枯草芽孢杆菌关键遗传调控元件及表达系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
枯草芽孢杆菌广泛存在于土壤和动物胃肠道。因其易于分离培养,具有较清晰的遗传背景和良好的分泌性,又无致病性等特点,已成为生物技术基础研究和应用研究中使用较多的重要菌种。而且,枯草芽孢杆菌作为益生菌和饲用产生菌越来越多的被应用于畜禽生产中。为此,需要针对枯草芽孢杆菌载体、表达元件以及遗传操作方法等关键环节,建立较为完善的枯草芽孢杆菌遗传操作系统。本研究围绕构建新的枯草芽孢杆菌质粒载体,构建以麦芽糖利用操纵元启动子为调控元件的表达载体,并基于枯草芽孢杆菌的电转化整合和定点突变,进一步优化表达系统。同时,期望克隆筛选获得强启动子元件作为枯草芽孢杆菌的调控元件。取得的主要研究结果如下:
     1.把具有完全复制功能的700bp大肠杆菌ColE1复制子与2500bp枯草芽孢杆菌质粒复制子连接,成功构建了E. coli-B. subtilis穿梭载体pGJ103。利用B. subtilis麦芽糖操纵元启动子和穿梭载体pGJ103,成功构建了B. subtilis表达载体pLJ,利用其在枯草杆菌中高水平表达了β-半乳糖苷、BioA和VHB等蛋白。另外,证明葡萄糖严重抑制pLJ的表达。
     2.通过降低盐离子浓度,提高细胞活力,在枯草芽孢杆菌中建立了优化的电转化整合方法。并据此实现了在B. subtilis基因组DNA中的环形DNA单交叉整合和线性DNA双交叉整合,敲除了B. subtilis早期生孢基因,获得了枯草芽孢杆菌生孢基因缺失株B. subtilis GJ09。
     3.以β-半乳糖苷编码基因为报告基因,对枯草芽孢杆菌麦芽糖操纵元启动子进行了定点突变。正突变子pJRINM1在B. subtilis1A747中实现了β-半乳糖苷高效表达,其表达量占总可溶性蛋白的18%,5%的麦芽糖诱导24h活达到14U/mL。同时,基于同源重组方法,用枯草芽孢杆菌组成型启动子P43替换了野生型菌株B. subtilis1A747的麦芽糖操纵元上游调控序列,获得了优化重组表达宿主菌B. subtilis BCYL。将pJRINM1转入B. subtilis BCYL后,β-半乳糖苷活性有大幅度提高,经5%麦芽糖诱导24h后,β-半乳糖苷活达到21U/mL,葡萄糖的抑制作用明显减弱。分别PCR扩增了大肠杆菌和枯草芽孢杆菌维生素B12合成前期途径的谷氨酰-tRNA合成编码基因hemA,构建了其表达载体,并将其转化到B. subtilis BCYL中,实现了诱导表达。因此,通过对启动子和表达宿主的优化,获得了枯草芽孢杆菌高效表达系统,为枯草芽孢杆菌基因工程研究提供了有效实用的工具。
     4.利用bgaB作为报告基因,构建了启动子检测载体pShuttlF,并据此筛选获得了200个可能含有地衣芽孢杆菌启动子的重组克隆,从中获得了β-半乳糖苷活性可在大肠杆菌和枯草芽孢杆菌中分别达14016Mill U和16417Mill U的重组克隆pShuttle-09,表明在pShuttle-09中克隆获得了一个强启动子PluxS。通过对PluxS进行重构,得到了优化的启动子P_(LapS),其活性达到原来的1.6倍。同时,利用P_(LapS)成功构建了表达载体pLus-Hyb和pLus-His,并实现了bgaB和bioI基因的高效表达与纯化。
     综上所述,本研究主要构建了大肠杆菌-枯草芽孢杆菌穿梭载体、枯草芽孢杆菌麦芽糖诱导表达载体和枯草芽孢杆菌启动子筛选克隆载体。同时,利用麦芽糖诱导表达载体实现了外源基因的高效表达,并利用建立的枯草芽孢杆菌电转化整合方法优化提高了麦芽糖诱导表达系统的表达效果。利用枯草芽孢杆菌启动子筛选克隆载体系统筛选启动子元件获得了强启动子元件。建立和完善了枯草芽孢杆菌遗传操作体系,为枯草芽孢杆菌的基因工程研究提供了有效方法和工具。
Bacillus subtilis is a non-pathogenic gram-positive bacterium and has been an attractivehost for production of recombinant proteins from both prokaryotic and eukaryotic origins. Thesuitability and popularity of B. subtilis as one of main hosts for recombinant proteinproduction is due to several reasons: generally recognized as safe as a result of its lack ofpathogenicity and the absence of endotoxins; capable of secreting functional proteins directlyinto culture media, easy for genetic manipulation and handling, and capable of large-scalefermentation. Bacillus subtilis has been applied in animal production, which acts as probioticsand feed enzyme source. It is attractive to employed genetic engineering of Bacillus subtilisfor alleviate the feed resource and enhance feed efficiency. However, the genetic manipulationof Bacillus subtilis involved in the vector, regulation element and methods limited itsbiotechnological application. To easy the manipulation, we develop and improve the geneticmanipulation of Bacillus subtilis in this study through constructing the E. coli-B. subtilisshuttle vector, expression system and promoter trapping system. The results were shown asfollows:
     1. The E. coli-B. subtilis shuttle vector pGJ103was developed in this study by ligation ofColE1replicon (about700bp) and pGDV1replicon (about2500bp). A maltose-inducibleexpression vector in Bacillus subtilis based on pGJ103has been developed and characterized.The vector permitted β-galactosidase expression at a high level. Using this vector, wesuccessfully expressed the other two genes, bioA and vgb. However, the system constructed inthis study was repressed badly by the glucose.
     2. Here, we present the electroporation as a feasible and efficient method for introducingcircularized and linearized DNA into Bacillus subtilis chromosome. Two integrationexperiments were carried out and demonstrated the feasibility and efficiency ofelectroporation to introduce the target DNA into the B. subtilis chromosome. To furtherdemonstrate the application of electroporation in genetic research, the early sporulation genespo0A of B. subtilis was knocked out (named B. subtilis GJ09) and, consequently, the null ofsporulation and logged growth was observed in this study.
     3. Site-directed mutagenesis was facilitated to enhance the expression strength of Pglv. The production of β-Gal driven by the mutant promoter in B. subtilis1A747reached14U/mLat24h when induced by5%maltose. To further improve the promoter system, the B. subtilisexpression host was reconstructed, in which B. subtilis well-characterized constitutivepromoter P43replaced the promoter of the glv operon in B. subtilis chromosome through adouble crossover event, yelding B. subtilis BCYL. The β-galactosidase production from theimproved system (21U/mL) increased compared to that from origin system. Meanwhile, therepression caused by glucose was further alleviated.
     4. To screen and isolate strong promoters, a promoter trap vector pShuttleF was used inthis study. Using the vector, approximately200colonies containing likely promoters fromBacillus licheniformis genomic DNA were obtained. Amongst them, pShuttle-09exhibited thehighest β-Gal activities in both Escherichia coli and B. subtilis (14016Mill U and16417MillU, respectively). A sequencing analysis showed that pShuttle-09contained PluxSand truncatedluxS in-frame fused with the reporter gene as well as another fragment upstream of PluxScontaining a putative promoter. Reconstructing the hybrid promoter from pShuttle-09to PlapSfurther improved the β-Gal production by1.6folds. By using of the PlapS, β-Gal and BioI weresuccessfully expressed in B. subtilis.
     In conclusion, a facilitated E.coli-B. subtilis shuttle vecoter, inducible expression systemand promoter trap system were developed in this study. By using of these expression elements,the target genes were high-level expressed in B. subtilis. Thus, we provided a potential tooland manipulation approach for B. subtilis genetic engendering.
引文
任增亮,堵国成,陈坚.大肠杆菌高效表达重组蛋白策略.2007.中国生物工程杂志,27(9):103-109
    沈卫锋,牛宝龙,翁宏飚,何丽华,孟智启.2005.枯草芽孢杆菌作为外源基因表达系统的研究进展.浙江农业学报,17(14):234-238
    解庭波.2008.大肠杆菌表达系统的研究进展.长江大学学报,5(3):78-82
    邹立扣,王红宁,潘欣.2003.枯草芽孢杆菌整合载体研究进展.生物技术通讯,14(6):525-527.
    Aiyar SE, Gourse RL, Ross W.1998. Upstream A-tracts increase bacterial promoter activity throughinteractions with the RNA polymerase alpha subunit. Proc Natl Acad Sci,95:14652-14657
    Alonso JC and Tailo RH.1988. Initiation of plasmid pC194replication and its control in Bacillus subtilis.Mol Gen Genet,210:476-84.
    Anagnostopoulos C, Spizizen J.1961. Requirements for transformation in Bacillus subtilis. J Bacteriol,81:741–746
    Anne KD, Amy KK, Handelsman J.2003. Use of a promoter trap to identify Bacillus cereus genesregulated by tomato seed exudate and a Rhizosphere resident, Pseudomonas aureofaciens. Appl EnvironMicrobiol,69:1197–1205
    Aoki S, Kondo T, Ishiura M.2002. A promoter-trap vector for clock-controlled genes in thecyanobacterium Synechocystis sp. PCC6803. J Microbiol Meth,49:265-274
    Aoki T, Noguchi N, Sasatsu M, Kono M.1987. Complete nucleotide sequence of pTZ12, achloramphenicol-resistance plasmid of Bacillus subtilis. Gene,51(1):107-11.
    Baneyx F.1999. Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol,10:411-421
    Becker E, Herrera NC, Gunderson FQ, Derman AI, Dance AL, Sims J, Larsen RA, Pogliano J.2006. DNAsegregation by the bacterial actin AlfA during Bacillus subtilis growth and development. EMBO J,25:5919-5931.
    Bendtsen KM, Erdossy J, Csiszovszki Z, Svenningsen SL, Sneppen, Krishna1S, Semsey S.2011. Directand indirect effects in the regulation of overlapping promoters. Nucl Acids Res,39:6879–6885.
    Benson AK, Haldenwang WG.1993. The σB-dependent promoter of the Bacillus subtilis sigB operon isinduced by heat shock. J Bacteriol,175:1929-1935
    Bhavsar AP, Zhao XM, Brown ED.2001. Development and characterization of a xylose-dependent systemfor cloned gene in Bacillus subtilis: conditional complementation of a Teichoic acid mutant. ApplEnviron Microbiol,67:403-410
    Bi C, Jones SW, Hess DR, Tracy BP, Papoutsakis ET.2011. SpoIIE is necessary for asymmetric division,sporulation, and expression of sigma F, sigma E, and sigma G but does not control solvent production inClostridium acetobutylicum ATCC824. J Bacteriol,193(19):5130-5137
    Birgit H, Susanne K, Erhard B.1994. pOSEX: vectors for smotically controlled and finely tuned geneexpression in Escherichia coli. Gene,151:137-142
    Biswas I, Jha JK, Fromm N.2008. Shuttle expression plasmids for genetic studies in Streptococcus mutans.Microbiol,154(8):2275-82.
    Bolhuis A, Sorokin A, Azevedo V, Ehrlich SD, Braun PG, De Jong A, Venema G, Bron S, Van Dijl JM.1996. Bacillus subtilis can modulate its capacity and specificity for protein secretion through temporallycontrolled expression of sips gene for signal peptidase I. Mol Microbiol,22:605–618
    Botella E, Fogg M, Jules M, Piersma S, Doherty G, Hansen A, Denham EL, Chat LL, Veiga P, Bailey K,Lewis PJ, van Dijl JM, Aymerich S, Wilkinson AJ, Devine1KM.2010. pBaSysBioII: an integrativeplasmid generating gfp transcriptional fusions for high-throughput analysis of gene expression inBacillus subtilis. Microbiol,156:1600-1608
    Bongers RS, Veening JW, Wieringen WV, Kuipers OP, Kleerebezem M.2005. Development andcharacterization of a subtilin-regulated expression system in Bacillus subtilis: strict control of geneexpression by addition of subtilin. Appl Environ Microbiol,71:8818-8824
    Brautaset T, Lale R, Valla S.2009. Positively regulated bacterial expression systems. Microbiol Biotechnol,2:15-30
    Branislav V and Gerard V.2000. Expression of the neutral protease gene from a thermophilic Bacillus sp.BT1strain in Bacillus subtilis and its natural host: Identification of a functional promoter. J Bacteriol,182:4104-4107
    Bron S, Bosma P, van Belkum M, Luxen E.1987. Stability function in the Bacillus subtilis plasmid pTA1060. Plasmid,18(1):8-15.
    Bron S (1990). Plasmids. In: Harwood CR, Cutting SM (eds) Molecular biological methods for Bacillus.John Wiley and Sons, New York pp75–174
    Bron S, Bolhuis A, Tjalsma H, Holsappel S, Venema G, van Dijl JM.1998. Protein secretion and possiblerole for multiple signal peptidases for precursor processing in Bacilli. J Biotechnol,64:3–13
    Campbell CS, Mullins RD.2007. In vivo visualization of type II plasmid segregation: bacterial actinfilaments pushing plasmids. J Cell Biol,179:1059-1066.
    Cao M, Helmann JD.2004. The Bacillus subtilis extracytoplasmic-function sigma X factor regulatesmodification of the cell envelope and resistance to cationic antimicrobial peptides. J Bacteriol,186:1136-1146.
    Caramori T, Galizzi A.1998. The UP element of the promoter for the flagellin gene, hag, stimulatestranscription from both SigD and SigA dependent promoters in Bacillus subtilis. Mol Gen Genet,258:385-388
    Chary VK, Xenopoulos P, Piggot PJ.2007. Expression of the sigma F-directed csfB locus preventspremature appearance of sigma G activity during sporulation of Bacillus subtilis. J Bacteriol,189:8754-8757.
    Chen PT, Shaw JF, Chao YP, David Ho TH, Yu SM.2010. Construction of chromosomally located T7expression system for production of heterologous secreted proteins in Bacillus subtilis. J Agric FoodChem,58:5392-5399
    Chen R, Guttenplan SB, Blair KM, Kearns DB.2009. Role of the sigma D-dependent autolysins inBacillus subtilis population heterogeneity. J Bacteriol,191:5775-84.
    Chhabra SR, He Q, Huang KH, Gaucher SP, Alm EJ, He Z, Hadi MZ, Hazen TC, Wall JD, Zhou J, ArkinAP, Singh AK.2006. Global analysis of heat shock response in Desulfovibrio vulgaris Hildenborough. JBacteriol,88:1817-1828.
    Chiang CJ, Chen PT, Chao YP.2010. Secreted production of Renilla luciferase in Bacillus subtilis.Biotechnol Prog,26:589-594
    Cui ZL, Zhang XZ, Zhang ZH, Li SP.2004. Construction and application of a promoter-trapping vectorwith methyl parathion hydrolase gene mpd as the reporter. Biotechnol Lett,26:1115-1118
    de la Hoz AB, Ayora S, Sitkiewicz I, Fernández S, Pankiewicz R, Alonso JC, Ceglowski Pi.2000. Plasmidcopy-number control and better-than-random segregation genes of pSM19035share a common regulator.Proc Natl Acad Sci,97:728-733.
    Denise K, Andre C, Kai O, Gerhard Ro.2011. xylA promoter of Bacillus megaterium mediates constitutivegene expression in Escherichia coli. Eng Life Sci,2011,11:458-462
    Dikshit KL, Yutaka O, Navani N, Patel S, Huang H, Stark BC, Webster DA.1998. Site-directedmutagenesis of bacterial hemoglobin: the role of glutamine (T7) in oxygen-binding in the distal hemepocket. Arch Biochem Biophys,349:161–166
    Dmowski M, Sitkiewicz I, Ceglowski P.2006. Characterization of a novel partition system encoded by thedelta and omega genes from the streptococcal plasmid pSM19035. J Bacteriol,188:4362-4372
    Eijnenburg CM, Bron S, Venema G.1987. Structural plasmid instability in recombination-andrepair-deficient strains of Bacillus subtilis. Plasmid,17:167-170
    Eima R, Venema G, Bron S.1996. A positive selection vector for the analysis of structural plasmidinstability in Bacillus subtilis. Plasmid,35:14-30
    Elsholz AK, Hempel K, Michalik S, Gronau K, Becher D, Hecker M, Gerth U.2011. Activity control of theClpC adaptor McsB in Bacillus subtilis. J Bacteriol,193:3887-93.
    Elsholz AK, Michalik S, Zühlke D, Hecker M, Gerth U.2010. CtsR, the Gram-positive master regulator ofprotein quality control, feels the heat. EMBO J,29:3621-3629.
    Ehrlich SD, Bruand C, Sozhamannan S, Dabert P, Gros MF, Janniere L, Gruss A.1991. Plasmid replicationand structural stability in Bacillus subtilis. Res Microbiol,142:869-873.
    Eric RP, Blair KM, Kearns DB.2012. Modified mariner transposons for random inducible-expressioninsertions and transcriptional reporter fusion insertions in Bacillus subtilis. Appl Environ Microbiol,78:778-785.
    Eugeni B, Agnieszka S, Fran ois L, Anne M, Damien M, Christos O, David V, Claudine M, Antoine D.2013. An updated metabolic view of the Bacillus subtilis168genome. Microbiol,159:757-770.
    Ferguson CC, Camp AH, Losick R.2007. gerT, a newly discovered germination gene under the control ofthe sporulation transcription factor sigma K in Bacillus subtilis. J Bacteriol,189:7681-7689
    Garner EC, Campbell CS, Weibel DB, Mullins RD.2007. Reconstitution of DNA segregation driven byassembly of a prokaryotic actin homolog. Science,315:1270-1274.
    Gat O, Inbar I, Zahavy RAG, Zahavy E, Kronman C, Mendelson I, Cohen S, Velan B, Shafferman A.2003.Use of a promoter trap system in Bacillus anthracis and Bacillus subtilis for the development ofrecombinant protective antigen-based vaccines. Infection immunity,71:801-813.
    Gilbert W, Müller-Hill B.1966. Isolation of the lac repressor. Proc Natl Acad Sci,56:1891-1898.
    Gina LL, Karen S, Gerrit JS, Yang F, Jenney Jr FE, Scott RA, Adams MWW, Westpheling J.2011. Naturalcompetence in the Hyperthermophilic Archaeon Pyrococcus furiosus facilitates genetic manipulation:Construction of markerless deletions of genes encoding the two cytoplasmic hydrogenases. Appl EnvironMicrobiol,77:2232-2238.
    Girbal L, Mortier-Barrière I, Raynaud F, Rouanet C, Croux C, Soucaille P.2003. Development of asensitive gene expression reporter system and an inducible promoter-repressor system for Clostridiumacetobutylicum. Appl Environ Microbiol,69:4985-4988.
    Gryczan TJ, Hahn J, Contente S, Dubnau D.1982. Replication and incompatibility properties of plasmidpE194in Bacillus subtilis. J Bacteriol,152:722-35.
    Hadjifrangiskou M, Chen Y, Koehler TM.2007. The alternative sigma factor sigma H is required for toxingene expression by Bacillus anthracis. J Bacteriol,189(5):1874-1883.
    Hannig G, Makrides SC.1998. Strategies for optimizing heterologous protein expression in Escherichiacoli. Trends Biotechnol,16:54-60.
    Hannes H, Ulrike M, Andreas O.2010. A comprehensive proteomics and transcriptomics analysis ofBacillus subtilis salt stress adaptation. J Bacteriol,192:870-882.
    Hartl B, Wehrl W, Wiegert T, Homuth G, Schumann W.2001. Development of a new integration site withinthe Bacillus subtilis chromosome and construction of compatible expression cassettes. J Bacteriol,183:2696-2699.
    Helmann JD.1995. Compilation and analysis of Bacillus subtilis sigma A dependent promoter sequences:evidence for extended contact between RNA polymerase and upstream promoter DNA. Nucl Acids Res,23:2351-2360.
    Helmann JD.2002. The extracytoplasmic function (ECF) sigma factors. Adv Microb Physiol,46:47-110.
    Helmann JD.2006. Deciphering a complex genetic regulatory network: the Bacillus subtilis sigma Wprotein and intrinsic resistance to antimicrobial compounds. Sci Prog,89:243-266.
    Heravi KM, Wenzel M, Altenbuchner J.2011. Regulation of mtl operon promoter of Bacillus subtilis:requirements of its use in expression vectors. Microb Cell Fact,10:83.
    Hertz GZ, Stormo GD.1996. Escherichia coli promoter sequences: analysis and prediction. MethodsEnzymol,273:30-42.
    Hirata H, Fukazawa T, Negoro S, Okada H.1986. Structure of a β-galactosidase gene of Bacillusstearothermophilus. J Bacteriol,166:722-727.
    Hirofumi N, Shigeru M, Motoo S, Eiji T, Akinobu O.2011. Development and application of a method forcounter-selectable in-Frame deletion in Clostridium perfringens. Appl Environ Microbiol,77:1375–1382.
    Hiroshi I, Tanaka T, Ogura M.2013. The Bacillus subtilis response regulator gene degU is positivelyregulated by CcpA and by catabolite-repressed synthesis of ClpC. J Bacteriol,195:193-201.
    Hitomi M, Nishimura H, Tsujimoto Y, Matsui H, Watanabe K.2003. Identification of a helix-turn-helixmotif of Bacillus thermoglucosidasius HrcA essential for binding to the CIRCE element andthermostability of the HrcA-CIRCE complex, indicating a role as a thermosensor. J Bacteriol,185:381-385.
    Hook-Barnard IG, Hinton DM.2007. Transcription initiation by mix and match elements: flexibility forpolymerase binding to bacterial promoters. Gene Regul Syst Bio,1:275-293.
    Horton PB, Kanehisa M.1992. An assessment of neural network and statistical approaches for prediction ofE. coli promoter sites. Nucleic Acids Res,20:4331-4338.
    Huerta AM, Collado-Vides J.2003. Sigma70promoters in Escherichia coli: specific transcription in denseregions of overlapping promoter-like signals. J Mol Biol,333:261-278
    Ionescu M, Elgrably-Weiss M, Elad T, Rasouly A, Yagur-Kroll S, Belkin S.2011. Negative regulation ofσ70-driven promoters by σ70. Res Microbiol,162:461-469.
    James AC, Philip ES, Patricia R, Elias AF, Garon CF.2003. An enhanced GFP reporter system to monitorgene expression in Borrelia burgdorferi. Microbiol,149:1819-1828.
    Jan K, Beatrica S.2002. Stress-response sigma factor σHdirects expression of the gltB gene encodingglutamate synthase in Streptomyces coelicolor A3. BBA-Gene Structure and Expression,1577:149-154.
    Jeanine A, Nadia L, Névine ES.1998. Characterization of a Staphylococcal plasmid related to pUB110andcarrying two novel genes, vatC and vgbB, encoding resistance to streptogramins A and B and similarantibiotics. Antimicrob Agents Chemother,42:1794-1798.
    Shaw AJ, Covalla SF, Hogsett DA, Herring CD.2011. Marker removal system for thermoanaerobacteriumsaccharolyticum and development of a markerless Ethanologen. Appl Environ Microbiol,77:2534–2536.
    Johansen J, Rasmussen AA, Overgaard M, Valentin-Hansen P.2006. Conserved small non-coding RNAsthat belong to the sigma E regulon: role in down-regulation of outer membrane proteins. J Mol Biol,364:1-8.
    Jonasson P, Liljeqvist S, Nygren PA, Stahl S.2002. Genetic design for facilitated production and recoveryof recombinant proteins in Escherichia coli. Biotechnol Appl Biochem,35:912-105.
    Kaltwasser M, Wiegert T, Schumann W.2002. Construction and application of epitope-and greenfluorescent protein-tagging integration vectors for Bacillus subtilis. Appl Environ Microbiol,68:2624-2628.
    Kang HK, Jang JH, Shim JH, Park JT, Kim YW.2010. Efficient constitutive expression of thermostable4-α-glucanotransferase in Bacillus subtilis using dual promoters. World J Microbiol Biotechnol,26:1915-1918.
    Karmazyn-Campelli C, Rhayat L, Carballido-López R, Duperrier S, Frandsen N, Stragier P.2008. How theearly sporulation sigma factor sigma F delays the switch to late development in Bacillus subtilis. MolMicrobiol,67:1169-1180
    Kim L, Mogk A, Schumann W.1996. A xylose inducible Bacillus subtilis integration vector and itsapplication. Gene,181:71-76.
    Kingston AW, Subramanian C, Rock CO, Helmann JD.2011. A σW-dependent stress response in Bacillussubtilis that reduces membrane fluidity. Mol Microbiol,81:69-79.
    Kullik I, Giachino P.1997. The alternative sigma factor sigB in Staphylococcus aureus: regulation of thesigB operon in response to growth phase and heat shock. Arch Microbiol,167:151-159.
    Kumar A, Brannigan JA, Moran CP.2004. Alpha-helix E of Spo0A is required for sigma A-but not forsigma H-dependent promoter activation in Bacillus subtilis. J Bacteriol,186:1078-1083.
    Kunst F, Ogasawara N, Moszer I, Albertini A M, Alloni G, et al.1997. The complete genome sequence ofthe gram-positive bacterium Bacillus subtilis. Nature,390:249-256.
    Leenhouts KJ, Kok J, Venema G.1991. Lactococcal plasmid pWV01as an integration vector for lactococci.Appl Environ Microbiol,57:2562-2567.
    Li MJ, Wang JS, Geng YP, Li Y, Wang Q, Liang Q.2012. A strategy of gene overexpression based ontandem repetitive promoters in Escherichia coli. Microb Cell Fact,11:19.
    Li WF, Zhou XX, Lu P.2004. Bottlenecks in the expression and secretion of heterologous proteins inBacillus subtilis. Res Microbiol,155:605-610.
    Liu SL, Du K.2012. Enhanced expression of an endoglucanase in Bacillus subtilis by using thesucrose-inducible sacB promoter and improved properties of the recombinant enzyme. Protein ExprPurif,83:164-8.
    Liang R, Liu J, Ren Q, Rena Q, LiangP, Lin Z, Xie X.2007. A T7expression system under temperaturecontrol could create temperature sensitive phenotype of target gene in Escherichia coli. J Microbiol Meth,68:497-506
    Ludek S, Tomás K, Ivan B.2011. Rapid changes in gene expression: DNA determinants of promoterregulation by the concentration of the transcription initiating NTP in Bacillus subtilis. Nucl Acids Res,39:4598–4611.
    Luo Y, Helmann JD.2012. A σD-dependent antisense transcript modulates expression of the cyclic-di-AMPhydrolase GdpP in Bacillus subtilis. Microbiol,158:2732-2741.
    Maciag IE, Viret JF, Alonso JC.1988. Replication and incompatibility properties of plasmid pUB110inBacillus subtilis. Mol Gen Genet,212:232-240.
    Marian W, Alexander M, Martin SH, Josef A.2011. Self-inducible Bacillus subtilis expression system forreliable and inexpensive protein production by high-cell-density fermentation. Appl Environ Microbiol,77:6419-6425.
    Meijer WJ, de Boer AJ, van Tongeren S, Venema G, Bron S.1995. Characterization of the replicationregion of the Bacillus subtilis plasmid pLS20: a novel type of replicon. Nucl Acids Res.1995,23:3214-3223.
    Mujahid S, Orsi RH, Boor KJ, Wiedmann M.2013. Protein level identification of the Listeriamonocytogenes sigma H, sigma L, and sigma C regulons. BMC Microbiol,13:156.
    Molière N, Turgay K.2009. Chaperone-protease systems in regulation and protein quality control inBacillus subtilis. Res Microbiol,160:637-644.
    Murray EJ, Strauch MA, Stanley-Wall NR.2009. Sigma X is involved in controlling Bacillus subtilisbiofilm architecture through the AbrB homologue Abh. J Bacteriol,191:6822-6832.
    Mutalik VK, Nonaka G, Ades SE, Rhodius VA, Gross CA.2009. Promoter strength properties of thecomplete sigma E regulon of Escherichia coli and Salmonella enterica. J Bacteriol,191:7279-7287.
    Nguyen HD, Nguyen QA, Ferreira RC, Ferreirac LCS, Tranb LT, Schumanna W.2005a. Construction ofplasmid-based expression vectors for Bacillus subtilis exhibiting full structural stability. Plasmid,54:241-248.
    Nguyen HD, Phan TT, Schumann W.2005b. Expression vectors for the rapid purification of recombinantproteins in Bacillus subtilis. Curr Microbiol,55:89-93.
    Nguyen HD, Schumann W.2006. Novel plasmid-based expression vectors for intra-and extracellularproduction of recombinant proteins in Bacillus subtilis. Prot Expr Purif,46:189-195.
    Nguyen TT, Eiamphungporn W, M der U, Liebeke M, Lalk M, Hecker M, Helmann JD, Antelmann H.2009. Genome-wide responses to carbonyl electrophiles in Bacillus subtilis: control of thethiol-dependent formaldehyde dehydrogenase AdhA and cysteine proteinase YraA by the MerR-familyregulator YraB (AdhR). Mol Microbiol,71:876-894.
    Nuc P, Nuc K.2006. Recombinant protein production in Escherichia coli. Postepy Biochem,52:4482-4561.
    Ou J, Yamada Y, Nagahisa K, Hirasawa T, Furusawa C, Yomo T, Shimizu H.2008. Dynamic change inpromoter activation during lysine biosynt hesis in Escherichia coli cells. Mol Biosyst,4:128-134.
    Paccez JD, Luiz WB, Sbrogio-Almeida ME, Ferreiraa RCC, Schumannc W, Ferreiraa LCS.2006. Stableepisomal expression system under control of a stress inducible promoter enhances the immunogenicity ofBacillus subtilis as a vector for antigen delivery. Vaccine,24:2935-2943.
    Palomino MM, Sanchez-Rivas C, Ruzal SM.2009. High salt stress in Bacillus subtilis: involvement ofPBP4as a peptidoglycan hydrolase. Res Microbiol,160:117-124.
    Pané-Farré J, Jonas B, Hardwick SW, Gronau K, Lewis RJ, Hecker M, Engelmann S.2009. Role of RsbUin controlling SigB activity in Staphylococcus aureus following alkaline stress. J Bacteriol,191:2561-2573.
    Papenfort K, Pfeiffer V, Mika F, Lucchini S, Hinton JC, Vogel J.2006. Sigma E-dependent small RNAs ofSalmonella respond to membrane stress by acelerating global omp mRNA decay. Mol Microbiol,62:1674–1688.
    Petersohn A, Bernhardt J, Gerth U, H per D, Koburger T, V lker U, Hecker M.1999. Identification ofσB-dependent genes in Bacillus subtilis using a promoter consensus-directed search and oligonucleotidehybridization. J Bacteriol,181:5718-5724.
    Phan TT, Nguyen HD, Schumann W.2010. Establishment of a simple and rapid method to screen for strongpromoters in Bacillus subtilis. Prot Expr Purif,71:174-178.
    Phan TT, Nguyen HD, Schumann W.2012. Development of a strong intracellular expression system forBacillus subtilis by optimizing promoter elements. J Biotechnol,157:167-72.
    Prax M, Lee CY, Bertram R.2013. An update on the molecular genetics toolbox for staphylococci.Microbiol,159:421-435.
    Rattanama P, Thompson JR, Kongkerd N, Srinitiwarawong K, Vuddhakul V, Mekalanos JJ.2012. Sigma Eregulators control hemolytic activity and virulence in a shrimp pathogenic Vibrio harveyi. PLoS One,7:e32523.
    Regan G, Itaya M, Piggot PJ.2012. Coupling of σGactivation to completion of engulfment duringsporulation of Bacillus subtilis survives large perturbations to DNA translocation and replication. JBacteriol,194:6264-6271.
    Reischl S, Wiegert T, Schumann W.2002. Isolation and analysis of mutant alleles of the Bacillus subtilisHrcA repressor with reduced dependency on GroE function. J Biol Chem,277:32659-32667.
    Rhodius VA, Suh WC, Nonaka G, West J, Gross CA.2006. Conserved and variable functions of the σEstress response in related genomes. PLoS Biol,4:43-59.
    Rhodius VA, Mutalik VK.2010. Predicting strength and function for promoters of the Escherichia colialternative sigma factor, sigma E. Proc Nat Acad Sci,107:2854-2859.
    Ringus DL, Gaballa A, Helmann JD, Wiedmann M, Boor KJ.2013. Fluoro-phenyl-styrene-sulfonamide, anovel inhibitor of σBactivity, prevents the activation of σBby environmental and energy stresses inBacillus subtilis. J Bacteriol,195:2509-2517.
    Roland JS, Bernadet R, Iris van S, Sander P, van Kranenburg R, Michiel K and de Vos WM.2005.Complete sequences of four Plasmids of Lactococcus lactis subsp. cremoris SK11reveal extensiveadaptation to the dairy environment. Appl Environ Microbiol,71:8371-8382.
    Romero D, Pe′reZ-Garcia A, Veening JW, de Vicentea A, Kuipers OP.2006. Transformation ofundomesticated strains of Bacillus subtilis by protoplast electroporation. J Microbiol Meth,66:556-559.
    Rygus T, Hillen W.1991. Inducible high-level expression of heterologous genes in Bacillus megateriumusing the regulatory elements of the xylose-utilization operon. Appl. Microbiol Biotechnol,35:594-599.
    Sambrook J, Fitsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual Cold Spring Harbor: ColdSpring Harbor Press;1989.
    Schallmey M, Singh A, Ward OP.2004. Developments in the use of Bacillus species for industrialproduction. Can J Microbiol,50:1-17.
    Schumann W.2007. Production of recombinant proteins in Bacillus subtilis, Adv Appl Microbiol,62:137-189.
    Shin JH, Price CW.2007. The SsrA-SmpB ribosome rescue system is important for growth of Bacillussubtilis at low and high temperatures. J Bacteriol,189:3729-3737.
    Song K.2012. Recognition of prokaryotic promoters based on a novel variable-window Z-curve method.Nucl Acids Res,40:963–971.
    Staron A.2009. The third pillar of bacterial signal transduction: classification of the extracytoplasmicfunction (ECF) sigma factor protein family. Mol Microbiol,74:557-581.
    Stormo GD.2000. DNA binding sites: representation and discovery. Bioinformatics,16:16-23.
    Tao L, Chattoraj P, Biswas I.2012. CtsR regulation in mcsAB-deficient Gram-positive bacteria. J Bacteriol,194:1361-1368.
    Tauch A, Kassing F, Kalinowski J and Pühler A.1995. The erythromycin resistance gene of theCorynebacterium xerosis R-plasmid pTP10also carrying chloramphenicol, kanamycin, and tetracyclineresistances is capable of transposition in Corynebacterium glutamicum. Plasmid,33:168-179.
    Tauch A, Krieft S, Kalinowski J and Pühler A.2000. The51,409-bp R-plasmid pTP10from themultiresistant clinical isolate Corynebacterium striatum M82B is composed of DNA segments initiallyidentified in soil bacteria and in plant, animal, and human pathogens. Mol Gen Genet,263:1-11.
    Tauch A, Pühler A, Kalinowski J and Thierbach G.2003. Plasmids in Corynebacterium glutamicum andtheir molecular classification by comparative genomics. J Biotechnol,4:27-40.
    Terpe K.2006. Overview of bacterial expression systems for heterologous protein production: frommolecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol,72:2112-2221.
    Teruo T.2010. Functional Analysis of the Stability Determinant AlfB of pBET131, a MiniplasmidDerivative of Bacillus subtilis (natto) Plasmid pLS32. J Bacteriol,192:1221–1230.
    Thomas DJ, Morgan JA, Whipps JM and Saunders JR.2002.Transfer of plasmid pBC16between Bacillusthuringiensis strains in non-susceptible larvae. FEMS Microbiol Ecol,40:181-190.
    Thompson KM, Rhodius VA, Gottesman S.2007. Sigma E regulates and is regulated by a small RNA inEscherichia coli. J Bacteriol,189:4243-4256.
    Titok MA, Chapuis J, Selezneva YV, Lagodich AV, Prokulevich VA, Ehrlich SD, Jannière L.2003. Bacillussubtilis soil isolates: plasmid replicon analysis and construction of a new theta-replicating vector.Plasmid,49:53-62.
    Titok MA, Suski C, Dalmais B, Ehrlich SD, Jannière L.2006. The replicative polymerases PolC and DnaEare required for theta replication of the Bacillus subtilis plasmid pBS72. Microbiol,152:1471-1478.
    van Belkum MJ, Stiles ME.2006. Characterization of the theta-type plasmid pCD3.4from Carnobacteriumdivergens, and modulation of its host range by RepA mutation. Microbiol,152:171-178.
    van der Geize R, de Jong W, Hessels GI.2008. A novel method to generate unmarked gene deletions in theintracellular pathogen Rhodococcus equi using5-fluorocytosine conditional lethality. Nucl Acids Res,36:e151.
    Versteeg S, Mogk A, Schumann W.1999. The Bacillus subtilis htpG gene is not involved in thermal stressmanagement. Mol Gen Genet,261:582-588.
    Wang PZ, Doi RH.1984. Overlapping promoters transcribed by Bacillus subtilis sigma55and sigma37RNApolymerase holoenzymes during growth and stationary phase. J Biol Chem,259:8619-8625.
    Wang Y, Weng J, Waseem R.2012. Bacillus subtilis genome editing using ssDNA with short homologyregions. Nucl Acids Res,40: e91.
    Wang YG, Xia QY, Gu WL, Sun JB, Zhang H, Lu XH, Lu J, Peng M, Zhang X.2011. Isolation of a strongpromoter fragment from endophytic Enterobacter cloacae and verification of its promoter activity whenits host strain colonizes banana plants. Appl Microbiol Biotechnol,93:1585–1599.
    Werhane H, Lopez P, Mendel M, Zimmer M, Ordal GW, Márquez-Maga a LM.2004. The last gene of thefla/che operon in Bacillus subtilis, ylxL, is required for maximal sigma D function. J Bacteriol,186:4025-4029.
    Westers H, Westers L, Darmon E, van Dijl JM, Quax WJ, Zanen G.2006. The CssRS two-componentregulatory system controls a general secretion stress response in Bacillus subtilis. FEBS J,273:3816-3827.
    Wiegert T, Hagmaier K, Schumann W.2004. Analysis of orthologous hrcA genes in Escherichia coli andBacillus subtilis. FEMS Microbiol Lett,234:9-17.
    Wilfried JJ. Meijer GV, Bron S.1995. Characterization of single strand origins of cryptic rolling-circleplasmids from Bacillus subtilis. Nucl Acids Res,23:612-619.
    Wolfgang Schumann.2003. The Bacillus subtilis heat shock stimulon. Cell Stress Chaperon,8:207-217.
    Wu SC, Wong SL.2002. Engineering of a Bacillus subtilis strain with adjustable levels of intracellularbiotin for secretory production of functional streptavidin. Appl Environ Microbiol,68:1102-1108.
    Wu SM, Feng C, Zhong J, Huang LD.2011. Enhanced production of recombinant nattokinase in Bacillussubtilis by promoter optimization. World J Microbiol Biotechnol,27:99-106.
    Wu XC, Lee W, Tran L, Wong SL.1991. Engineering a Bacillus subtilis expression-secretion system with astrain deficient in six extracellular proteases. J Bacteriol,173:4952-4958.
    Xia Y, Chen W, Zhao J, Tian F, Zhang H, Ding X.2007. Construction of a new food-grade expressionsystem for Bacillus subtilis based on theta replication plasmids and auxotrophic complementation. ApplMicrobiol Biotechnol,76:643-650.
    Xue GP, Johnson JS, Dalrymple BP.1999. High osmolarity improves the electro-transformation efficiencyof the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis. J Microbiol Meth,34:183-191
    Yamamoto H, Serizawa M, Thompson J, Sekiguchi J.2001. Regulation of the glv operon in Bacillussubtilis: YfiA (GlvR) is a positive regulator of the operon that is repressed through CcpA and cre. JBacteriol,183:5110-5121.
    Yang CK, Tai PC, Lu CD.2013. Time-related transcriptome analysis of B. subtilis168during growth withglucose. Curr Microbiol,1-9.
    Yansura DG, Henner DJ.1984. Use of the Escherichia coli lac repressor and operator to control geneexpression in Bacillus subtilis. Proc Natl Acad Sci,81:439-443.
    Ying Q, Zhang C, Guo F, Wang S, Bie X, Lu F, Lu Z.2012. Secreted expression of a hyperthermophilicα-amylase gene from Thermococcus sp. HJ21in Bacillus subtilis. J Mol Microbiol Biotechnol,22:392-398.
    Yomantas YAV, Abalakina EG, Golubeva LI.2011. Overproduction of Bacillus amyloliquefaciensextracellular glutamyl-endopeptidase as a result of ectopic multi-copy insertion of anefficientlyexpressed mpr gene into the Bacillus subtilis chromosome. Microbial Cell Fact,10:64.
    Zhang S, Reeves A, Woodbury RL, Haldenwang WG.2005. Co-expression patterns of σBregulators inBacillus subtilis affect σBinducibility. J Bacteriol,187:8520-8525.
    Zhang XZ, Cui ZL, Qing H, Li SP.2005. High-Level Expression and Secretion of Methyl ParathionHydrolase in Bacillus subtilis WB800. Appl Environ Microbiol,71:4101-4103.
    Zhang XZ, Yan X, Cui ZL, Hong Q, Li SP.2006. MazF, a novel counter-selectable marker for unmarkedchromosomal manipulation in Bacillus subtilis. Nucl Acids Res,9: e71.
    Zhou JX, Okinaga T, Qi F, Zhang Z, Merritt J.2011. Cloning-independent and counterselectable markerless mutagenesis system in Streptococcus mutans. Appl Environ Microbiol,77:8025–8033.
    Zhou R, Chen K, Xiang X, Gu L, Kroos L.2013. Features of Pro-σKimportant for cleavage by SpoIVFB,an intramembrane metalloprotease. J Bacteriol,195:2793-2806.
    Zhu FM, Ji SY, Zhang WW, Li W, Cao BY, Yang MM.2008. Development and application of a novelsignal peptide probe vector with PGA as reporter in Bacillus subtilis WB700: twenty-four Tat pathwaysignal peptides from Bacillus subtilis were monitored. Mol Biotechnol,39:225-230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700