甘肃甘南高原沼泽湿地春季纤毛虫分类与物种多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2009年4月—2010年3月,用活体观察和蛋白银染色法对甘肃甘南高原沼泽湿地春季纤毛虫分类与物种多样性进行了研究。共鉴定到114种纤毛虫,隶属于3纲12目32科50属,其中包括17个未定名种和15个国内纤毛虫新纪录种。陆生型物种有10种,水生型物种有16种,水陆共生型种类有88种,水陆共生的纤毛虫物种相似性为0.7719。
     对纤毛虫物种在各个样点的分布情况研究结果显示,曼日玛1号(MRM1)样点中纤毛虫物种数最丰富,有55种;曼日玛2号(MRM2)样点次之,有53种,尼玛(NM)、采日玛(CRM)、阿孜(AZ)和娘玛寺(NMS)样点中的纤毛虫物种数分别为52、48、38、31种,其中娘玛寺样点中的纤毛虫物种数最少,只有31种;根据物种在各样点出现的频率划分,分布频率在0.83 ~ 1之间的广布种有11种,分布频率在0.5 ~ 0.67的常见种有38种,分布频率为0.17 ~ 0.33的罕见种有64种;各样点间物种相似性系数均在0.1695 ~ 0.3846之间,表现出各样点中物种分布均不相似;纤毛虫密度和多样性指数都很好的反映了各样点间纤毛虫分布的差异性。
     样点环境因子与纤毛虫群落结构参数用SPSS13.0软件进行二元变量的Pearson相关性分析结果显示:纤毛虫种类数、密度与土温、pH之间均无显著的相关性(p>0.05),而与土壤含水量呈显著正相关(p<0.05),相关性系数分别为0.858和0.822;纤毛虫物种多样性指数与海拔有显著负相关性(p<0.01),相关性系数-0.889;纤毛虫密度与海拔呈极显著负相关(p<0.01),相关性系数-0.824。依据相关性系数的大小可知,在各环境因子中,对纤毛虫种类数影响最大的是含水量。而对纤毛虫密度影响最大的是海拔,其次是土壤含水量。从群落结构分析,动基片纲(Kinetofragminophorea)的物种数目最多,有6目15科24属57种,占鉴定到的纤毛虫总数的50%;多膜纲(Polyhymenophorea)次之,有3目10科18属37种,占鉴定到的纤毛虫总数的32.46%;寡膜纲(Oligohymenophorea)物种最少,只有3目7科7属20种,占鉴定到的纤毛虫总数的17.54%。
     甘肃甘南高原沼泽湿地中土壤特有类群仍然占主导地位,前口目(Prostomatida)、下毛目(Hypotrichida)和肾形目(Colpodida)纤毛虫物种数远远大于其他类群,这除了与虫体本身的适应性特征外,与该地区的生境类型是相适应的,因为该地区尽管属于湿地范畴,但其气候条件决定了当地仅有冬夏之分而没有明显的四季之分,而降水量较多的夏季气候相对较短,冬季干旱时期较长,所以该区域一年中大部分时间水分不是很多,大部分沼泽在干旱时期都形成了草甸,因而更适合于土壤生境中分布较多的纤毛虫种类。当然,该地区具有其湿地的特征,比较其他干旱环境有较充足的水分,因此,该地区也出现了如袋形目(Bursariomorphida)、吸管目(Suctorida)和缘毛目(Peritrichida)等一些水生、大型的纤毛虫种类,这也充分验证了湿地的特殊性,即具有水陆过渡性,兼有陆地和水域共同的特征。
The classification and species diversity of ciliates in Plateau Swamp Wetlands in Gannan, Gansu in spring were studied by observing in vivo and protargol impregnation from April of 2009 to March of 2010. 114 species of ciliates were identified, including 15 new record species of ciliates in China and 18 unnamed species, belonging to 49 genera, 32 families, 12 orders, 3 classes, and 1 phylum, composed of 10 edaphic species, 88 aquatic-terrestrial species, and 16 freshwater species. The species similarity of soil and freshwater ciliate communities was 77.19%.
     Studies on distribution of ciliates in various sampling sites showed that 55 species distributed in the first sampling site in Manrima (MRM1) was the most abundant, then 53 species in the second sampling site in Manrima (MRM2); 52, 48, 38 and 31 species distributed in the Nima (NM), Cairima (CRM), Azi (AZ) and Niangmasi (NMS) site respectively, and the NMS site had the lest species, just for 31. According to species with frequency occurred in the various sites, there were 11 widely distributed species with frequency from 0.83 to 1.00, 39 common species with frequency from 0.5 to 0.67 and 64 rare species with frequency from 0.17 to 0.33. Similarity index between sampling sites in Gannan Plateau Marsh Wetland ranged from 0.1695 to 0.3846, which indicated species with little similarity in various sampling site. Ciliates density and Gleason–Margalef species diversity index responsed well to the differences of number of the ciliates species in various sampling sites.
     Pearson correlation of binary variables between environmental factors of sampling sites and structural parameter of ciliates community construction analyzed by using SPSS 13.0, which suggested that species number of ciliates and abundance had no significant correlation with soil temperature and pH ( p>0.05 ), but there existed significant positive correlation to soil moisture, coefficient was 0.858 and 0.822 respectively; there was significant negative correlation between species diversity index of ciliates and altitude ( -0.889, p<0.01 ); also significant negative correlation occurred between abundance of ciliates and altitude ( -0.824, p<0.01). Based on the values of correlation coefficient showed above, soil moisture was the most impact on species number of ciliates among all environmental factors, but the greatest impact on ciliate abundance was altitude, followed by soil moisture.
     Analysis of community structure exhibited that Kinetofragminophorea with 57 species belonging to 24 genera, 15 families, and 6 orders was the dominant group, occupied 50% of the total number of species identified in Gannan Plateau Marsh Wetland; Polyhymenophorea was the second group, including 37 species belonging to 18 genera, 10 families, and 3 orders occupied 32.46% of the total; Oligohymenophorea with 20species belonging to 7 genera, 7 families, and 3 orders occupied 10% of the total.
     Specific groups of soil were dominant in Plateau Marsh Wetlands in Gannan, Gansu. Prostomatida, Hypotrichida and Colpodida had more ciliates species than other orders due to their morphological and physical characteristics. Also the habitat was suitable for them. Although the area was a wetland area, there were not clear seasons but summer or winter for the climate and the seasons with more precipitation was relatively shorter than dry winter, so the most of the year was lack of water and lots of marsh wetland became to be meadow during the dry period. Therefore, the area was suitable for ciliates adapted for soil habitat. Of course, the region has the characteristics of wetlands and there existed more water than other arid environment, hence some aquatic or large ciliates species happened in this district, such as species of Bursariomorphida, Suctorida, Peritrichida. Thus it validated the specificity of wetlands; viz. wetland was a surface transition and had both common features of the land and waters.
引文
Angeler, D. G., Alvarez-Cobelas, M., Rojo, C. et al. The significance of water inputs to plankton biomass and trophic relationships in a semi-arid freshwater wetland (central Spain) [J]. Journal of Plankton Research, 2000, 22(11): 2075-2093.
    Berger, H. and Foissner, W. 1987. Morphology and Biomentry of Some Soil Hypotrichs (Protozoa: Ciliophora). Zool. Jb. Syst., 114: 193-239.
    Berger, H. Monograph of the Oxytrichidae (Ciliophora, Hypotrichia) [M]. London: Kluwer Academic Publishers, 1999, 1-1047.
    Berger, H., Foissner, W. Morphology and biometry of some soil hypotrichs (Protozoa, Ciliophora) from Europe and Japan [J]. Bull. Br. Mus. nat. Hist. (Zool.), 1989, 55(1): 19-46.
    Comermal, M. oarcía,J.C., Romerol, M. et al. Carbon flow dynamics in the pelagic community of the Sau Reservoir (Catalonia,NE Spain). Hydrobiotogia [J]. 2003.504(1-3):87-98.
    Curds, C. R. British and Other Freshwater Ciliated Protozoa [M]. Part I. Cambridge University Press, 1982, 1-387.
    Curds, C. R., Gates, M. A., Roberts, D. M. British and Other Freshwater Ciliated Protozoa [M]. Part II. Cambridge University Press, 1983, 1-455.
    Decamp, O., Warren, A. Bacterivory in ciliates isolated from constructed wetlands (reed beds) used for wastewater treatment [J]. Water Reach, 1998, 32(7): 1989-1996.
    Fenchel, T. The ecology of marine microbenthos. IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the mcirofauna communities with special reference to the ciliated protozoa [J]. Ophelia, 1969, 6: 1-182.
    Finlay, B.J., Geesteban. Freshwater Protozoa: biodiversity and ecological function [J]. Biodiversity and Conservation. 1998, 7(9): 1163-1186.
    Foissner, W. Estimating the species richness of soil protozoa using the “non-flooded Petri dish method”. // Lee J. J., Soldo, A. T. Protocols in Protozoology. Lawrence: Allen Press, 1992: B-10.1, B-10.2.
    Foissner, W. Tropical protozoan diversity: 80 ciliate species (Protozoa, Ciliophora) in a soil sample from a tropical dry forest of Costa Rica, with descriptions of four new genera and seven new species [J]. Arch. Protistenk., 1995, 145: 37-79.
    Foissner, W. Colpodea (Ciliaphora) [M]. Stuttgart: Gustav Fischer Verlag, 1993, 1-798.
    Foissner, W. Die Gemeinschaftsstruktur der Ciliatenz(?)nose on alpinen b(?)den (Hohe
    Tauern. (?)sterreich) und Grundlagen für eine Syn(?)kologie der terricolen Ciliaten ( Protozoa, Ciliaphora ). Ver(?)ff. (?)sterr. MaB-programms,1981, 4: 7-52.
    Foissner, W. Ecology and taxonomy of the hypotrichida of some Austrian soils [J]. Arch. Protistenk., 1982, 126: 19-143.
    Foissner, W. Infraciliature, Silberliniensystem und Biometrie einiger neuer und wenig bekannter terrestrischer, limnischer und mariner Ciliaten (Protozoa:
    Ciliophora) aus den Klassen Kinetofragminophora, Colpodea und Polyhymenophora [M]. Stapfia, 1984, Linz 12: 1-165.
    Foissner, W., Agatha S., Berger, H. A. Soil Ciliates (Protozoa, Ciliophora) from Namibia (Southwest Africa), with Emphasis on Two Contrasting Environments, the Etosha Region and the Namib Desert. Denisia, 2002, 5, 1-1063.
    Garstecki, T., Verhoeven, R., Wickham, S. A. et al. Benthic-pelagic coupling: a comparison of the community structure of benthic and planktonic heterotrophic protists in shallow inlets of the southern Baltic [J]. Freshwater Biol., 2000, 45: 147-167.
    Hardoim, E. L., Heckman, C. W. The Seasonal Succession of Biotic
    Communities in Wetlands of the Tropical Wet-and-Dry Climatic Zone: IV. The free-Living sarcodines and ciliates of the Pantanal of Mato Grosso, Brazil [J]. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 2007, 81(3):367-384.
    Hemberger, H. Revision der Ordnung Hypotrichida Stein (Ciliophora, Protozoa) an Hand von Protargolpr(?)paraten und Morphogenesedarstellungen [D]. University of Bonn, Bonn, Germany, 1982, 1-296.
    Hillebrand, H., Kahlert, M., Haglund, A. L. et al. Control of microbenthiccommunities by grazing and nutrient supply [J]. Ecology, 2002, 83: 2205- 2219.
    Jaccard, P. Nouvelles recherches sur la distribution florale [J]. Bull. Soc. Vaud. Sci. Nat., 1908, 44: 223-270.
    Jezbera, J., Nedoma, J. (?). (?)Imek, K. Longitudinal changes in protistan bacterivory and bacterial production in two canyon-shaped reservoirs of different trophic status [J]. Hydrobiologia. 2003, 504(1-3): 115-130.
    John, M. D., Ward, A. K. Influence of Phagotrophic Protistan Bacterivory in Determining the Fate of Dissolved Organic Matter (DOM) in a Wetland Microbial Food Web [J].Microbial Ecology, 1997, 33(2):149-162.
    Lee, J. J., Hutner, S. H., Bovee, E. G. An Illustrated Guide to the Protozoa [M]. Society of Protozoologists, Allen Press, Lawrence, Kansas, 1985, 409-569.
    Lee, J. J., Leedale, G. F., Bradbury, P. The Illustrated Guide to the Protozoa [M], 2nd Ed., Lawrence: Allen Press Inc., 2000, 1-1432.
    Lei, Y. Taxonomic investigations of soil ciliates and ecological investigations of ciliates from marine waters, sediments and salt ponds[R].Salzburg, Austria: Ph D Thesis, Univ., 2005.
    Levine, N. D., Corliss, J. O., Cox, F. E. G. et al. A newly revised classification of the protozoa [J]. J. Protozool., 1980, 27(1):37-58.
    Ning, Y-Z. Shen, Y-F. Collection of Soil Protozoa. In: the Writing Group of a Handbook for the Research Methods of Soil Animals [M]. Beijing: Chinese Forestry Publishing House, 1998, 56-57.
    Ortega-Mayagoita, E., Rojo, C., Rodrigo, M. A. Factors masking the trophic cascade in shallow eutrophic wetlands: Evidence from a microcosm study [J]. Archiv fuer Hydrobiologie, 2002, 155(1): 43-63.
    Ortega-Mayagoitia, E., Rojo, C., Armengol, X. Structure and dynamics of zooplankton in a semi-arid wetland,the National Park de Daimiel (Spain) [J]. Wetlands, 2000, 20(4): 629-638.
    Puigagut, J., Salvadó, H., García, D.et al. Comparison of microfauna communities in full scale subsurface flow constructed wetlands used as secondary and tertiary treatment [J]. Water Reach, 2007, 41(8): 1645-1652.
    Sinistro, R., Izaguirre, I. Asikian, V. Experimental study on the microbial plankton community in a South American wetland (Lower ParanáRiver Basin) and the effect of the light deficiency due to the floating macrophytes [J]. Journal of Plankton Research, 2006, 28(8):753-768.
    Song, W-B. 2004. Morphogenesis of Cyrtohymena tetracirrata (Ciliophora, Hypotrichia, Oxytrichidae) during binary fission [J]. Europ. J. Protistol., 40: 245-254.
    Stout, J. D. An estimation of microfaunal population in soil and forest litter [J]. J. Soil Sci. 1962, 13: 314-320.
    Stout, J. D.The protozoan fauna of seasonally inundated soil under grassland [J], soil Boil.Biolchem., 1984, 16(2): 121-125.
    Wickham, S., Gieseke, A., Berninger, U. G. Benthic ciliate identification and enumeration: an improved methodology and its application [J]. Aquatic Microbial Ecology, 2000, 22: 79 - 91.
    Wickham, S., Nagel, S., Hillebrand, H. Control of epibenthic ciliate communities by grazers and nutrients [J]. Aquatic Microbial Ecology, 2004, 35:153 - 162.
    Wilbert, N. Eine verbesserte Technik der Protargolimpragnation fur Ciliaten [J]. Mik kosmos, 1975, 6:171-179.
    Wirnsberger-Aeschte, E., Foissner, W., Foissner, I. Morphogenesis and ultrastructure of the soil ciliate Engelmanniella mobilis (Ciliophora,
    Hypotrichida) [J]. Europ. J. Protistol., 1989, 24: 354-368.
    白晓慧,王宝贞,余敏,等.人工湿地污水处理技术及其发展应用[J].哈尔滨建筑大学学报, 1999, 32(6): 88-92.
    蔡迪花,郭铌,韩涛.1990-2001年黄河玛曲高寒沼泽湿地遥感动态监测[J].冰
    川冻土, 2007, 29(6): 874-881.
    程晓,刘汉成,杜海峰,等.甘肃黄河首曲湿地省级自然保护区肉鞭虫物种多样性研究[J].西北师范大学学报(自然科学版), 2009, 45(6): 92-97.
    冯建社.白洋淀的纤毛虫及与水质污染的关系[J].重庆环境科学, 1999, 21(5): 33-35.
    冯建社.洋河的纤毛虫调查与水质污染的关系[J].环境科学与技术, 2005, 28(4): 56-58.
    冯伟松,杨军,叶志鸿,等.凡口铅锌矿湿地处理系统的土壤原生动物[J].动物学杂志, 2004, 39(1): 2-11.
    李广文,王永洁,罗金明,等.融冻时期扎龙湿地土壤含水量变化研究[J].高师理科学刊, 2009,29(6): 71-74.
    李莉莉,刘炳江,徐齐福.试析我国湿地的退化、保护与恢复[J].环境科学与管理, 2006, 31(3): 138-162.
    刘娜,孔维宝,王文科,等.黄河三峡湿地保护区水体原生动物构成及水体评价[J].环境研究与监测, 2005, 18(3): 1-4.
    刘娜.麦积山风景名胜区土壤纤毛虫分类与物种多样性研究[D].西北师范大学, 2007,10-44.
    刘文盈,高润宏,张秋良,等.鄂尔多斯高原盐沼湿地的水生生物监测[J].林业科学研究, 2008, 21(增刊): 69-73.
    马徐发,刘冬启,熊邦喜,等.道观河水库周丛原生动物群落结构的研究[J]. 水利渔业, 2005, 25(5): 61-6.
    宁应之,刘汉成,刘娜,等.中国土壤一新种和五新纪录种(原生动物,纤毛门) [J].动物分类学报, 2009, 34(4): 699-708.
    宁应之,王娟,刘娜,等.甘肃天水麦积山风景名胜区土壤纤毛虫的物种多样性[J].动物学研究, 2007, 28(4): 367-373.
    戚登臣,李广宇.黄河上游玛曲湿地退化现状、成因及保护对策[J].湿地科学, 2007, 5(4): 342-347.
    沈韫芬,章宗涉,龚循矩,等.微型生物监测新技术[M].北京:中国建筑工业出版社, 1990, 134-136.
    施心路.下毛目纤毛虫的系统修订Ⅰ.原下毛亚目,排毛亚目(纤毛动物门) [J]. 动物分类学报, 1999a, 24(3): 241-261.
    施心路.下毛目纤毛虫的系统修订Ⅱ.散毛亚目:游仆亚目(纤毛动物门) [J]. 动物分类学报, 2000, 25(1): 9-22.
    施心路.下毛目纤毛虫的系统修订Ⅱ.尾柱亚目(纤毛动物门) [J].动物分类学报, 1999b, 24(4): 361-371.
    宋微波.原生动物学专论[M].青岛:青岛海洋大学出版社, 1999, 1-362.
    孙宏飞.兴隆山自然保护区土壤纤毛虫分类与物种多样性研究[D].西北师范大学, 2007, 11-22.
    孙平发,吉亚辉.黄河上游玛曲湿地可持续发展研究[J].西北师范大学学报(哲学社会科学版), 2008, 27(2): 79-103. 土壤动物研究方法手册编写组.土壤动物研究方法手册[M].北京:中国林业出版社, 1998, 63-67.
    王家辑.西藏高原部分地区的原生动物[J].动物学报, 1977, 23(2): 131-160.
    王晓景.甘肃博峪自然保护区土壤纤毛虫分类与物种多样性研究[D].西北师范大学, 2009, 10-60.
    徐奎栋,洪华生.台湾海峡的砂壳纤毛虫研究(纤毛动物门:砂壳亚目)[J].动物分类学报, 2001, 26(4): 454-466.
    杨霞,翟兴礼,余国莹.若尔盖高原湿地生物多样性现状及其保护对策[J].长春大学学报, 2002, 12 (3): 16-20.
    余国营.湿地研究的若干基本科学问题初论[J].地理科学进展, 2001, 20(2): 177-183.
    禹娟红,宁应之,刘智峰,等.刘家峡水库网箱养鱼场纤毛虫群落特征[J].生态学报, 2009, 29(1): 199-207.
    张超,宁应之,刘汉成,等.甘南高寒草甸土壤纤毛虫物种多样性[J].西北师范大学学报(自然科学版), 2008, 44(6): 87-92.
    中国科学院青藏高原综合科学考察队.西藏水生无脊椎动物[M].北京:科学出版社, 1983, 39-334.
    周凤霞,陈剑虹.淡水微型生物图谱[M].北京,化学工业出版社, 2005, 246-302.
    邹涛,宁应之,李晓鸿,等.白水江自然保护区土壤纤毛虫群落特点[J].西北师范大学学报(自然科学版), 2008, 44(2): 87-91.
    邹涛,申海香,宁应之,等.甘肃小陇山麻沿林区土壤纤毛虫群落特征[J].动物学研究, 2009, 44(6): 64-73.
    邹涛.二萜类化合物对土壤纤毛虫的毒性效应[D].西北师范大学, 2008, 17-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700