: General Proofs and D-Q Transformation-Based Analyses, IEEE Transactions on Industry Applications, 1990, 26(4): 777-785.
    [80] Hengchun Mao, Dushan Boroyerich, Fred C Y Lee. Novel reduced-order small signal model of a three-phase PWM rectifier and its application in control design and system analysis. IEEE Transactions on Power Electronics, 1998, 13(3): 511-521.
    [81] Dixon J W, Ooi B T. Indirect current control of a unity power factor sinusoidal current boost type three-phase rectifier. IEEE Transactions on Power Electronics, 1998, 35(4): 508-515.
    [82] Marian P. Kazmierkowski, Luigi Malesani. Current control techniques for three-phase voltage-source PWM converters: A Survey. IEEE Transactions on Power Electronics, 1998, 4 (5): 691-703.
    [83] 杨德刚,刘润生,赵良炳.三相高功率因数整流器的电流控制.电工技术学报,2000,15(2):83-87.
    [84] Habetler T G. A space vector-based rectifier regulator for AC/DC/AC converters. IEEE Transactions on Power Electronics, 1993, 8(1): 30-36.
    [85] Dixon J W, Kullcarni A B, Nishimato M, Ooi B T. Characteristics of a controlled-current PWM rectifier-inverter link. IEEE Transactions on Industry Applications, 1987, IA-23: 1022-1028.
    [86] 张兴,张崇巍.PWM可逆变流器空间电压矢量控制技术的研究.中国电机工程学报,2001,21(10):102-105.
    [87] 曾江,倪以信.有源滤波器定频滞环电流控制新方法.电网技术,2000,24(6):1-8.
    [88] Shied J-J, Pan C-T, Cuey Z-J. Modelling and design of a reversible three-phase switching mode rectifier. IEE Proc. Electr Power Appl, 1997, 144(6):. 389-396.
    [89] 张加胜,郝荣泰.一类新型PWM可逆整流器.电工技术学报,1998,13(5):pp.37-41.
    [90] 詹长江,韩郁,赵良炳,韩英铎.基于电压空间矢量PWM脉宽调制方式的新型三电平高 频整流器研究.电工技术学报,1999,14(2):60-64.
    [91] Bakari Mwinyiwina, Zbigniew Wolanski, Boon-Teck Ooi. Microprecessor-implemented SPWM for multiconverters with phase-shifted triangle carriers. IEEE Transactions on Power Electronics, 1998, 34(3): 487-494.
    [92] Hengchun Mao, Dushan Boroyevich, Silva Hiti. Review of High-Performance three-phase power factor correction circuits. IEEE Transactions on Industry Electronics, 1997, 44(4): 437-445.
    [93] 王长永,刘雷,张仲超.电流型组合变流器相移SPWM技术的研究.电力电子技术,1999,33(4):43-45.
    [94] Noguchi T, Tomiki H, Kondo S, Takahashi I. Direct power control of PWM converter without power source voltage sensors, IEEE Transactions on Industry Applications, 1998, 34(3): 473-479.
    [95] Ibrahim D, Richard M, Khin T. 400MW SEMS power conditioning system development and simulation, IEEE Transactions on Power Electronics, 1993, 8(3): 237-249.
    [96] Komurcugil H, Kukrer O. Lyapunov-based control for three-phase PWM AC/DC voltage-source converters, IEEE Transactions on Power Electronics, 1993, 13(5): 801-813.
    [97] Jong-Woo Chui, Seung-Ki Sui. New current control concept-minimum time current control in the three-phase PWM converter, IEEE Transactions on Power Electronics, 1997, 12(1): 124-131.
    [98] Moran L, Ziogas P. D, Joos G. Design aspects of synchronous PWM rectifier-inverter system under unbalanced input voltage conditions. IEEE Transactions on Industry Applications, 1992, 28(6): 1286-1293.
    [99] Vincenti D, Jin H. A three phase regulated PWM rectifier with on-line feadforward input unbalance correction. IEEE Transactions on Power Electronics, 1994, 41 (5): 526-532.
    [100] Hong-Seok Song, Kwanghee Nam. Dual current control scheme for PWM converter under unbalanced input voltage conditions. IEEE Transactions on Industrial Electronics, 1999, 46(5): 953-956.
    [101] 李家仓.可控硅交流电力测功机.西北电力传动,1977(1).
    [102] 天水电气传动研究所.关于交流测功机及其若干问题的探讨.电气传动技术资料,978.
    [103] 上海农业药械厂,一机部洛阳设计院.可控硅电力测功机.1976,7:8~022
    [104] 曾利权,高文捷.内燃机试验能量回收问题的探讨.现代节能,1989,5(4):52-57
    [105] 王毓东主编.电机学(下册).杭州:浙江大学出版社,1994.
    [106] Wendel Newton R., Betz R. E, Penfold H. B. A dynamic dynamometer for testing variable speed drives. IEEE Industry Applications Society Annual Meeting, 1994, 1: 538-544.
    [107] Wendel Newton R., Betz R. E, Penfold H. B. Emulating dynamic load characteristics using a dynamic dynamometer. Proceedings of International Conference on Power Electronics and Drive Systems, 1995, 1: 465-470.
    [108] 陈志武.数字式异步测功机.电动工具.1997(3):14-17,22
    [109] 杨洋.关于交流变频电力测功机系统的仿真研究.湖南大学硕士学位论文,2001.5.
    [110] 张崇巍,张兴.PWM整流器及其控制.机械工业出版社,2003.
    [111] 徐小品.基于DSP的三相PWM整流器及其控制.浙江大学硕士学位论文,2004.
    [112] 陈阿莲,何湘宁,赵荣祥.一种改进的级联型多电平变换器拓扑.中国电机工程学报2003,23(11):9-12.
    [113] 王毅,李和明,石新春,朱凌.多电平PWM逆变电路谐波分析与输出滤波器设计.中 国电机工程学报.2003,23(10):78-82.
    [114] 郑颖楠,裴云庆.三相AD—DC电压源型变流器主电路参数关系的仿真研究.电气传动,1998,28(2):15-18.
    [115] Jae-Ho Choi, Hyong-Cheol Kim, Joo-Sik Kwak. Indirect current control scheme in PWM voltage-sourced converter. Proceedings of the Power Conversion Conference-Nagaoka, 1997, 1: 277-282.
    [116] Dixon J. W, Boon-Teck Ooi. Indirect current control of a unity power factor sinusoidal current boost type three-phase rectifier. IEEE Transactions on Industrial Electronics, 1998, 35(4): 508-515.
    [117] Sriram V. B, SenGupta S, Patra A. Indirect current control of a single-phase voltage-sourced boost-type bridge converter operated in the rectifier mode. IEEE Transactions on Power Electronics, 2003, 18(5): 1130-1137.
    [118] Rahman K. M, Khan M. R, Choudhury M. A, Rahman M. A. Variable-band hysteresis current controllers for PWM voltage-source inverters. IEEE Transactions on Power Electronics, 1997, 12(6): 964-970.
    [119] Cecati C, Corradi S, Rotondale N. Digital adaptive hysteresis current control based on the fuzzy logic [for PWM inverters] . Proceedings of the IEEE International Symposium on Industrial Electronics-ISIE '97, 7-11 July 1997, 3: 1232-1237.
    [120] 马志云主编.电机瞬态分析.中国电力出版社,1998.
    [121] 李夙编.异步电动机直接转矩控制.机械工业出版社,1999.
    [122] 李爱文,张承慧.现代逆变技术及其应用.科学出版社,2000
    [123] Mitsubishi electric corporation. Mitsubishi power devices manual. Mar, 2000.
    [124] 刘和平,严利平,张学锋,卓清锋,编著.TMS320LF240x DSP结构、原理及应用,北京航空航天大学出版社,2002.
    [125] 清源科技,编著.TMS320LF240x DSP应用程序设计教程.机械工业出版社,2003.
    [126] 毛鸿.三相电压型PWM整流器及其控制策略的研究.浙江大学博士学位论文,2000.
    [127] Heinz Willi V. D. B, Hans C. S. Aanlysis and Realization of a Pulse witdth Modulator Based on Voltage Space Vectors. IEEE Trans. On IA, 1988, 24(1): 142-150.
    [128] Hur N, Jung J H, Nam K H. Fast Dynamic DC-Link Power Balancing Scheme for a PWM Convert-inverter System. IEEE Trans. On IA, 2001, 48(4): 794-803.
    [129] Zargari N R. Performance Investigation of a Current-controlled Voltage-regulated PWM Rectifier in Rotating and Stationary Frames. IEEE Trans. On IA, 1995, 42(4): 396-401.
    [130] 夏德钤,编著.自动控制理论.机械工业出版社,1998.
    [131] 王孝武,编著.现代控制理论基础,机械工业出版社,1998.
    [132] 张志涌,等编著.精通MATLAB6.5版,北京航空航天大学出版社,2004.
    [133] Jun-Koo Kang, Seung-Ki Sul. Analysis and prediction of inverter switching frequency in direct torque control of induction machine based on hysteresis bands and machine parameters. IEEE Transactions on Industrial Electronics, 2001, 48(3): 545-553.
    [134] Chapuis Y A, Roye D. Direct torque control and current limitation method in start up of an induction machine. Power Electronics and Variable Speed Drives, 1998. Seventh International Conference on (IEE Conf. Publ. No. 456), 21-23 Sept. 1998: 451- 455.
    [135] Yen-Shin Lai, Juo-Chiun Lin, Jennshing Jersey Wang. Direct Torque Control Induction Motor Drives with Self-Commissioning Based on Taguchi Methodology. IEEE Transactions on Power Electronics, 2000, 15(6): 1065-1071.
    [136] Cabrera LA, Elbuluk M E, Husain I. Tuning the stator resistance of induction motors using artificial neural network. IEEE Transactions on Power Electronics, 1997, 12(5): 779-787.
    [137] Faiz J, Sharifian M. B. B. Different Techniques for Real Time Estimation of an Induction Motor Rotor Resistance in Sensorless Direct Torque Control for Electric Vehicle. IEEE Transactions on Energy Conversion, 2001, 16(1): 104-109.
    [138] 杨家强,黄进,徐小品.基于DSP的异步电动机全速度模型直接转矩控制系统的研究.电力系统及其自动化学报,2004,16(2):28-32.
    [139] 高景德等著.交流电机及其系统的分析[M].清华大学出版社,1993.8.
    [140] VAS PETER. Sensorless vector and direct torque control. Oxford University Press, 1998.
    [141] Casadei D, Serra G, Tani K.. Implementation of a direct control algorithm for induction motors based on discrete space vector modulation. IEEE Transactions on Power Electronics, 2000, 15(4): 769-777.
    [142] Marino P, D'Incecco M, Visciano N. A comparison of direct torque control methodologies for induction motor. IEEE Power Tech Proceedings, 2001, Porto, (2): 10-15.
    [143] 诸静等著.模糊控制原理与应用.机械工业出版社,2001.
    [144] Newton R. W, Betz R E, Middleton R H. Dynamic Dynamometer for Electrical Machine Testing. Australasian Universities Power Engineering Conference, 1993, 2(2): 521-527.
    [145] Sueker K H. A static dynamometer for load testing large variable frequency motor drives. IEEE International Electric Machines and Drives Conference Record, 18-21 May 1997, Pages: WB1/9.1-WB1/9.3.
    [146] Casadei D, Serra G, Tani K.. A static dynamometer measuring simultaneous torques exerted at the upper limb. IEEE Transactions on Rehabilitation Engineering, 1998, 6(3): 309-315.
    [147] 程京平,祖炳洁,郑明军等.电涡流测功机的原理与应用.石家庄铁道学院学报.1999,12(9):77-79.
    [148] Sandholdt P, Ritchie E, Pedersen J K, Betz R E. A dynamometer performing dynamical emulation of loads with nonlinear friction. Proceedings of the IEEE International Symposium on Industrial Electronics(ISIE'96), 17-20 June 1996, 2 (2): 873-878.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700