柴—燃联合动力装置(CODAG)仿真与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柴-燃联合动力推进模式是大中型水面舰船的主要推进模式之一,共同工作的CODAG装置继承了交替工作的CODOG装置巡航时柴油机良好的经济性,而且在高速时还能将柴油机并入动力系统,而不是让柴油机“闲置”。近年来的相继增压技术的应用使得柴油机低工况的性能大幅度改善,结果是用于联合动力装置的柴油机功率大大提高,与燃气轮机功率的比值已从原来的1:5提高到1:1.64左右,在全速航行时可获得的航速收益达到了17%。它的投资费用约为交替使用的CODOG装置的79%-83%,燃油经济性是后者的80%,维护费用是后者的35%-75%,最高航速可达32节左右。鉴于共同工作的CODAG装置的突出特点,有必要对其进行先期研究,掌握其关键技术。
     本文从试验和仿真两方面入手研究共同工作的CODAG系统的工作特性、控制算法与策略。首先对原有的交替工作的CODOG实验台进行改造使其能满足柴-燃联合动力装置不同模式(CODOG或CODAG)的实验研究需要。其次以此试验台为对象建立了相应的数学模型,并进行了相关运行工况的仿真计算研究。主要工作如下:
     1.对共同工作的CODAG装置的运行方式进行了系统分析,对共同工作的CODAG装置试验台测控系统的硬件与软件进行了设计制造及安装调试;进行了共同工作的CODAG系统多方案的实验研究:在国内首次成功进行了两台主机的单独稳定运行及切换和共同工作运行,完成了两主机共同工作时的加减负荷试验、调速和转速阶跃响应实验,得到了柴油机和燃气轮机的转速、功率和各自的SSS离合器中间滑移件的位移曲线。
     2.将共同工作的CODAG装置推进系统按其功能进行了模块化分解,建立了用于控制系统分析的非线性模型,并应用计算机数字仿真的方法,研究了该试验台的稳态和动态特性。本文运用MATLAB/Simulink仿真工具对共同工作的CODAG装置物理模拟实验台进行了建模与仿真,建模采用自顶向下和模块化的设计方法,整个系统包括柴油机及电子调速器模型、液力偶合器模型、燃气轮机控制系统模型、SSS离合器模型、并车齿轮箱模型及负荷模型。各个子系统间通过输入输出接口而构成一个相互作用的有机整体,对系统的动态特性进行了综合仿真研究,将仿真结果与实验结果进行了对比,为控制系统的设计提供了一定的参考依据。
     经过大量的实验研究,证明了整个测控系统的设计是可行的,能够完成预定的要求,对进一步研究提高共同工作的CODAG系统的可靠性和机动性提供了重要的理论及实验基础。
The combined diesel and gas turbine power propulsion mode is the key one of main propulsion modes of the large and middle war ships. The CODAG has the economic advantage of CODOG power plant at cruise speeds and is able to use the diesel power together at higher ship speeds instead of the diesel being "dead weight". In recent years the power of diesel engine was increased very much because of using the sequence supercharging technology and the ratio of diesel power and gas turbine power was increased largely, from 20% to 61%, so that the top speed gain of the war ship will be 17% higher than the top speed by using only the gas turbine engine. The initial cost of CODAG plant is 79%~83% of initial cost of CODOG plant. The fuel consumption is only 80% of that of CODOG plant. The maintenance cost is only 35%~75% of that of CODOG plant. The top speed of the war ship is about 32 knots. Because the CODAG plant has many outstanding performances it is very important to investigate application characteristics of this kind of power plants and to master its key technology.
     By using experimental and simulation measures the operation performance control arithmetic and strategies of CODAG system were studied. Firstly the original CODOG experimental rig was revised to meet the requirements of test researches which are necessary for different modes of combined diesel and gas turbine power plant (CODOG or CODAG). Secondly the mathematical models of this experimental rig were established and relative operation simulation researches were worked out. The main results are as followings.
     1. The systematic analysis of operation modes of CODAG power plant was completed. Design manufacture installation and adjustment of hardware and software of measuring and controlling systems of CODAG experimental rig were completed also. Various experimental researches of CODAG system were conducted. Individual stable operation changeover and running together of the tow main engines were realized first at China. The experimental researches of load increase and decrease speed adjustment and speed step respond of tow engines running together were conducted. The speeds and power outputs of diesel and gas turbine were obtained and the displacements time curves of middle sliders of SSS clutches were obtained at various operation modes.
     2. Blocking decomposing of CODAG propulsion system was completed. The nonlinear models for analyzing control system were obtained. Steady and transient performances of the experimental rig were investigated by using computer digital simulation methods. MATLAB/Simulink simulation tools were used for the modeling and simulation of physical experimental rig of CODAG plant. By using the method from top to bottom and by using blocking modeling was completed. The models of the diesel and its electronic governor, the model of hydraulic coupling, model of control system of gas turbine, model of SSS clutch, model of running together gear box and model of load were included. Organic interaction integration was formed by using inlet and exit interfaces of the each sub-systems. Synthetic simulation researches on dynamic performances of the whole system were conducted and were compared with experimental results. Those researches provided useful references for control system design.
     Through a large number of experimental researches on the whole system the design of measuring and control system was proved to be a sound one and to be able to meet the requirements, the important theoretical and experimental bases were provided for the reliability and maneuverability of CODAG system.
引文
[1] 冯祥千.国外舰艇联合动力综述.中国造船工程学会轮机学组学术论文,1988:12-18页
    [2] 未来舰船的推进.船电技术.2001,21(4):49-50页
    [3] 张世沛,郑定泰等.国外远洋护卫舰、驱逐舰的全燃、柴燃联合动力装置的使用现状及结构特点.中船总七院714所,1989:20-22页
    [4] 张志华等编著.动力工程概论.哈尔滨工程大学出版社.2000,197页
    [5] 程国瑞著.船舶动力装置原理.人民交通出版社.2001,2001:8页
    [6] 田颖.柴-燃联合动力装置(CODOG)测控系统及实验研究.哈尔滨工程大学博士论文,.2001:11页
    [7] 翁史烈主编.船舶动力装置仿真技术.上海交通大学出版社,1991:10-20页
    [8] H T Grimmelius, D Boetius. Advanced Application of Simulation models in Marine Engineering. INEC 2000 Marine Engineering Challenges for the 21st Century, Hamburg, Germany, 14—16 March 2000. 22P
    [9] M.H. Ghaemi. Nonlinear Mathematical Model of Ship Propulsion System as an Object of Angular Velocity Control System. Eleventh Ship Control Systems Symposium, 2000: 209-223P
    [10] 郭正榘.燃气轮机自动控制系统设计.机械工业出版社,1986:323页
    [11] 倪维斗,徐基豫.自动调节原理与透平机械自动调节.机械工业出版社,1987:278页
    [12] 尚义 编著.航空燃气涡轮发动机.内部教材,2000:35页
    [13] 张移民 编著.航空涡轮风扇发动机.国防工业出版社,1985:85页
    [14] 樊思齐、徐芸华 等编著.航空推进系统控制.西北工业大学出版社, 1995:102页
    [15] N. Watson. Transient Performance Simulation and Analysis of Turbocharged Diesel Engines. SAE paper 810338, 1981: 1391—1402P
    [16] Schorn, N. Pischinger, F. and Schulte, H. Computer Simulation of Turbocharged Diesel Engine under Transient Conditions. SAE paper 870723, 1987: 2.1070—2.1086P
    [17] Watson, N. and Marzouk, M. A Non-linear Digital Simulation of Turbocharged Diesel Engines under Transient Conditions. SAE paper 770123, 1977.
    [18] Watson, N. Transient Performance Simulation and Analysis of Turbocharged Diesel Engines. SAE paper 810338, 1981.
    [19] Schorn, N. Pischinger, F. and Schulte, H. Computer Simulation of Turbocharged Diesel Engines under Transient Conditions. SAE paper 870723, 1987.
    [20] 段树林,欧阳明高,刘峥.涡轮增压柴油机动态仿真的研究.大连海事大学学报.1999,(2):77-80页
    [21] 张苇,张伯年.涡轮增压柴油机准动态模型及其数字和混合实时仿真.系统仿真学报.1992,4(4):19-26页
    [22] Vassilios P. Lambropoulos, Nicolaos P. Kyrtatos. Modular Simulation of Marine Propulsion Systems Using an Enginerring Building Block Approach. Sixth International Symposium on Marine Engineering(ISME), Tokyo 2000—October 23~27, 2000
    [23] 高键,姜长生.调距桨的舰船航速智能控制技术研究,南京航空航天 大学学报.2003,35(2):157—161页
    [24] 张佩余.船舶主机并车推进装置的负荷分配.舰船科学技术.1988,(5):31—36页
    [25] 沈立盛.机电控制技术的现状和发展趋势.南方冶金学院学报.2000,(4):135-129页
    [26] 孙聿峰等编著.系统的半物理仿真.中国国防科学技术报告.哈尔滨工程大学、中国船舶工业总公司.2000:56-59页
    [27] 刘应诚,王宝刚等.限矩型液力偶合器的应用与节能效果分析.矿业快报.2000,(6):22-24,15页
    [28] 董建福.液力偶合器在柴燃联合及柴油机并车传动中的应用.柴油机.2000,(1):6-10页
    [29] 苏文斗,李承江等.SSS离合器的设计.舰船锅炉透平.1976,(4):1-18页
    [30] 方玉昌.中继式自动同步离合器啮合过程及设计的几个问题.热能动力工程.1991,6(2):86-91页
    [31] 黄素逸著.动力工程现代测试技术.华中科技大学出版社,2001:ⅰ-ⅱ页
    [32] 许庆星.现场总线控制系统及应用.电气时代.2000,(8):6-8
    [33] 王军,卢青春.瞬态转速测量方法的研究与改进.车用发动机.2001,(4):31-34页
    [34] 尹大勇.基于摩托罗拉16位单片机的测功机控制器研究与开发.硕士论文.北京:清华大学.2004
    [35] 阿雷尼,韦伯斯特著;张伦译.传感器和信号调节.第二版.北京:清华大学出版社,2003:34-37页
    [36] 李孟源等.在线动态扭矩测试仪的研制.洛阳工学院学报.1998,19(1):29页
    [37] 欧扬,张纪龙.扭矩测试的发展动态和发展方向.华北工学院学 报.1996,17(1):42页
    [38] 张彪.柴燃联合动力装置的仿真及实验研究.哈尔滨工程大学博士论文.1997:22页
    [39] 杨乐平,李海涛,肖相生.LabVIEW程序设计与应用.北京:电子工业出版社,2001;58-62页
    [40] National Instruments Corporation. LabView User Manual, 2001
    [41] AH Taner, NM White. Virtual Instrumentation: a solution tc the problem of design complexity in intelligent instruments. Measurement & Control, 1996m29(7):165-171P
    [42] RobertH,Bishop著,乔瑞萍,林欣译.LabView 6i实用教程.北京:电子工业出版社,2003:117-121页
    [43] 北京中科泛华测控技术有限公司.虚拟仪器LabVIEW教程.北京.2001:5-24页
    [44] 李朝青.单片机原理及接口技术.北京航空航天大学出版社,2005:10页
    [45] 邹逢兴.计算机硬件技术及应用基础.长沙:国防科技大学出版社,2001:35页
    [46] F.Scott Barker.Access 2000中文版高级编程Access 2000.北京:人民邮电出版社,2000:86页
    [47] 李顺增.微机原理及接口技术.北京:机械工业出版社,2005:32页
    [48] 陈启美.微机原理外设接口.北京:清华大学出版社,2002:125页
    [49] 金以慧.过程控制.北京:清华大学出版社,1993:112-115页
    [50] 杨献勇.热工过程自动控制.北京:清华大学出版社,2000:210-212页
    [51] 李会方,许斌.基于电涡流测功机的FCK-1型发动机综合控制系统.机电一体化,2001(1):61-64页
    [52] 吴麒.自动控制原理.北京:清华大学出版社,1990:156-158页
    [53] 陶永华.新型PID控制及其应用.北京:机械工业出版社,2002.12-25页
    [54] 栗海滨,时广礼.新型模糊-PID复合控制器设计及应用.自动化与仪表.2003,(4):39-42页
    [55] 麦俊杰.电机转矩、转速模糊控制器.浙江大学硕士学位论文,2003:25页
    [56] 任自中,李江.变系数PID控制在发动机试验中的应用.柴油机.2003,(3):9-11页
    [57] 花力平,钱人一,陈炜.电站柴油机转速的数字式PID控制.柴油机.2001,(1):34-36页
    [58] 杨承参,施润华.船舶动力装置.上海:上海交通大学出版社,1996:112页
    [59] 肖章权.船舶轮机系统建模与仿真.武汉交通科技大学博士学位论文.1998:45页
    [60] 任挺进.热动力装置模块化建模动态分析系统的开发与应用.清华大学博士学位论文.1992:56页
    [61] 张津.燃气涡轮发动机特性.讲义。
    [62] 唐海龙.面向对象的航空法动及性能仿真系统及其应用.北极航空航天大学博士学位论文.1998:123页
    [63] Averill M.Law and W.David Kelton:Simulation Modeling and Analysis,3rd ed,清华大学出版社,2000:112-115页
    [64] M. M. Athavale, A.J. Przekwas, R.C. Hendricks and B.M. Steinetz: Development of a Coupled, Transient Simulation Methodology for Interaction Between Primary and Secondary Flowpath in Gas Turbine Engines, American Institute of Aeronautics and Astronautics, Inc, 1997: 113-116P
    [65] A.L. Evans, G. Follen, C. Naimen and I. Lopez: Numerical Propulsion System Simulation's National Cycle Program, AIAA, 1998:123-126P
    [66] Russell H. Ashleman, Thomas Lavelle and Frank Parsons: National Cycle Program: A Flexible System Modeling Architecture, 1998.
    [67] 顾宏中著.涡轮增压柴油机热力过程模拟计算.上海交通大学出版社,1983:26页
    [68] N. Schorn, F. Pischinger and H. Schulte. Computer Simulation of Turbocharged Diesel Engine Under Transient Conditions. SAE870723:2.1070—2.1086
    [68] John B. Woodward, Robert G. Latorre. Modeling of Diesel Engine Transient Behavior in Marine Propulsion Analysis. SNAME Transactions, Vol. 92, 1984:124P
    [70] 陈华清,敖晨阳.舰船推进系统仿真中的柴油机数学模型.船舶工程.2000,(5):33—38页
    [71] 杜德基、桂刚、丁英奇.船舶柴油机推进系统的建模方法.上海交通大学学报.1987,(3):57—68页
    [72] 刘永文,张会生,苏明.舰船柴油机的模块化建模与仿真.船舶工程.2002,(1):14—17页
    [73] Ap NS. A Simple Engine Cooling System Simulation Model. SAE Paper 1999-01-0237
    [74] 林缨,屈卫东.柴—燃联合动力装置控制系统的设计要点.柴油机·Diesel Engine.2003,(1):18页
    [75] 王勇,高金源.时变系统的控制器调参设计.北京航空航天大学学报.1999,25(3):275—279页
    [76] 杨连生.发动机调速的稳定性理论与实践..内燃机学报,1988,(1):28-30页
    [77] 腾万庆.柴油机数字式电子调速系统智能控制技术研究.哈尔滨工程大学博士学位论文.1997:49-51页
    [78] 王国学等.船用柴燃联合动力装置实验台齿轮箱的动态仿真.哈尔滨工程大学学报.1996,(1):31-37页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700