角毛壳菌抗药性基因转化子的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验以角毛壳菌(Chaetomium cupreum)及其抗药性基因转化子C1、C2为实验材料,对角毛壳菌(C. cupreum)抗药性基因转化子从生理特性、培养特性、生物防治特性、产细胞壁降解特性四方面进行研究,为转化子的发酵生产与田间应用提供了科学的理论依据。
     对角毛壳菌(C. cupreum)转化子生物学特性的研究表明:转化子C1、C2对多菌灵的抗性可达到40~50μg/mL,这比野生型菌株提高了70~80倍。而转化子在菌落形态、生长速度、菌丝形态上与野生型菌株发生了较大的改变,主要表现在菌落颜色变深、生长速度减慢、菌丝间隔变大、子囊壳颜色变深等方面。通过改变不同的培养条件观察转化子的生长状态可知:PSA培养基和基本培养基对转化子的菌落生长和产子囊孢子最为有利,其次为PDA培养基,而查氏培养基最不利于转化子的生长;转化子的最适生长pH值为pH 5.5~7,温度为25℃;转化子可以很好的利用半乳糖、蔗糖、果糖为碳源,利用蛋白胨、牛肉浸膏为氮源,而麦芽糖、乳糖、脲素对转化子的生长不利。
     对转化子室内拮抗作用的研究表明:转化子C1、C2对立枯丝核菌(Rhizoctonia solani)、杨树叶枯病菌(Aftrnaria alternata)、核盘菌( Sclerotinia sclrotiorum)的拮抗作用没有发生改变,对尖孢镰刀菌(Fusarium oxysporum)的拮抗作用与野生型菌株相比有所下降,而角毛壳菌(C. cupreum)及其转化子对大豆疫霉菌(Phytophthora sojae)的拮抗效果都不是很理想。
     对转化子产细胞壁降解的研究发现:角毛壳菌(C. cupreum)及其转化子在5种病原菌细胞壁的诱导下都可以产生β-1,3-葡聚糖和几丁质,其中以杨树叶枯病菌(A. alternata)和立枯丝核菌(R. solani)细胞壁为诱导物产的效果最好。C1、C2与野生型角毛壳菌(C. cupreum)的产特性基本相同,只是在产时间上比野生型延迟2~3 d。通过与室内拮抗作用结果相联系发现角毛壳菌(C. cupreum)和转化子产细胞壁降解的活性的高低与它们对病原菌的拮抗作用有关,说明细胞壁降解在对病原菌的拮抗作用中起关键作用。
     综合四方面的研究可以看出:转化子C1、C2是优良的生物防治菌,不仅自身对植物病原菌显示出良好的拮抗作用,更重要的是它们可以和低剂量的化学农药共同使用,建立起化学防治和生物防治共同作用的综合防治体系,以提高对植物病害的防治效率。
The experiment takes Chaetomium cupreum and its pesticide resistance transformants C1, C2 as material and researches on the C. cupreum carbendazol-resistance transformants from their physiological characteristics, cultural characteristics, biological control characteristics and cell wall degrading enzyme characteristics. The experiment can provide the scientific theory for the C. cupreum carbendazol-resistance transformants to apply in the fermentation production and make it better to use in the practical production.
     The experiment on the carbendazol-resistance level of transformants shows that: the resistance level of transformants C1, C2 to the carbendazol can reach to 40~50μg/mL, which is more than 70~80 times of wild-type strains.
     The research on the physiological characteristics of the transformants shows that compared with wild-type strains, the transformants have great changes in the colonial morphology, growth rate, and hypha morphology. The mainly changes perform in four aspects: the color of the colony darker, the growth velocity lower, the interval of the hypha bigger and the color of the pertithecium darker. We can also observe the transformants through changing cultivate condition. The results show that PSA medium and the basic medium are the best for the colony growth and the production of the scopospore production of the transforms, the next is PDA medium and the Czapek is the worst. The optimization pH value and temperature range for the transformants growth are pH 5.5~7, 25℃, respectively. The transformants can take galactose, cane sugar better as carcon source and peptone, extractum carnis as nitrogen source. In contrast, amylomaltose, galactosylglucose, urea are bad for the transformants growth.
     The inside antagonism experiment shows that there are no differences between transformants and wild-type strains when they antagonist with Rhizoctonia solani, Sclerotinia sclrotiorum and Aftrnaria alternata. Compared with wild-type strains, the antagonism of the transformants to Fusarium oxysporum become weaker and both the transformants and the wild-type strains don’t show strong antagonism to the Phytophthora sojae. Through the experiment we can see that the transformants C1, C2 can be taken as the good biological control strains to apply in the practice.
     The experiment on the cell wall degrading enzyme production of the transformants shows that both C. cupreum and transformants can produceβ-1,3-glucanase and chitinase induced by five pathogenic bacteria cell wall, among which the R. solani and A. alternata can be considered as the best inducer. The characteristics of the transfomants enzyme production are equal to that of the wild-type strains, excep that, the time of enzyme production of transformants are 2~3 days later than the wild-type strains. Through the comparation we can make a conclusion: the level of the transformants producing cell wall degrading enzyme is related to the antagonism to the pathogenic bacteria, which demonstrates that the cell wall degrading enzyme plays an important role in the antagonism.
     From the research on the four aspcets, the transformants C1, C2 which are the good strains in the biological control have good effect on the pathogenic bacteria and producing cell wall degrading enzyme. Not only they can contol the pathogenic bacteria by themselves, but also they can use with low dose pesticide to construct the synthesized control system to improve the efficiency.
引文
1杨谦.植物病原菌抗药性概论.黑龙江科学技术出版社, 1995: 43~44
    2赵永贵.微生物农药研究的现状及展望.河南农业大学学报. 1995, 29(3): 304~310
    3周明国,叶钟音.植物病原菌对苯并咪唑类及相关杀菌剂的抗药性.植物保护. 1987, 13(2): 31~33
    4 W. Koller. Target Site of Fungicide Action. CRC Press, 1992: 43~68
    5 H. Koenreadt, S. C. Sonerville, A. L. Jones. Characterization of Mutations in the Beta-tubulin Gene Offields Strains of Venturio inotqualisans Other Plant Pathogenic Fungi. Phytopathology. 1992, 82(11): 348~354
    6 H. Koenreadt, A. L. Jones. Resistance to Benomyl Conferred by Mutation in Codon 198 or 200 of the Beta-tubulin Gene of Neurospora crassa and Sensitivity to Diethofencarb Conferred by Codon 198. Phytopathlogy. 1993, 83(8): 850~853
    7陆悦健,周明国,叶钟音.抗苯并咪唑的小麦赤霉病菌β-tubulin基因序列分析与特性研究.植物病理学报. 2000, (1): 30~35
    8彭于发,张中鸽,黄大仿.荧光假单胞菌防治小麦全蚀病的研究.中国科学技术协会第二届青年学术年会卫星会议. 1995: 88~92
    9袁军.防治马铃薯环腐病的有益内生细菌的筛选及其用用机理的初步研究.西北农林科技大学硕士学位论文. 2000: 13~16
    10仝赞华,郭荣君.生防菌AS818抗药性标记在大豆根限定殖.微生物学通报. 2001, 28(4): 40~44
    11 W. H. Kattan, J. Tang, Cook, et al. Pathogen Weakening as a Component of Integrated Control Advances in Biological Control of Plant Diseases. China University Press, 1996: 321~325
    12宗兆锋,张晓燕.紫外线对非致病尖孢镰刀菌的诱变作用.西北农业大学学报. 1996, 24(2): 99~101
    13王勇,杨秀荣,刘水芳.拮抗木霉耐药性菌株的筛选及其与速克灵防治灰霉病的协同作用.天津农学院学报. 2002, 8(12): 19~22
    14任海英.江苏省常熟地区蚕豆镰刀菌枯萎病病原及其防治研究.南京农业大学硕士学位论文. 2002: 19~20
    15林相璀,牛赡光,董茂忠.生防细菌和甲霜灵对辣椒疫病联合防治作用评价.山东农业科学. 2003, 8(2): 35~36
    16周红姿,李宝聚,刘开启.抗药性木霉菌研究进展.北方园艺. 2003, (6): 10~11
    17丁中,刘峰,慕立义.紫外光诱导哈茨木霉产生腐霉利抗性菌株的研究.中国生物防治. 2002, 18(2): 75~78
    18 S. G. Mark, J. S. L. Raymond, B. Srirama, et al. Pathogenicity and Growth of Metarhizium anisopliae Stably Transformed to Benomyl Resistance. Current Genetics. 1990, 17(2): 129~132
    19李梅,杨谦,李常银.多菌灵抗性基因转化哈茨木霉的研究.农业环境科学学报. 2003, 22(4): 493~495
    20迟玉杰,杨谦. TUB2基因重组质粒的构建、鉴定及其在毛壳菌中的转化.高技术通讯. 2003, (2): 33~40
    21 J. Marc, Orbach, B. Elena. Cloning and Characterization of the Gene for Beta-tubulin from a Benomyl-resistant Mutant of Neurospora crassa and Its Use as a Dominant Selectable Marker. Molecular and Cellular Biology. 1986, 6(7): 2452~2461
    22刘波,叶钟音,刘经芬等.对多菌灵、速克灵具多重抗性的灰霉菌菌株性质的研究.南京农业大学学报. 1993, 4(3): 50~54
    23刘波, D. W. Hollmon,苗容等.大麦云斑病菌中抗多菌灵乙霉威株系及其抗药性对致病性作用的分子机制.植物病理学报. 1996, 26(3): 211~215
    24 J. Gareth, M. C. Kay, et al. Identification of Benzimidazole Resistance in Cladobotryum Dendroides Using a PCR-based Method. Mycol Research. 1998, 102(6): 671~675
    25陈新建,叶钟音.芦笋茎枯病菌对甲基托布津的抗药性初步研究.南京农业大学学报. 1999, 7(1): 29~32
    26周明国,叶钟音.小麦赤霉病菌对多菌灵的抗药性研究.南京农业大学学报. 1994, 17(增刊): 106~112
    27沈光斌,周明国.水稻白叶枯病菌噻枯唑抗药突变体生物学性质研究.南京农业大学学报. 2001, 2(4): 33~36
    28迟玉杰,杨谦,宋颖琦.对哈茨木霉转化子菌体形态观察及抗药性测定.哈尔滨工业大学学报. 2002, 34(6): 34~38
    29石志琦,史建荣,陈怀谷等.小麦赤霉病菌对多菌灵的抗药性研究.农药学学报. 2000, 2(4): 22~27
    30潘以楼,汪智渊,吴汉章.水稻恶苗病菌(Fusarium moniliforme)对多菌灵不同抗性菌株的菌丝生长、产孢和致病力差异.江苏农业学报. 1997, 13(2): 90~93
    31缪华军.盾壳霉抗杀菌剂农利灵突变菌株的获得、特性及其应用研究.华中农业大学硕士学位论文. 2004: 52~54
    32高克祥,刘晓光,郭润芳等.木霉菌对杨树树皮溃疡病菌拮抗作用的研究.林业科学. 2001, 37(5): 82~86
    33刘富平,朱天辉.绿粘帚霉诱变生物型(GVD)对三种病原真菌的拮抗作用. 四川林业科技. 2002, 23(4): 9~13
    34苑健羽,杨志勇,魏作全等.锈寄生菌抑制落叶松褐锈病的机理研究.沈阳农业大学学报. 1993, 24(2): 114~119
    35卢建平,林福呈,李德葆.转几丁质基因毛壳菌的抗病原真菌作用.浙江大学学报(农业与生命科学版). 2006, 32(2): 127~135
    36 C. Dennis, J. Webster. Antagonistic Properties of Species-group of Trichoderma Hyphal Interaction. Trans Br Mycol Soc. 2006, 57(4): 363~369
    37 Y. Elad, R. Barak, L .Chet. Possible Role of Lectins in Mycoparasifism. Bacterol. 2000, 154(8): 1431~1435
    38 R. Barak, L. Chet. Lectin of Sclerotiurn: Its Purification and Possible Function in Fungal Interaction. Bacterol. 1990, 69(1): 101~112
    39 J. Inbar, L. Chet. Biomimics of Fungal Cell-Cell Recognition by Use of Lectin-Coated Nylon. Bacterio. l992, 174(3): 1055~1059
    40 M. Lorito. Chitinolytic Enzymes and Their Gene. Taylor & Francis Inc.,1998: 73~92
    41 C. K. Rachel, E. Karen, Broglie, et al. Molecular Characterization of Anovel Beta-1,3-exoglucanase Related to Mycoparasitism of Trichoderma harzianum. Gene. 1999, 226(2): 147~154
    42 L. Chernin, I. Chet. Microbial Enzymes in the Biocontrol of Plant Pathogens and Pests. Environment Press, 2002: 171~225
    43 S. V Garciduenas, C. A. L. Morales, A. H. Estrella. Analysis of theβ-1,3-glucanolytic System of the Biocontrol Agent Trichoderma harzianum. Applly Environment Microbial. 1998, 64(4): 1442~1446
    44 M. H. Haissam. Characterization of an Exo-β-1,3-glucanase Produced by Pichiaanomala strain K, Antagonist of Botrytis cinerea. Phytopathol. 1998, 88(4): 335~343
    45 J. M. Cachinero, F. Cabello, Jorrin, et al. Induction of Different Chitinase and Beta-1,3-glucanase Isoenzymes in Sunflower (Helianthus annuus) Seedings in Response to Infection by Plasmopara halstedii. European Journal of Plant Pathology. 1996, 102(4): 401~405
    46 C. Ji, J. Kuc. Antifungal Activity of Cucuber Beta-1,3-glucnnase and Chitinase. Physiological and Molecular Plant Pathology. 1996, 49(4): 257~265
    47 C. B. Lawrence, M. H. A. Jooste, S. Tuzun. Differential Induction of Pathogenesis-related Proteins in Tomato by Alrernaria solani and the Association of a Basic Chitinase Isozyme with Resistance. Physiological and Molecular Plant Pathology. 1996, 48(6): 361~377
    48 V. M. Gomes. Fungal Pathogens Secrete an Inhibitor Protein that Distinguishes Isoforms of Plant Pathogenesis-related Endo-β-1,3-glucanase. Plant. 1997, (11):169~179
    49 J. Libantova, M. Bauer, L. Mlynarova,et al. Transgenic Tobacco and Potato Plants Expressing Basic Vacuolar Beta-1,3-glucanase from Nicotiana plumbaginifolia. Biologic Bratislava. 1998, 53(6): 739~748
    50 Y. Nakamura, H. Sawada, S. Kobayashi, et al. Expression of Soybean Beta-1,3-glucanase cDNA and Effect on Disease Tolerance in Kiwifruit Plants. Plant Cell Reports. 1999, 18(8): 527~532
    51林超.菌寄生真菌的研究进展.菌物研究. 2005, 3(1): 46~52
    52 I. Chet, L. Chernin. Encyclopedia of Environmental Microbiology. China University Press, 2002: 450~465
    53 C. B. Lawrence, N. P. Singh, J. Qiu, et al. Constitutive Hydrolytic Enzymes are Associated with Polygenic Resistance of Tomato to Alternaria solani and May Function as an Elicitor Release Mechanism. Physiological and Molecular Plant Pathology. 2000, 57(5): 211~220
    54 S. Haran, H. Schickler. New Components of the Chtinilytic System of Trichoderma harzianum. Mycol Research. 1995, 99(8): 441~446
    55 C. E. Margultes, G. E. Harman. Enhanced Expression of Endochitinse in Trichoderma harzianum with cbhI Promoter of Trichoderma reesei. Applly Enviroment Microbiol. 1996, 62(4):2152~2155
    56范青,田世平,刘海波等.两种拮抗菌β-1,3-葡聚糖和几丁质的产生及其抑菌的可能机理.科学通报. 2001, 46(20): 1713~1717
    57迟玉杰,杨谦.毛壳菌对植物病害的生物防治及存在的问题.农业系统科学与综合. 2002, 18(3): 215~218
    58张功,王瑞君,丁平.分解纤维素毛壳菌的筛选.内蒙古师大学报. 2001, 30(2): 154~156
    59张玲琪,王海昆,邵华等.美登木内生真菌产抗癌物质球毛壳甲素的分离及鉴定.中国药学杂志. 2002, 37(3): 172~175
    60郭云忠,孙广宇,李振岐等.毛壳属(Chaetomium)真菌的分类研究.西北林学院学报. 2005, 20(1): 132~135
    61 J. H. Park, G. J. Choi, K. S. Jang, et al. Antifungal Activity Against Plant Pathogenic Fungi of Chaetoviridins Isolated from Chaetomium globosum. FEMS Microbiology Letters. 2005, 9(13): 252~309
    62 R. Aggarwall, A. K. Tewari, K. D. Srivastava, et al. Role of Antibiosis in the Biological Control of Spot Blotch(Cochlio bolussativus) of Wheat by Chaetomium globosum. Mycopathologia. 2004, 157(4): 369~377
    63 J. Dingle, P. A. Mcgee. Some Endophytic Fungi Reduce the Density of Pustules of Puccinia reandita f. sp. tritici in Wheat. Mycological Research. 2003, 107(3): 310~316
    64贺字典,高玉峰.生防菌在植物病害防治中的研究进展.河北职业技术师范学院学报. 2003, 2(17): 56~60
    65 M. T. Tveit. Control of a Seeded-borne Disease by Chaetomium cochliodes Pall. Nature. 1993, 172(4): 39~45
    66 K. X. Gao, X. G. Liu, C. Li, et al. Biocontrol Potential of Chaetomium spirale ND35 against Canker of Apple Tree. Biological Control and Bio- technology. Heilongjiang Science and Technology Press, 2003, (7): 132~140
    67张海堂,薛煜,项存悌.毛壳菌和木霉菌防治山杨根腐病的研究.森林病虫通讯. 1999, (1): 2~3
    68李梅,辛平,杨谦.球毛壳菌原生质体形成与再生研究.哈尔滨工业大学学报. 2002, 34(5): 595~598
    69陈振明,郭泽建,林福呈等.以潮霉素抗性为选择标记的毛壳霉原生质体转化.浙江大学学报(农业与生命科学版). 2001, 27(1): 19~22
    70金红星,杨谦,张昕.球毛壳菌循环肽HC-毒素基因的序列分析.生物技术.2004, 14(5): 3~4
    71卢建平,林福呈,李德葆.转几丁质基因毛壳菌的抗病原真菌作用.浙江大学学报(农业与生命科学版). 2006, 32(2):127~133

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700