中国城市建成区植被结构特征和碳吸收
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市化比例的持续升高,城市生态变得与人类生活以及其所面对的环境问题更加密切相关。中国是城市化速度最快的地区之一,中国的城市化已经被称为21世纪推动世界发展的重要动力来源,但也是环境问题突出的地区之一。研究中国城市建成区植被结构特征及其减少大气二氧化碳的贡献,有助于丰富城市生态学理论。
     中国位于欧亚大陆东南部季风气候区,具有从北温带到热带,从湿润到干旱的不同气候带,为研究建成区植被提供了良好的素材。本研究共计实地调查了分布在中国各气候区的43个城市的3295个400m2样方,共计测量乔木24027株,获得19个树种424条年轮条;通过问卷调查和跟踪园林工人养护获得相应城市园林管理及园林废弃物信息。本研究综合实测数据和文献及年鉴等数据,研究中国城市建成区绿地格局以及植被现状特征,探讨中国城市建成区植被碳储存和碳吸收格局及其驱动因素,研究园林废弃物生产生物能源替代化石燃料减排——建成区植被间接减少大气二氧化碳的潜力。得到以下主要结论:
     (1)城市建成区绿地格局和植被结构特征研究表明:我国建成区绿地面积增长迅速,1996年-2010年建成区绿地覆盖面积年均增长7.5%,绿化覆盖率年均增长2.8%;中国286个地级市建成区绿化覆盖率空间分布不均衡,这种变化表现出明显的从东到西降序的梯度分布;我国建成区植被主要乔木树种在空间分布呈地带性;建成区绿地植被乔木胸径主要处于5-25cm小径级,乔木株高基本集中在5-7m和7-9m两个区间;城市建成区植被复层结构覆盖率在12%-39%,平均值为24.6%。建成区乔木Gleason丰富度指数在1.30-5.17之间,且Gleason丰富度指数南方高于北方。
     (2)植物群落特征与自然社会经济因素相关分析研究表明,建成区乔木平均胸径、平均株高与自然经济因素相关显著;与自然因素相比,经济因素对于复层结构覆盖率更是一个明显决定因素;Gleason指数与年均降水量、年均气温、PGDP三者线性相关显著(P<0.05);而Simpson指数,Shannon-Wiener指数以及Pielous指数与水热条件和经济发展之间相关不显著。研究发现城市植被多样性很大程度上受到人类活动调控,在一定程度上,景观美学是城市生态系统中植物群落组成的一个更明显的决定因素。但在城市绿化的树种选择上,自然环境有着很大的影响。
     (3)47个研究城市建成区绿地植被碳密度4.95-46.30tC hm-2,平均值为18.19±9.23tChm-2。在中国47个城市的单位绿地覆盖面积碳密度平均为自然森林的57%。研究城市建成区碳吸收为0.21-4.30tC hm-2yr-1,平均值为2.13tC hm-2yr-1。现阶段我国建成区大多数城市植被单位绿地面积碳吸收高于自然森林碳吸收,约比自然植被提高50%。中国建成区植被碳吸收可抵消城市居民生活使用能源碳排放的2.5%。
     (4)对中国建成区植被碳固存相关驱动因素研究的结果表明,城市建成区碳密度与经度、纬度、年均降水、年均气温和湿润度指数无显著相关,受自然因素调控作用小。自然环境下的碳库因为人类活动的影响有了很大变化,使得植被碳库不再随着经纬度,即受到光温湿度等因子的影响而发生明显的变化,碳密度呈现出了趋同的现象;碳吸收主要受自然因素影响。通过提高园林管理水平可以促进建成区植被碳吸收。
     (5)园林废弃物做生物能源在能量投入产出方面具有优势。城市绿地园林废弃物生产能源具有发展前景。开发利用城市绿地园林废弃物生产生物能源不仅减少运输费用,其带来的收益可补偿收集处置废弃物的花费,实现增加收益和节能减排双赢。中国园林废弃物总的生物能源潜力达244PJ,相当于2008年中国城市居民用电能耗的20.7%,中国运输用的汽油能耗的12.6%,替代化石燃料减排17x106tCO2当量。用园林废弃物生产生物能源有助于低碳城市的建设。
With the urbanization rate riseing, urban ecology has become more closely related to human life and the environmental problems. China is one of the fastest urbanizing areas. China's urbanization has been called the world important source of energy to promote the development in the21st century, but also one of the prominent areas of environmental issues. Study of built-up area vegetation structure characteristics and the contribution of reducing atmospheric carbon dioxide that contributes to the urban ecology theory.
     China is located in the southeast of climate zone, from north temperate to tropical climatic zones, from humid to arid, provides a good material for the study of the built-up area vegetation. In this study, we surveyed43cities in China with3295(400m2) plots, measuring a total of24027trees,19species424tree rings.With questionnaires garden workers getted the management of urban vegetation and garden waste. This study combined with measured data and literature and Yearbook data to study the pattern of urban gneenspace built-up area and the vegetation structure characteristics, explored the urban built-up area of vegetation carbon storage and carbon sequestration and driving factors, discussed the potential of garden waste for bio-energy production. The following conclusions:
     (1) The study which focused on the pattern of green space and vegetation structure characteristics in urban built-up area showed that:The area green space in built up area is growing rapidly in China, green space coverage had been increased by7.5%annually between1996-2010. Greening coverage rate grew by an average of2.8%every year. There is an uneven spatial distribution of green space coverage for286cities in China, with an obvious gradient distribution descending from the East to the West. Tree diameter at breast height (DBH) was mainly5-25cm for built-up area green space, and tree height was mainly concentrated in two intervals of5-7m and7-9m; the coverage of stratified vegetation structure was between12%-39%, with an average value of24.6%. Gleason richness index of trees in built-up area were between1.30-5.17with a higher value the south than the north.
     (2) The correlation analysis of community characteristics and nature and socio-economic factors showed that the average DBH and height of trees significantly related with nature-economic factors; compared to natural factors, economic factors is a more significant determinants for stratified vegetation structure; Gleason index was significantly correlated with average annual rainfall, annual temperature and PGDP (P<0.05). While Simpson index, Shannon-Wiener index and Pielous index showed no significant relationship with hydrothermal conditions and economic development The study found that the diversity of vegetation in urban green space is largely regulated by human activities, to a certain extent, landscape aesthetics is a more significant determinants of woody plants in the urban ecosystem. But the natural environment has a great impact on the selection of urban greening tree species.
     (3) The green vegetation carbon density of the urban built-up area in47studied cities is in the range of4.95t C hm-2to46.30tC hm-2, with an average of18.19±9.23tC hm-2. The average carbon density of the average green coverage area of the47cities in China is57%of the natural forest. The carbon uptake of the urban built-up area of the studied cities ranges from0.21tC hm"2yr-1to4.30tC hm-2yr-1, with an average of2.13tC hm-2yr-1. At this stage, in China's built-up area, the carbon uptake of the average urban vegetation area is higher than the natural forest, approximately50%higher than the natural vegetation. The vegetation carbon sequestration of built-up area in China can offset2.5%of the carbon emissions from the energy use of the urban residents.
     (4) Studing the driving factors of vegetation carbon storage and uptake in built-up area in China, showed that carbon density of the urban built-up area do not have significant relation with natural factors, such as longitude, latitude, annual precipitation, average annual temperature and moisture index. Carbon pool of the natural has changed a lot dute to the impact of human activities, the vegetation carbon pool is no longer signifcantly changed with latitude and longitude, which influence the light, temperature and humidity and other factors, that means the carbon density showing convergence phenomenon; carbon uptake mainly influenced by natural factors, instead of the economic impact, and the garden management could promote the built-up area of vegetation carbon sequestration.
     (5) Garden waste to bio-energy production has advantages in the energy input and output. Using the garden waste of the urban green space has great prospects. Development and utilization of garden waste of the urban green space to produce bio-energy not only reduces transport costs, but also brings benefit which can compensate for the cost of collection and disposal of the waste, thus achieving the win-win effect of revenue increasing and energy savings. The total bioenergy potential of China's garden waste can be244PJ, equivalent to20.7%of the electricity consumption of urban residents,12.6%of the energy consumption of the gasoline used in transportation of China in2008, and it can reduce17X106t CO2equivalent replacing fossil fuel. Using garden waste to produce of bio-energy contributes to the construction of low-carbon city.
引文
Abbasi, T. and Abbasi S. A.,2010. Biomass energy and the environmental impacts associated with its production and utilization. Renewable & Sustainable Energy Reviews,14 (3):919-937.
    Alberti M.,2005. The effects of urban patterns on ecosystem function. International Regional Science Review,28:168-192.
    Asharf M. Youssef and Mohamed A. Al-Fredan.2008Community Composition of Major Vegetations in the Coastal Area of Al-Uqair, Saudi Arabia in Response to Ecological Variations. Journal of Biological Science,8(4):713-721.
    Boldrin, A. and Christensen T. H.,2010. Seasonal generation and composition of garden waste in Aarhus,Denmark. Waste Management,30,4:551-557.
    Boldrin, A., Andersen J. K., et al.2011. Environmental assessment of garden waste management in the Municipality of Aarhus, Denmark. Waste Management 31 (7): 1560-1569.
    Brown DG, Johnson KM, Loveland TR, Theobald DM.,2005. Rural land-use trends in the conterminous United States. Ecological Applications,15:1851-1863.
    Chapin F. S., McFarland J., McGuire A. D., Euskirchen E. S., Ruess R. W. and Kielland K.2009,The changing global carbon cycle:linking plant-soil carbon dynamics to global consequences. Journal of Ecology,97:840-850.
    Cheng, H. and Hu, Y.2010. Municipal solid waste, MSW as a renewable source of energy:Current and future practices in China. Bioresource Technology 101,11: 3816-3824.
    Churkina G.,2008. Modeling the carbon cycle of urban systems. Ecological Modelling, 216:107-113.
    Churkina G, Brown D, Keoleian G.,2010. Carbon stored in human settlements:the conterminous United States. Global Change Biology,16:135-143.
    Dana E D, Vivas S, Mota J F.2002,Urban vegetation of Almeria city-a contribution to urban ecology in Spain. Landscape and Urban Planning,59 (4):203-216
    Davies, Z. G., Edmondson, J. L., Heinemeyer, A., Leake, J. R.& Gaston, K. J.,2011. Mapping an urban ecosystem service:Quantifying above-ground carbonstorage at a city-wide scale. Journal of Applied Ecology, doi:10.1111/j.1365-2664.2011.02021.x
    de Wit, M., Londo, M. et al.,2011. Productivity developments in European agriculture: Relations to and opportunities for biomass production. Renewable and Sustainable Energy Reviews 15,5:2397-2412.
    DeFries RS, Rudel T, Uriarte M, Hansen M.,2010. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat Geosci 3: 178-181.
    Demirbas, A.,2009. Reuse of Wood Wastes for Energy Generation, Energy Sources, Part A:Recovery, Utilization, and Environmental Effects,31:19,1687-1693
    Di Giacomo G, Taglieri L,2009. Renewable energy benefits with conversion of woody residues to pellets, Energy,34:724-731.
    Dodic, S. N., V. N. Zekic, et al.,2010. Situation and perspectives of waste biomass application as energy source in Serbia. Renewable and Sustainable Energy Reviews 14,9:3171-3177.
    Eigenbrod F, et al.,2011. The impact of projected increases in urbanization on ecosystem services. Proc Biol Sci 278:3201-3208.
    Escobedo F.J., Kroeger T., Wagner J. E.2011.Urban forests and pollution mitigation: Analyzing ecosystem services and disservices Environmental Pollution,159: 2078-2087.
    Fang, Jingyun, Piao Shilong, Christopher B. Field, Pan Yude, Guo Qinghua, Zhou Liming, Peng Changhui, and Tao Shu,2003. Increasing net primary production in China from 1982 to 1999. Front Ecol Environ,1(6),293-297.
    Faraco, V. and Hadar Y.,2011. The potential of lignocellulosic ethanol production in the Mediterranean Basin. Renewable and Sustainable Energy Reviews 15,1: 252-266.
    Fargione J, Hill J, Tilman D, Polasky S, et al.,2008. Land clearing and the biofuel carbon debt. Science,319:1235-1238.
    Field, C. B., J. E. Campbell, et al.,2008. Biomass energy:the scale of the potential resource. Trends in Ecology & Evolution 23,2:65-72.
    Frombo, F., Minciardi R., et al.,2009. Planning woody biomass logistics for energy production:A strategic decision model. Biomass and Bioenergy 33,3:372-383.
    Fuller RA, Gaston K.J.,2009. The scaling of green space coverage in European cities. Biology letters, doi:10.1098/rsbl.2009.0010.
    Golubiewski NE.,2006. Urbanization increases grassland carbon pools-effects of landscaping in Colorado's Front Range. Ecological Applications,16(2),555-571.
    Gregg JW, Jones CG, Dawson TE.,2003. Urbanization effects on tree growth in the vicinity of New York City. Nature,424:183-187.
    Grimm NB, Faeth SH, Golubiewski NE.,2008. Global change and the ecology of cities. Science,319:756-760.
    Gu, B., Zhu, Y., Chang, J., Peng, C., Liu, D., Min, Y., Luo, W., Howarth, R.W., Ge, Y. 2011,The role of technology and policy in mitigating regional nitrogen pollution. Environmental Research Letters,,6,014011. Insight:including humans in urban biogeochemistry research (http://environmentalresearchweb.org/cws/article/news/45414)
    Gu, C, Hu L., et al.,2011. Climate change and urbanization in the Yangtze River Delta. Habitat International 35,4:544-552.
    Haaren R., Themelis N. J., Barlaz M,2010. LCA comparison of windrow composting of yard wastes with use as alternative daily cover (ADC). Waste Management 30: 2649-2656.
    Harris W F, Goldstein R A, Henderson G S.1973. Analysis of forest biomass pools, annual primary production and turnover of biomass for a mixed deciduous forest watershed. IUFRO Biomass Studies:43-64.
    Heinz Schandl and Anthony Capon,2012. Cities as social-ecological systems:linking metabolism, wellbeing and human health. Current Opinion in Environmental Sustainability.4:375-377
    Hope D, Gries C, Zhu W, et al.2003. Socioeconomics drive urban plant diversity. P Natl Acad Sci USA 100:8788-92.
    Hope D, Gries C, Casagrande D, and Redman CL.2006. Drivers of spatial variation in plant diversity across the Central Arizona-Phoenix ecosystem. Soc Nat Res 19: 101-16.
    Hoppe JM, Witschoreck R, Schumacher MV.2006. Estimate of biomass in Platanus acerifolia (Aiton) Willd. Established in dom Feliciano, RS. Ciencia Florestal,16: 463-471.
    Hutaa LR, Yoon B, Hepinstall-Cymerman J, Alberti M.,2011b. Carbon consequences of land cover change and expansion of urban lands:A case study in the Seattle metropolitan region. Landsc Urban Plan 103:89-93.
    Hutaa, L. R., Yoon, B.& Alberti, M.,2011a. Terrestrial carbon stocks across a gradient of urbanization:A study of the Seattle, WA region. Global Change Biology,17(2):783-797.
    Imhoff ML, Tucker CJ, Lawrence WT.,2000. The use of multisource satellite and geospatial data to study the effect of urbanization on primary productivity in the United States. IEEE Transaction on Geoscience and Remote Sensing,38(6): 2549-2556.
    IPCC Climate change 2001:the scientific basis. Report of Working Group I of the Intergovernmental Panel on Climate Change. Geneva:IPCC Secretariat,2001.
    IPCC,2007. Climate Change 2007:Mitigation of Climate Change. Working Group III Contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report, http://www.mnp.nl/ipcc/
    Jianhang, H., W. Hua, et al.,2010. Effect of the Operation Conditions on Gasification of Municipal Solid Waste. Power and Energy Engineering Conference,APPEEC, 2010 Asia-Pacific.
    Jim,C.Y. Chen Wendy Y.,2009. Ecosystem services and valuation of urban forests in China Cities,26:187-194.
    Jo H.K., McPherson EG.,1995.Carbon storage and flux in urban residential greenspace. Journal of Environmental Management,45:109-133.
    Jo HK.,2002. Impacts of urban greenspace on offsetting carbon emissions for middle Korea. Journal of Environmental Management,64:115-126.
    Jobbagy EG, Jackson RB.,2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation doi:10.1890/1051-0761(2000)010
    Joshua Madin, Shawn Bowers, Mark Schildhauer, Sergeui Krivov, Deana Pennington, Ferdinando Villa.,2007. An ontology for describing and synthesizing ecological observation data. Ecological Informatics,2:279-296
    Joshua S. Madin, Shawn Bowers, Mark P. Schildhauer, Matthew B. Jones.,2007. Advancing ecological research with ontologies. Trends in Ecology and Evolution. 23(3):159-168.
    Kandler, G., Adler, P.& Hellbach, A.,2011. Wie viel Kohlenstoff speichern Stadtbaume? Eine Fallstudie am Beispiel der Stadt Karlsruhe How much carbon isstored by urban Trees much carbon ison ison isarbon isn is carbon issiEinblick, 2:7-10.
    Karagiannidis, A., Wittmaier M., et al.,2009. Thermal processing of waste organic substrates:Developing and applying an integrated framework for feasibility assessment in developing countries. Renewable and Sustainable Energy Reviews 13,8:2156-2162.
    Kaye JP, Mcculley RL, Burke IC.,2005. Carbon fluxes, nitrogen cycling and soil microorganisms in adjacent urban, native and agricultural ecosystems. Globe Change Biology,11:575-587.
    Koh, L. P., Tan H. T. W., et al.,2008. Biofuels:Waste Not Want Not. Science 320, 5882:1419.
    Koh, M. Y. and Mohd, T. I. Ghazi,2011. A review of biodiesel production from Jatropha curcas L. oil. Renewable and Sustainable Energy Reviews 15,5: 2240-2251.
    Kothari, R., V. V. Tyagi, et al.,2010. Waste-to-energy:A way from renewable energy sources to sustainable development. Renewable and Sustainable Energy Reviews 14,9:3164-3170.
    Kranert, M., R. Gottschall, et al.,2010. Energy or compost from green waste?-A CO2-Based assessment. Waste Management 30,4:697-701.
    Lal, R.,2005. World crop residues production and implications of its use as a biofuel. Environment International 31,4:575-584.
    Lawrencea A. B., Escobedoa F. J., Staudhammera C. L.,2012. Zippererc W.Analyzing growth and mortality in a subtropical urban forest ecosystem. Landscape and Urban Planning 104:85-94.
    Lissens, G., Klinke H., et al.,2004. Wet oxidation pre-treatment of woody yard waste: parameter optimization and enzymatic digestibility for ethanol production. Journal of Chemical Technology & Biotechnology 79,8:889-895.
    Liu Changfu, Li Xiaoma,2012. Carbon storage and sequestration by urban forests in Shenyang, China, Urban Forestry & Urban Greening.11:121-128.
    Liu QX, Chang J, Jiang B, Yuan WG, Qi LZ, Zhu JR, Ge Y, Shen Q.,2005. The biomass of the evergreen broad-leaved ecological public-welfare forests in Zhejiang, East China. Acta Ecologica Sinica,25:2139-2144.
    Liu, G., Zhang R., et al.,2009. Effect of feed to inoculum ratios on biogas yields of food and green wastes. Bioresource Technology 100,21:5103-5108.
    Liu, L.-q., Liu C.-x., et al.,2011. A survey of China's low-carbon application practice--Opportunity goes with challenge. Renewable and Sustainable Energy Reviews 15,6:2895-2903.
    MacFarlane, D. W.,2009. Potential availability of urban wood biomass in Michigan: Implications for energy production, carbon sequestration and sustainable forest management in the U.S.A. Biomass and Bioenergy 33,4:628-634.
    McDonald, R.I.,2008. Global urbanization:can ecologists identify a sustainable way forward? Frontier Ecology Environment 6:99-104
    McDonnell MJ, Pickett STA.1990. Ecosystem structure and function along urban-rural gradients:An unexploited opportunity for ecology. Ecology 71: 1231-1237.
    McHale M. R., Burke I. C., Lefsky M. A., Peper P. J., McPherson E. G.2009 Urban forest biomass estimates:is it important to use allometric relationships developed specifically for urban trees? Urban Ecosystem.12:95-113
    McKendry, P.,2002. Energy production from biomass, part 1:overview of biomass. Bioresource Technology 83,1:37-46.
    McPherson, E.G.,1998. Atmospheric carbon dioxide reduction by Sacramento's urban forest. Journal of Arboriculture 24(4):215-223.
    Michael T. Ter-Mikaelian, Michael D. Korzukhin.,1997. Biomass equations for sixty-five North American tree species.97:1-24.
    Michael W. Strohbach, Eric Arnold, Dagmar Haase.,2012. The carbon footprint of urban green space—A life cycle approach. Landscape and Urban Planning.104: 220-229.
    Miller, J. R.2005. Biodiversity conservation and the extinctionof experience. Trends Ecol. Evol.20:430-434.(doi:10.1016/j.tree.2005.05.013)
    Nancy E. Golubiewski,2006. Urbanization Increases Grassland Carbon Pools-Effects Of Landscaping In Colorado's Front Range. Ecological Applications,16(2): 555-571
    Niinemets, U. and Penuelas J.,2008. Gardening and urban landscaping:significant players in global change. Trends in Plant Science 13,2:60-65.
    Nils-Erik Nordh, Theo Verwijst. Above-ground biomass assessments and first cutting cycle production in willow (Salix sp.) coppice—a comparison between destructive and non-destructive methods. Biomass and Bioenergy,2004,27:1-8.
    Nizami, A.-S. and Murphy J. D.,2010. What type of digester configurations should be employed to produce biomethane from grass silage? Renewable and Sustainable Energy Reviews 14,6:1558-1568.
    Nkambwe, M. and Sekhwela M.,2006. Utilization Characteristics and Importance of Woody Biomass Resources on the Rural-Urban Fringe in Botswana. Environmental Management 37,2:281-296.
    Normile, D.,2008. China's Living Laboratory in Urbanization. Science 319,5864: 740-743.
    Nowak DJ, Crane DE.,2002. Carbon storage and sequestration by urban trees in the USA. Environmental Pollution,116:381-389.
    Nowak DJ,1994. Atmospheric carbon dioxide reduction by Chicago's urban forest. In Chicago's Urban Forest Ecosystem:Results of the Chicago Urban Forest Climate Project (E. G. McPherson, D. J. Nowak and R. A. Rowntree, eds), pp.83-94. USDA Forest Service General Technical Report NE-186. Radnor, PA.
    Nowak DJ, Noble MH, Sisinni SM, Dwyer JF.2001., People and trees assessing the US urban forest resource. Journal of Forestry,99:37-42.
    Nowak DJ, Rowntree RA, McPherson EG, Sisinni SM, Kerkmann ER, Stevens JC., 1996. Measuring and analyzing urban tree cover. Landscape and Urban Planning, 36:49-57.
    Nowak, D. J., Kuroda, M.& Crane, D. E.,2004. Tree mortality rates and tree population projections in Baltimore, Maryland, USA. Urban Forestry and Urban Greening,2:139-147.
    Nowak, DJ, Crane, D.E.,2002. Carbon storage and sequestration by urban trees in the USA. Environmental Pollution 116:381-389.
    Olson, J. S.,1970. Carbon cycles and temperate woodlands. In Analysis of Temperate Ecosystems (D. E. Reichle, ed.), Ecological Studies 1, pp.227-241. New York: Springer-Verlag.
    Osadolor, O. O.,2009. Availability of grasses, weeds and leaves as energy resource. Renewable Energy 34,3:486-491.
    Owen, S. M. et al.,2003. Biogenic volatile organic compound (VOC) emission estimates from an urban tree canopy. Atmospheric Environment 13 (4):927-938.
    Pataki D. E., Alig. R. J., Fung A.S., Golubiewski N. E., Kennedy C. A., Mcpherson E. G., Nowak D. J., Pouyat R. V. and Lankao P.R.,2006. Global Change Biology 12:2092-2102,
    Perez-Verdin, G., D. L. Grebner, et al.,2009. Woody biomass availability for bioethanol conversion in Mississippi. Biomass and Bioenergy 33,3:492-503.
    Pfister, J. R., J. R. Archer, et al.,2011. Non-Rural Point Source Blastomycosis Outbreak Near a Yard Waste Collection Site. Clinical Medicine & Research 9,2: 57-65.
    Piao SL, Fang JY, Ciais P.,2009. The carbon balance of terrestrial ecosystems in China. Nature,458:1009-1014.
    Potere D, Schneider A.,2007. A critical look at representations of urban areas in global maps. Geo Journal,69:55-80.
    Pouyat RV, Yesilonis ID, Nowak DJ.,2006. Carbon storage by urban soils in the United States. Journal of Environmental Quality,35:1566-1575.
    Raciti SM, Hutaa LR, Finzi AC.,2012. Depleted soil carbon and nitrogen pools beneath impervious surfaces. Environ Pollut 164:248-251.
    Richter D de B, Jenkins DH, Karakash JT, et al.2009. Wood energy in America. Science,323:1432-1433.
    Roberts, K. G., Gloy B. A., et al.,2009. Life Cycle Assessment of Biochar Systems: Estimating the Energetic, Economic, and Climate Change Potential. Environmental Science & Technology 44,2:827-833.
    Rodhe, H.,1990. A comparison of the contributions of various gases to the greenhouse effect. Science 248:1217-1219.
    Rowntree R A.,1984. Ecology of the urban forest2introduction to Part I. Urban Ecology,8:1-11
    Scarlat, N., J.-F. Dallemand, et al.,2011. An overview of the biomass resource potential of Norway for bioenergy use. Renewable and Sustainable Energy Reviews 15,7:3388-3398.
    Schenk J. R.2010. Phytochemistry, allelopathy and the capability attributes of camphor laurel(Cinnamomum camphora (L.) Ness & Eberm.). New South Wales: Southern Cross University, Lismore, NSW.
    Schmitt, E., R. Bura, et al.2012. Converting lignocellulosic solid waste into ethanol for the State of Washington:An investigation of treatment technologies and environmental impacts. Bioresource Technology,104:400-409.
    Setoa K. C, Guneralp B., and Hutaac L. R.,2012. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. PNAS.109(40): 16083-16088.
    Shochat E, Warren PS, Faeth SH.,2006. From patterns to emerging processes in mechanistic urban ecology. Trends in Ecology and Evolution,21(4):186-191.
    Singh, A., D. Pant, et al.,2010. Key issues in life cycle assessment of ethanol production from lignocellulosic biomass:Challenges and perspectives. Bioresource Technology 101,13:5003-5012
    Spinelli, R. and Picchi G.,2010. Industrial harvesting of olive tree pruning residue for energy biomass. Bioresource Technology 101,2:730-735.
    Spinelli, R., Magagnotti N., et al.,2010. Harvesting vineyard pruning residues for energy use. Biosystems Engineering 105,3:316-322.
    Steubing, B., Zah R., et al.,2011. Heat, Electricity, or Transportation? The Optimal Use of Residual and Waste Biomass in Europe from an Environmental Perspective. Environmental Science & Technology 46,1:164-171.
    Strohbacha M. W., Haase D.,2012. Above-ground carbon storage by urban trees in Leipzig, Germany:Analysis of patterns in a European city. Landscape and Urban Planning 104:95-104.
    Svirejeva-Hopkins Anastasia, Hans J.,2004. Schellnhuber, Valeri L. Pomaz. Urbanised territories as a specific component of the Global Carbon Cycle. Ecological Modelling 173:295-312.
    Tan, T., Shang F., et al.,2010. Current development of biorefinery in China. Biotechnology Advances 28,5:543-555.
    Tilman, D., Socolow R., et al.,2009. Beneficial Biofuels— The Food, Energy, and Environment Trilemma. Science 325,5938:270-271.
    United Nations.2012. World Urbanization Prospects, the 2011 Revision (United Nations,New York) Available at:http://esa.un.org/unpd/wup/index.htm (Accessed June 3,2012).
    Velazquez-Marti, B., E. Fernandez-Gonzalez, et al.,2011. Quantification of the residual biomass obtained from pruning of trees in Mediterranean almond groves. Renewable Energy 36,2:621-626.
    Vitousek, P.M., Mooney, H.A., Lubchenco, J., Melillo, J.M.,1997. Human domination of earth's ecosystems. Science 277:494-500.
    Walker J. S., Grimm N. B., Briggs J. M., et al.,2009. Effects of urbanization on plant species diversity in central Arizona. Frontiers in Ecology and the Environment. 7(9):465-470.
    Wang, Z. and Chen J. M.,2010. A Greener Future for China's Cities. Science 327, 5970:1199.
    Whittaker RH.,1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs,30:279-338.
    Xie Xian-Li, Sun Bo, Zhou Hui-Zhen and Li An-Bo.,2004. Soil Organic Carbon Storage in China, Pedosphere,14(4):491-500
    Yang H, Zhan Y S, Zeng Z G, et al.,2004. A Study on the Biomass and Growth of Three Forestration Models in Jishui Region. Acta Agricuhurae Universitatis Jiangxiensis,26(2):164-168.
    Yao YJ, Kang WX, Tian DL.,2003. Study of the biomass and productivity of Cinnamomum camphora plantation. Journal of Central South Forestry University, 23:1-5. (in Chinese with English abstract)
    Yusaf, T., Goh S., et al.,2011. Potential of renewable energy alternatives in Australia. Renewable and Sustainable Energy Reviews 15,5:2214-2221.
    Zeng N, Ding YH, Pan JH, Wang HJ, Gregg J.,2008.Climate Change—the Chinese Challenge. Science.319:730-731
    Zeng-Hui, L. and S. Hong-Bo.,2010. Comments:Main developments and trends of international energy plants. Renewable and Sustainable Energy Reviews 14,1: 530-534.
    Zhang J, Ge Y, Chang J, Jiang B, Jiang H, Peng C, Zhu J, Yuan W, Qi L, Yu S., 2007.Carbon storage by ecological service forests in Zhejiang Province, subtropical China. Forest Ecology and Management,,245:64-75.
    Zhang, H., Gu C., et al.,2011. The evaluation of tourism destination competitiveness by TOPSIS & amp; information entropy-A case in the Yangtze River Delta of China. Tourism Management 32,2:443-451.
    Zhao T, Brown DG, Bergen KM.,2007. Increasing gross primary production (GPP) in the urbanizing landscapes of Southeastern Michigan. Photogrammetric Engineering and Remote Sensing,73:1159-1168.
    Zhou, X. and Wang Y.-C.,2011. Spatial-temporal dynamics of urban green space in response to rapid urbanization and greening policies. Landscape and Urban Planning 100,3:268-277.
    Zimov S A. Schuur EAG. Chapinlll Fs..2006. Permafrost and the global carbon budget. Science.312:1612-1613.
    Nowak D.J., Greenfield E. J., Hoehn R. E., Lapoint E.,2013. Carbon storage and sequestration by trees in urban and community areas of the United States Environmental Pollution 178:229-236.
    ISO,2006. ISO 14040 International Standard. In:Environmental Management - Life Cycle Assessment - Principles and Framework. International Organisation for Standardization, Geneva, Switzerland.
    Guinee JB, Heijungs R, Huppes, G et al.2011. Life Cycle Assessment:Past, Present, and Future. Environmental Science and Technology,45:90-96.
    Osenberg CW, Sarnelle O, Cooper S, et al.1999. Resolving ecological questions through meta-analysis:goals, metrics and models. Ecology,,80:1105-1117
    Gurevitch J, Curtis PS and Jones MH. Meta-analysis in ecology.2001. Advances in Ecological Research,32:199-247.
    Akihiko Ito.,2011. A historical meta-analysis of global terrestrial net primary productivity:are estimates converging? Global Change Biology 17:3161-3175.
    Duhl T.R., Guenther A.and Helmig D.,2012. Estimating urban vegetation cover fraction using GoogleEarth images. Journal of Land Use Science 7:311-329.
    Taylor J. R., Lovell S. T.,2012. Mapping public and private spaces of urban agriculture in Chicago through the analysis of high-resolution aerial images in Google Earth. Landscape and Urban Planning 108:57-70.
    Nowak D. J. and Greenfield E. J.,2012. Tree and impervious cover change in U.S. cities Urban Forestry & Urban Greening 11:21-30.
    Shwartz A., Cosquer A., Jaillon A., Piron A., Julliard R., et al.2012. Urban biodiversity, city-dwellers and conservation:How does an outdoor activity day affect the human-nature relationship? PLoS ONE,7(6):1-8.
    Barrico L., Azul A. M., Morais M. C. et al.,2012. Biodiversity in urban ecosystems: Plants and macromycetes as indicators for conservation planning in the city of Coimbra (Portugal).Landscape and Urban Planning.106:88-102.
    Schwenk W. S., Donovan T. M., Keeton W.S. et al.,2012. Carbon storage, timber production, and biodiversity:comparing ecosystem services with multi-criteria decision analysis. Ecological Applications,22(5):1612-1627.
    Lenzen M., Moran D., Kanemoto K., et al.,2012. International trade drives biodiversity threats in developing nations. Nature,486:109-112.
    Heywood V. H.,2011. The role of botanic gardens as resource and introduction centers in the face of global change. Biodiversity Conservation,20:221-239.
    Lerman S., Warren P.,2011. The conservation value of residential yards:linking birds and people. Ecological Applications,21(4):1327-1339.
    Ben Phalan, et al.2011. Reconciling Food Production and Biodiversity Conservation: Land Sharing and Land Sparing Compared. Science,333:1289.
    Willig M. R.,2011. Biodiversity and productivity. Science,333:1709-1710.
    Perrings C., Duraiappah A., Larigauderie A., Mooney H.2011.The biodiversity and ecosystem services science-policy interface. Science,331:1138-1139.
    Niemela J., Saarela S-R., Soderman T.,et al.,2010.Using the ecosystem services approach for better planning and conservation of urban green spaces:a Finland case study. Biodiversity Conservation,19:3225-3243.
    Goddard M. A., Dougill A. J. and Benton T. G.,2009. Scaling up from gardens: biodiversity conservation in urban environments. Trends in ecology and evolution, 25(2):90-98.
    Walker J. S., Grimm N. B., Briggs J. M., et al.,2009. Effects of urbanization on plant species diversity in central Arizona. Frontiers in Ecology and the Environment, 7(9):465-470.
    Asharf M. Youssef and Mohamed A. Al-Fredan.,2008. Community Composition of Major Vegetations in the Coastal Area of Al-Uqair, Saudi Arabia in Response to Ecological Variations. Journal of Biological Science,8(4):713-721.
    Nowak, D.J., Hoehn, R.E., Crane, D.E., Stevens, J.C., Walton, J.T., Bond, J.,2008. A ground-based method of assessing urban forest structure and ecosystem services. Arboriculture and Urban Forestry 34 (6):347-358.
    Hoymann J.,2012. Quantifying demand for built-up area-a comparison of approaches and application to regions with stagnating population. Journal of Land Use Science,7(1):67-87.
    Maas J, Verheij RA, Groenewegen PP, et al.,2006. Green space, urbanity, and health: how strong is the relation? Journal of Epidemiology and Communrty Health,60: 587-592.
    Coley, R. L., Sullivan, W. C.& Kuo, F. E.1997. Where does community grow? The social context created by nature in urban public housing. Environ. Behav.29: 468-494.
    Villeneuve, P. J., Jerrett, M., G Su, J., Burnett, R. T., Chen, H., Wheeler, A. J.,& Goldberg, M. S.,2012. A cohort study relating urban green space with mortality in Ontario, Canada. Environmental research.115:51-58.
    Dadvand, P., de Nazelle, A., Figueras, F., Basagana, X., Su, J., Amoly, E., et al.,2012. Green space, health inequality and pregnancy. Environment international,40: 110-115.
    Groffman, P. M., Bain, D. J., Band, L. E., Belt, K. T., Brush, G. S., Grove, J. M., et al., 2003. Down by the riverside:urban riparian ecology. Frontiers in Ecology and the Environment,1(6):315-321.
    Minca, K. K.,& Basta, N. T.,2013. Comparison of plant nutrient and environmental soil tests to predict Pb in urban soils. Science of The Total Environment,445: 57-63.
    Townsend Small, A.,& Czimczik, C. I.,2010. Carbon sequestration and greenhouse gas emissions in urban turf. Geophysical Research Letters,37(2):1-5.
    Shi Yan, Ge Ying, Chang Jie, Ren Xiaoyi, Shao Hongbo, Tang Yuli.,2013. Garden waste biomass for renewable and sustainable energy production in China: Potential, challenges and development. Renewable & Sustainable Energy Reviews.22:432-437.
    Ren, Y., Wei, X., Wei, X., Pan, J., Xie, P., Song, X., Zhao, J.,2011. Relationship between vegetation carbon storage and urbanization:A case study of Xiamen, China. Forest Ecology and Management,261(7):1214-1223.
    Kopetz, H.,2013. Renewable resources:Build a biomass energy market. Nature, 494(7435):29-31.
    包志毅,罗慧君.城市街道绿化树种结构量化研究方法.林业科学,2004,40(4):166-170.
    陈祥,胡艳燕,包兵,等.2010.资源化利用园林有机废弃物.建设科技,(19):32-33.
    温家石.2010.城市化对建成区植被碳吸收和碳储存的影响研究.浙江大学硕士学位论文.
    温家石,葛滢,焦荔,邓志平,彭长辉等.2010.城市土地利用是否会降低区域碳吸收能力?——台州市案例研究.植物生态学报,34(6):651-660.
    管东生,陈玉娟,黄芬芳.1998.广州城市绿地系统碳的贮存,分布及其在碳氧平衡中的作用.中国环境科学,18(5):437-441.
    国家统计局.中国统计年鉴(1980-2008).北京,中国统计出版社,1981-2009.
    国家统计局.中国城市统计年鉴.北京,中国统计出版社,2009.
    国家统计局.中国能源统计年鉴.北京,中国统计出版社,2011.
    国家房屋和城乡建设部.中国城市建设统计年鉴(2000-2008).北京,房屋和建设部出版,2000-2008.
    贺红早,黄丽华,段旭,贺瑞坤.贵州二环林带主要树种生物量研究.贵州科学,2007,25(36):33-39.
    嵇浩翔,史琰,朱轶梅,温家石,唐宇力,葛滢,常杰.2011.杭州市不同土地利用类型的树木生长和碳固存.生态学杂志,30(11):2405-2412.
    李海奎,雷渊才.中国森林植被生物量和碳储存评估.中国林业出版社,2010.
    李建华,李春静,彭世揆,2007.杨树人工林生物量估计方法与应用.南京林业大学学报(自然科学版),31(4):37-40.
    连军营.2008.城市森林结构与效益研究——以西安市二环内建成区为例.西北大学硕士学位论文
    梁晶,吕子文,方海兰等.2009.园林绿色废弃物堆肥处理的国外现状与我国的出路.中国园林,25(4):1-6.
    刘军,贾玉鹤.2007.沈阳市生物质颗粒燃料推广应用前景分析.环境保护科学,33(6):12-14.
    吕子文,方海兰,黄彩娣.美国园林废弃物的处置及对我国的启示.中国园林,2008.5:90-94.
    彭立华,陈爽,刘云霞,王进.2007.Citygreen模型在南京城市绿地固碳与削减径流效益评估中的应用.应用生态学报,18(6):1293-1298.
    彭少麟,邵华.2001.化感作用的研究意义及发展前景.应用生态学报,12(5):780-786.
    慎佳泓.西湖风景名胜区森林植被多样性及人为干扰的影响研究.浙江大学,2006.
    史琰,郑楠,唐宇力,范丽琨,郭克俭,范星,葛滢,常杰.2012.杭州西湖风景名胜区园林废弃物生产生物能源潜力.生态学杂志.31(11):2859-2864.
    孙春健,王春林,申双和,张锦标.2012.珠三角城市绿地C02通量的季节特征.生态学报,32(4):1273-1282.
    肖兴威.2005.中国森林生物量与生产力的研究.东北林业大学博士论文.
    吴泽民,黄成林,白林波,吴文友.2002.合肥城市森林结构分析研究.林业科学,38(4):7-13
    谢军飞,李玉娥,李延明,高清.北京城市园林树木碳贮量与固碳量研究.2007.中国生态农业学报.15(3):5-7.
    杨桦,詹有生,曾志光,等.2004.吉水三种造林模式林分生物量及生长量研究.江西农业大学学报,26(2):164-68.
    杨小波,吴庆书,邹伟,罗长英.2000.城市生态学.科学出版社.
    姚迎九,康文星,田大伦.2003.18年生樟树人工林生物量的结构与分布.中南林学院学报.23(1):1-5.
    应天玉,李明泽,范文义.2009.哈尔滨城市森林碳储量的估算.东北林业大学学报,37(9):33-35.
    张骏,袁位高,葛滢,等.2010.浙江省生态公益林碳储存和固碳现状及潜力.生态学报,30(14):3839-3848.
    周肖红.2009.绿化废弃物堆肥化处理模式和技术环节的探讨.中国园林,25(4):7-11.
    邹涛,黄一翔,周正楠,栗德祥.2009.生态城市建设与城市森林的综合生态价值评估.建筑学报,2:45-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700