再生核空间中积分和微分方程的求解方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
许多自然现象都是借助于线性、非线性方程来描述的,而对这些现象的分析一般可归结为微分方程、积分方程和微分-积分方程的求解问题.因此,如何求解这些有实际意义的方程也就变得越来越重要了.本文运用再生核空间的技巧,给出了几类非线性积分和微分方程的求解方法.
     首先,在再生核空间中给出了第一类Fredholm积分方程的最小范数解的表达式.进一步地,如果方程的解不唯一,给出了它的所有解的表达形式.并给出了求解第一类Fredholm积分方程逼近解的稳定性分析.
     其次,讨论了非线性Volterra-Fredholm积分方程的求解.利用再生核表达式得到了一组标准正交基,将方程的未知函数在这组基上进行Fourier级数展开,构造了一种收敛的迭代序列,从而得到了方程解的一种级数表达形式.通过截断级数得到方程的逼近解.同时,将此迭代法推广到求解非线性Fredholm积分方程组.
     第三,在再生核空间中给出了带有积分边界条件的抛物型微分方程的求解方法.通过构造一组满足积分边界条件的标准正交基,利用再生核的技巧给出了方程解的表达式.
     第四,在再生核空间中给出了求解非线性非局部边界条件的二阶偏微分方程的方法.通过构造一组满足非线性非局部边界条件的标准正交基,给出了一个有界的并且收敛的迭代序列,从而得到了方程解的级数表达形式.
Some natural phenomena may be described by linear or nonlinear equations.Analysis on these phenomena would generally come down to solve solutions ofdi?erential equations, integral equations or di?erential-integral equations. Thus,how to solve these equations with actual prospecting becomes more and moreimportant problems. In this paper, some methods of solving nonlinear di?erentialand integral equations are proposed using skills in reproducing kernel space(RKS).
     Firstly, a representation of minimal norm solutions on Fredholm integralequations of the first kind is obtained in RKS. Representations of the solutionsare further given if it has solutions. At the same time, a analysis on stability ofapproximate solutions of Fredholm integral equations of the first kind is provided.
     Secondly, a method of solving nonlinear Volterra-Fredholm integral equationsis proposed. An orthnormal basis is obtained using representation of reproducingkernel and unknown functions of nonlinear Volterra-Fredholm integral equationsare expressed as Fourier series using the basis. A convergent iterative sequence isconstructed. A series representation of solutions for the equations is obtained andapproximate solutions are given by truncating the series. The iterative methodis further generalized to solve systems of nonlinear Fredholm integral equation.
     Thirdly, a method of solving parabolic di?erential equations with integralboundary conditions is proposed in RKS. A representation of the solutions isprovided by constructing an orthnormal basis satisfying integral boundary con-ditions and applying skills of reproducing kernel.
     Finally, a method of solving partial di?erential equations with nonlinearnonlocal boundary conditions is proposed. A bounded and convergent iterativesequence is provided by constructing an orthnormal basis satisfying nonlinearnonlocal boundary conditions. Hence, a representation of solutions for the equa-tions is obtained.
引文
1 J. Mercer. Function of Positive and Negative Type and Their Connectionwith The Theory of Integral Equation. Philos. Trans. Roy. Soc.. London Ser.A. 1909,209:415-446
    2 S. Bochner. Vorlesungen Ueber Fouriersche Integrale. Leipzig. 1932:23-45
    3 S. Zaremba. Sur Le Calcul Numerique Des Founctions Demandness Dans LeProblems De Dirichlet Et Le Problems Hydrodynamique. Bulletin Intera-tional de I Academie des Sciences de Cracovie. 1908,196:125-195
    4 S. Bergman. U¨ber Die Entwicklung Der Harmonischen Funcktionen DerEbeneunddes Raumes Nach Orthogonal-funkionen. Math. Ann.. 1922,86:238-271
    5 S. Bergman. U¨ber Ein Verfahren Zur Konstruktion Der NaherungslO¨-SungslO¨Sungen Der Gleichung u+τ2u = 0 . Prikl. Math. Meh.. 1936,5:97-107
    6 S. Bergman. Zur Theorie Der Funktionen Die EineLlinear Partielle Di?fer-entialgleichung Berriedigen. Soviet. Math. Dokl.. 1937,15:227-230
    7 S. Bergman. Sur Un Lien Entre Lal Th′eorie Des Equations Auxderives Par-tielles Elliptiques Et Celle Des Functions D’une Variable Complex. C. R.Acad. Sci. Paris. 1937,205:1198-1200 1360-1362
    8 S. Bergman. The Approximation of Functions Satisfying A Linear PartialDi?erential Equation. Duke Math. J.. 1940,6:537-561
    9 S. Bergman. A Remark on The Mapping of Multiply-Connected Domains.Amer. J. Math.. 1946,68:20-28
    10 S. Bergman. Partial Di?erential Equations:Advanced Topics. Brown Univer-sity Providence. 1941:211-214
    11 N. Aronszajn. Theory of Reproducing Kernels. Trans. Amer. Math. Soc..1950,68:337-404
    12 F. M. Larkin. Optimal Approximation in Hilbert Space with ReproducingKernel Function. Math. Comp.. 1970,22(4):911-921
    13 M. M. Chawla. Optimal Rules with Pilynomial Precision for Hilbert SpacesPossessing Reproducing Kernel Functions. Numer. Math.. 1974,22:207-218
    14 J. S. Chen, V. Kotta, H. Lu, D. Wang, D. Moldovan , D. Wolf. A VariationalFormulation and A Double-grid Method for Meso-scale Modeling of StressedGrain Growth in Polycrystalline Materials. Comput. Methods Appl. Mech.Engrg.. 2004,193:1277-1303
    15 S. Shimorin. Complete Nevanlinna-Pick Property of Dirichlet-Type Spaces.Journal of Functional Analysis. 2002,191:276-296
    16 D. Alpay. A Structure Theorem for Reproducing Kernel Pontryagin Spaces.Journal of Computational and Applied Mathematics. 1998,99:413-422
    17 D. Alpay, C. Dubi. Carath′eodory Fej′er Interpolation in The Ball with MixedDerivatives. Linear Algebra and its Applications. 2004,382:117-133
    18 N. Askour, A. Intissar,Z. Mouayn. Explicit Formulas for Reproducing Kernelsof Generalized Bargmann Spaces. C. R. Acad. Sci. Paris. 1997,325(1):707-712
    19 B. Raneea. Geometric Quantization of Real Minimal Nilpotent Orbits. Dif-ferential Geometry and its Applications. 1998,9(1-2):5-58
    20 J. K. Misiewicz. Infinite Divisibility of Sub-stable Processes. Part I. Geome-try of Sub-spaces of Lα - Space. Stochastic Processes and their Applications.1995,56:101-116
    21 A. Daniela, B. Vladimira, D. Aadb, R. Amesc, S. Cora. Hilbert Spaces Con-tractively Included in The Hardy Space of The Bidisk. Comptes Rendus del’Academie des Sciences Series I Mathematics. 1998,326(12):1365-1370
    22 A. Daniela, V. Victora. Functions De Carath′eodory Surune Surface De Rie-mann Et Espaces `a Noyau Reproduisant Associ′esl. Comptes Rendus del’Academie des Sciences Series I Mathematics. 2001,333(6):523-528
    23 A. Daniela, B. Vladimirb ,T. Kaptanoglu. The Schur Algorithm and Repro-ducing Kernel Hilbert Spaces in The Ball. Linear Algebra and its Applica-tions. 2002,342(1-3):163-186
    24 A. Daniela, K. H. Turgayb. Integral Formulas for A Sub-Hardy Hilbert Spaceon The Ball with Complete Nevanlinna-Pick Reproducing Kernel. ComptesRendus de l’Academie des Sciences Series I Mathematics. 2001,333(4):285-
    29025 S. Saitoh. Theory of Reproducing Kernels and Its Applications. LongmanScientific & Technical. 1988:56-64
    26 D. W. Byun, S. Saitoh. Best Approximation in Reproducing Kernel HilbertSpaces. Proc. of the 2th International Colloquium of Numerical Analysis.SP-Holland. 1997:55-61
    27 S. Saitoh. Itegral Transforms Reproducing Kernels and Their Applications.Addison Wesley Longman. 1997:34-56
    28 S. Saitoh. Linear Integro-di?erential Equations and The Theory of Reproduc-ing Kerels:Volterra Equations and Applications. Gordon and Breach SciencePublishers. 2000:45-90
    29 T. Tada, S. Saitoh. A Method by Separation of Variables for The First OrderNonlinear Ordinary Di?eretial Equations. Journal of Analysis and Applica-tions. 2004,2(1):51-63
    30 T. Matsuura, S. Saitoh. Numerical Inversion Formulas in The Wave Equa-tion. Journal of Computational Mathematics and Optimization. 2005,1(1):1-1931 崔明根, 邓中兴, 吴勃英. 再生核空间中的数值泛函方法. 哈尔滨工业大学出版社. 1988:34-57
    32 Minggen Cui, Zhongxing Deng. On The Best Operator of Interpolation.Math. Numerical Sinica. 1986,8(2):207-218
    33 Minggen Cui. Two-Dimensional Reproducing Kernel and Surface Interpola-tion. J. Comp. Math.. 1986,4(2):177-181
    34 张艳英, 幺焕民, 黄丽波. 多元插值. 上饶师范学院学报. 1997(6):9-12
    35 张艳英. W空间中多元迭代插值. 哈尔滨理工大学学报. 1997,(6):81-84
    36 文松龙, 崔明根. W空间中最佳插值逼近算子. 计算数学. 1997,(2):177-184
    37 文松龙, 金昌录, 朴东哲. W空间中有界线性算子的最佳逼近及其应用. 计算数学. 2000,(2):151-158
    38 邓彩霞, 濮安山, 邓中兴. 再生核空间中的微分算子样条插值. 黑龙江大学自然科学学报. 2001,(4):10-13
    39 Minggen Cui, Zhongxing Deng. Solutions to The Definite Solution Problem ofDi?erential Equation in Space W21 [a,b] . Advances in Math.. 1998,17(2):327-32940 Minggen Cui, Zhongxing Deng. The Analytic Solutions of Operator Equationof The First Kind. Advances in Math.. 1998,17(11):103-104
    41 吴勃英. W22 (D)空间函数的近似再生. 哈尔滨师范大学自然科学学报.1995,(3):14-24
    42 吴勃英. W22 (D)空间第一类算子方程的近似解. 高等学校计算数学学报.1999,21(4):369-376
    43 B. Y. Wu, Q. L. Zhang. The Numerical Methods for Solving Euler System ofEquations in Reproducing Kernel Space. J. Comp. Math.. 2001,19(3):327-336
    44 吴勃英. 再生核和小波理论及其应用若干问题研究. 哈尔滨工业大学博士学位论文. 2001:19-25
    45 谢树森. 空间 W21 [0,+∞) 中的最佳插值逼近及半直线上积分方程数值解. 山东大学学报(自然科学版). 1995,(4):12-15
    46 李云晖, 崔明根. 再生核空间W21 [0,+∞)中第一类积分-微分方程精确解的表示. 计算数学. 1999,21(2):189-198
    47 Chunli Li, Minggen Cui. How to Solve The Equation AuBu+Cu = f. Appl.Math. Comp.. 2002,133:643-653
    48 S. F. Li, W. K. Liu. Moving Least-square Reproducing Kernel Method PartII:Fourier Analysis. Comput. Methods Appl. Mech. Engrg.. 1996,139:159-163
    49 D. Alpay, V. Bolotnikov, H. T. Kaptanˇoglu. The Schur Algorithm and Re-producing Kernel Hilbert Spaces in The Ball. Linear Algebra and its Appli-cations. 2002,342:163-186
    50 G. W. Wasilkowskia, H. W′ozniakowskib. Finite-order Weights ImplyTractability of Linear Multivariate Problems. Journal of Approximation The-ory. 2004,130:57-77
    51 Yuan Xu. Representation of Reproducing Kernels and The Lebesgue Con-stants on The Ball. Journal of Approximation Theory. 2001,112:295-310
    52 G. E. Fasshauer. Dual Bases and Discrete Reproducing Kernels:A UnifiedFramework for RBF and MLS Approximation. Engineering Analysis withBoundary Elements. 2005,29:313-325
    53 Zuhua Luo, J. Levesley. Error Estimates and Convergence Rates for Varia-tional Hermite Interpolation. Journal of Approximation Theory. 1998,95:264-279
    54 O. Christensena, T. Strohmerb. The Finite Section Method and Problems inFrame Theory. Journal of Approximation Theory. 2005,133:221-237
    55 张石生著. 积分方程. 重庆出版社. 1987:89-101
    56 郭大钧,孙经先著. 非线性积分方程. 山东科学技术出版社. 1989:14-68
    57 L. E. J. Brouwer. Uber Abbildung von Manigfaltigkeiten. Math. Ann..1972,71:97-115
    58 C. W. Groestch . Inverse Problems in the Mathematical Sciences. Braun-schweig: Vieweg. 1993:21-45
    59 N. N. Bojarki. Inverse Black body Radiation. IEEE Trans. Antennas Prop-agat. 1982,30:778-780,
    60 J. Hadamard, Lectures on The Cauchy Problems in Partial Di?erential Equa-tion. New Haven: Yale University Press. 1923,33-35
    61 A. N. Tikhonov. Solutions of Ill-posed Problems. John Wiley and Sons. NewYork.1977:45-56
    62 T. Roths, M. Marth, J. Weese, J. Honerkamp. Ageneralization RegularizationMethod for Nonlinear Ill-posed Problems Enhanced for Nonlinear Regular-ization Terms. Computer Physics Communication. 2001,139:279-296
    63 Bounyamin Yildiz, Hakan Yetiskin, Ali Sever. A stability Estimate on TheRegularized Solution of The Backward Heat Equation. Applied Mathematicsand Computation. 2003,135(2-3):561-56
    64 Xiang-Tuan Xiong. Central Di?erence Schemes in Time and Error Estimateon A Non-standard Inverse Heat Conduction Problem. Applied Mathematicsand Computation. 2004, 157(1):77-99
    65 C. W. Groetsch. The Theory of Tikhonov Regularization for Fredholm Equa-tion of The First Kind. Pitman Advanced Publishing Program. Boston.1984:35-37
    66 陆帅. 用Tikhonov正则化方法求一阶和两阶数值微分. 高等计算数学学报.2004,26:62-74
    67 Ryazantseva. Stopping Rules for Solving Nonlinear Ill-posed Problem. Au-tomation and Remote Control. 1985,46:1225-1228
    68 K. Yu. The Method of Extending Compacts and A Posteriori Error Estimatesfor Nonlinear Ill-posed Problems. Journal of Inverse and Ill-Posed Problems.2004,12:627-636
    69 T. Schroeter. On A Special Class of Nonlinear Fredholm Integral Equationsof The First Kind Schroeter. Computing Regularization. 1997,58:259-279
    70 W. Juergen. Method for Nonlinear Ill-posed Problems. Computer PhysicsCommunications. 1993,77:429-440
    71 O. Diekman. Thresholds and Traveling Waves for The Geographical Spreadof Infection. J.Math.Biol.. 1978,6:109-130.
    72 H. R. Thieme. A Model for The Spatio Spread of An Epidemic. J.Math.Biol..1977,4:337-351.
    73 P. J. Kauthen. Continous Time Collocation Methods for Volterra-FredholmIntegral Equations. Numer.Math.. 1989,56:409-424.
    74 H. Brunner. On The Numerical Solution of Nonlinear Volterra-FredholmIntegral Equation by Collocation Methods. SIAM J.Numer. Anal..1990,27(4):987
    75 Guoqiang Han. Asymptotic Error Expansion for The Nystrom Method for AVolterra-Fredholm Integral Equations. J.Comput. Appl.Math.. 1995,59:49-59.
    76 K. Maleknejad, M. Hadizadeh. A New Computational Method for Volterra-Fredholm Integral Equations. J.Comput.Math.Appl.. 1999,37:339
    77 G. Adomian. Solving Frontier Problems of Physics: The DecompositionMethod. Kluwer. Dordrecht. 1994:44-56
    78 Y. Cherruault, G. Saccomandi. Some New Results for Convergent of Ado-mian’s Method Applied to Integral Equation. Math. Comput. Modelling.1992,16(2):85.
    79 R. P. Kanwal, K. C. Liu. A Taylor Expansion Approach for Solving IntegralEquations. Int. J. Math. Educ. Sci. Technol.. 1989,20(3):411.
    80 M. Sezer. Taylor Polynomial Solution of Volterra Integral Equations. Int. J.Math. Educ. Sci. Technol.. 1994,25(5):625.
    81 Salih Yalcinbas. Taylor Polynomial Solutions of Nonlinear Volterra-FredholmIntegral Equations. Applied Mathematics and Computation. 2002,127:195-206.
    82 L. Hacia. On Approximate Solution for Integral Equatons of Mixed Type.ZAMM. 1996,76:415-416.
    83 Abdul-Majid Wazwaz. A Reliable Treatment for Mixed Volterra–FredholmIntegral Equations. Applied Mathematics and Computation.2002,127:405–414
    84 Guoqiang Han, Liqing Zhang. Asymptotic Expansion for The TrapazoidalNystrom Method of Linear Volterra-Fredholm Integral Equations. J.Comput.Appl.Math.. 1994,51:339-348
    85 M. Hadizaden. Posteriori Error Estimates for the Nonlinear Volterra-Fredholm Integral Equations. Computers and Mathematics with Applica-tions. 2003,45:677-687
    86 E. Babolian, J. Biazar. Solution of A System of Nonlinear Volterra Inte-gral Equations by Domian Decompositon Method. Far East J.Math.Sci..2000,2(6):935-945
    87 H. Sadeghi Goghary, Sh. Javadi. Restarted Adomian Method for System ofNonlinear Volterra Integral Equations. Applied Mathematics and Computa-tion. 2005,161:745-751
    88 Y. Cherrault, V. Seng. The Resolution of Nonlinear Integral Equationsof The First Kind Using The Decomposition of Adomian. Kybernetes.1997,26(2):198-206
    89 G. Adomian. Nonlinear Stochastic Systems Theorey and Application toPhysics. Kluwer. 1989:12-35
    90 K. Maleknejad, M. Shahrezaee. Using Runge-Kutta Method for NumericalSolution of The System of Volterra Integral Equation. Applied Mathematicsand Computation. 2004,149:399-410
    91 Daftardar-Gejji Varsha, Jafarri Hossein. An Iterative Method for SolvingNonlinear Functional Equations. J.Math.Anal.Appl.. 2006,316:753-763
    92 Mehdi Dehghan. Application of The Adomian Decomposition Method forTwo-dimensional Parabolic Equation Subject to Nonstandard BoundarySpecifications. Applied Mathematics and Computation. 2004,157:549–560
    93 J. R. Cannon, S. P. Esteva, J. Hoek. A Galerkin Procedure for The Di?usionEquation Subject to The Specification of Mass. SIAM. J. Numer. Anal..1987,24:499–515
    94 J. R. Cannon, Y. Lin, S. Wang. An Implicit Finite Di?erence Scheme forThe Di?usion Equation Subject to Mass Specification. Int. J. Eng. Sci..1990,28(7):573–578
    95 A. S. V. Murthy, J. G. Verwer. Solving Parabolic Integro-Di?erentialEquations by An Explicit Integration Method. J. Comput. Appl. Math..1992,39:121–132
    96 Mehdi Dehghan. Numerical Solution of A Parabolic Equation with Non-local Boundary Specifications. Applied Mathematics and Computation.2003,145:185–194
    97 Mehdi Dehghan. Application of The Adomian Decomposition Method forTwo-dimensional Parabolic Equation Subject to Nonstandard BoundarySpecifications. Applied Mathematics and Computation. 2004,157:549–560
    98 Mehdi Dehghan. E?cient Techniques for The Second-order Parabolic Equa-tion Subject to Nonlocal Specifications. Applied Numerical Mathematics.2005,52:39–62
    99 Abdelkader Boucherif. Di?erential Equations with Nonlocal Boundary Con-ditions. Nonlinear Analysis. 2001,47:2419-2430
    100 Chun-Li Li, Ming-Gen Cui. The Exact Solution for Solving A Class NonlinearOperator Equation in Reproducing Kernel Space. Applied Mathematics andComputation. 2003,143:393-399.
    101 陈忠. 非线性算子方程的求解. 哈尔滨工业大学博士学位论文. 2005:13-15
    102 崔明根, 吴勃英. 再生核空间数值分析. 科学出版社. 2004:24-89
    103 A. Kirsch. An Introduction to The Mathematical Theory of Inverse Problems.New York:Springer-Verleg New York Inc.. 1996:34-56
    104 L. M. Delves, J. L. Mohamaed. Computational Methods for Integral Equa-tions. Cambridge University Press. 1985,12-45
    105 N. Parumasur, J. R. Mika. Amplitude-shape Method for The Numerical So-lution of Ordinary Di?erential Equations. Questiones Math. 2001,24: 69-78.
    106 E. Varoglu, W. D. L. Finn. Space Time Finite Elements IncorporatingCharacteristics for The Burgers’Equations. Int. J.Numer.Methods Engrg.1980,16:171–184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700