聚合物基纳米复合微球的反应挤出技术与应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机-无机复合微球的应用已经渗透到生活的每个角落,从涂料、纸张、化妆品等大宗产品到微波吸收、电泳显示、蛋白质分离、靶向给药、生物酶固定、生化反应等具有极高附加值的特种功能器件。迄今为止,聚合物基纳米复合微球大多采用乳液聚合技术,存在反应时间长、纳米粒子分散困难、包埋率低和包含量少、微球的力学强度、耐磨、耐温性能亟待提高等问题。本论文巧妙地利用纳米粒子在两相高分子熔体反应共混过程中的定向分散特性,首次通过反应挤出等可大规模连续生产的低成本技术,成功地制备了多种结构和形态可控的有机-无机复合微球。全文以聚苯乙烯(PS),尼龙6(PA6)为模型聚合物,经不同表面修饰的二氧化硅(SiO2),二氧化钛(TiO2)和四氧化三铁(Fe3O4)为纳米粒子,系统地研究了反应挤出法制备聚合物基纳米复合微球的基本原理、加工工艺、微结构调控及其应用技术。
     首先研究了各种纳米粒子在PS/PA6共混物以及在反应增容体系中的选择性分散行为。结果表明,亲水性SiO2纳米粒子选择性分散在PA6相内,与SiO2粒径无关;而表面主要为-CH3基团的疏水性SiO2纳米粒子则分散在PS/PA6两相的界面处。TiO2纳米粒子一般分散在PA6相中,即使在共混过程中TiO2纳米粒子先分散在PS相内再与PA6进行共混,TiO2纳米粒子也会由PS相向PA6相迁移,最终分散在PS/PA6界面或PA6相内。对于PS/PA6/Fe3O4体系,表面未处理和表面经末端含-NH2的硅烷偶联剂处理的Fe3O4纳米粒子在PS/PA6中定向分散在PA6相内,而对于表面经高级脂肪酸处理的Fe3O4纳米粒子则大多分散在PS/PA6的界面处。这些结果都表明纳米粒子的表面与聚合物分子的相互作用力(即热焓的作用)对选择性分散起主导作用。为了进一步调控PA6的相形态和粒径,我们在Fe3O4纳米粒子填充PS/PA6体系中添加了末端接枝马来酸酐的聚苯乙烯(FPS)进行反应共混,结果发现无论哪种Fe3O4纳米粒子均大量被拖出至PS相内。研究表明FPS和Fe3O4表面基团的反应与FPS和PA6分子链之间的反应存在竞争关系,而且前者占优,只有当FPS与PA6反应完全后再加入Fe3O4纳米粒子才能使Fe3O4纳米粒子选择性分散在PA6相内。
     其次重点研究了TiO2纳米粒子定向分散对PS/PA6共混体系相反转行为及微结构演变的影响。当加入少量TiO2纳米粒子且选择性分散在PA6相内时,PS/PA6共混体系出现了由共连续结构转变成海岛结构的反常现象;随着TiO2含量继续增加,由于PA6/TiO2复合相与PS相的含量比不断上升,共混体系又从海岛结构转变为共连续结构,但是相尺寸变大。采用光学显微镜实时跟踪了PS/PA6/TiO2体系在热处理过程中的微结构演变规律,发现热处理促使共连续结构向海岛结构转变。这些实验结果与CB、SiO2等分散体系的演变规律完全不同。我们还发现,在低TiO2含量区,PA6液滴的凝聚过程符合Lifshitz-Slyozov-Wagner (LSW)机理,而TiO2含量较高时,凝聚速率大幅度减小。进一步研究表明,与CB在聚合物熔体中形成三维网络的凝聚形式不同,TiO2在聚合物熔体中倾向于形成团簇状聚集体。这种凝聚特征诱导了TiO2偏聚的PA6相形态发生根本的转变,即添加TiO2或热处理可以促使PA6相形成海岛结构,并且PA6分散相粒径随着TiO2含量的增加而增大。
     在上述研究成果的基础上,我们进一步考察了PA6组分含量、PA6与PS的粘度比、相容剂含量以及通过热处理使PA6相球形化过程对PA6基纳米复合微球粒径及粒径分布的影响。结果表明,降低PA6粘度有助于减小复合微球粒径,添加少量的反应性相容剂FPS不仅可以大幅度减小复合微球的平均粒径,而且可以将PS/PA6共混物的相反转点提高到50/50,粒径分布变窄,球形度更好。利用纳米粒子表面修饰和加工工艺优化,获得了两种微结构迥异的窄分布复合微球:一种微结构是纳米粒子均匀分散在复合微球中,另一种是纳米粒子偏聚在微球内表面。值得一提的是,我们获得了平均粒径为1.4μm,磁含量高达56wt%,饱和磁化强度达42.3emu/g的PA6/Fe3O4磁性复合微球。
     最后,我们利用反应挤出技术制备的PA6/Fe3O4磁性复合微球,初步研究了该微球在蛋白质分离方面的应用技术。为了高效率吸附牛血清白蛋白,采用PA6/Fe304微球与丙烯酸共聚以提高磁性微球表面的羧基活性基团。结果表明,微球表面的羧基含量可达1.0m mol/g,对牛血清白蛋白的最大吸附效率达215mg/g。这个数值明显高于文献报道,由此可见本实验获得的磁性复合微球在生物分离方面具有很大的应用潜力。
The applications of organic-inorganic composite microspheres are pervaded in every field, which include bulk products, such as coating, paper, cosmetic, and high value added devices with special function, for example, microwave absorber, electrophoretic display, protein separation, targeting drug delivery, enzyme immobilization and biochemical reaction etc. Up to now, most of the polymer-based nanocomposite microspheres were prepared by various emulsion polymerization. These approaches are limited by many disadvantages, for instance, long preparing period, difficulty in nanoparticle dispersion, low encapsulation efficiency and nanoparticle content, and limitation in mechanical strength, wear resistance and heat resistance. To tackle these problems, based on the selective location of nanoparticles in one domain of immiscible melted polymer blends, we proposed a novel method to low-costly prepare size-controlable composite microspheres by reactive extrusion. In this work, various nanoparticles with different surface treatment, such as silica (SiO2), titanium dioxide (TiO2) and tetroxide (Fe3O4) nanoparticles, were mixing with the polystyrene (PS) and polyamide 6 (PA6) model blends to prepare PA6-based nanocomposite microspheres. The basic principle, processing technology, micro-morpology tailoring as well as application of reactive blending for fabricating polymer-based nanocomposite mocrospheres were systemically investigated.
     Firstly, the selective location of various nanoparticles in the PS/PA6 blends or in the reactively compatibilized PS/PA6 blends was studied. The results showed that the hydrophilic SiC>2 with-OH groups was preferentially distributed in the PA6 doamin having nothing with the size of nanoparticle, while, the hydrophobic SiO2 with-CH3 groups was selectively located at the interface of PS/PA6. For TiO2 filled PS/PA6 blends, when PS and TiO2 were blended first and then mixed with PS in the second step, the TiO2 was transferred itself from PS to the preferential PA6 phase and accumulated at the blend interface and in PA6. For PS/PA6/Fe3O4 blends, both the as-produced Fe3O4 and Fe3O4 with surface treated by a NH2-end silane coupling agent were selectively located in PA6 domain, while, the Fe3O4 with stearic acid surface-treatment was distributed at the interface. The results implied that the heterogeneous distribution of nanoparticles in immiscible polymer blends depends on the interaction between the nanoparticle and polymer chains (i.e. enthalpic interactions). In order to regulate the morphology and size of PA6 phase, a terminal maleic anhydride functionalized polystyrenes (FPS) was introduced to PS/PA6/Fe3O4 blends for reactive blending. It was found that a large part of Fe3O4 particles was pulled out from the PA6 phase or the interface to PS domain. The results showed that becaused the reaction of FPS with the surface ligands of particle is more competitive than that of FPS with PA6 chain, only when Fe3O4 is added after a complete reaction of FPS with PA6 could the Fe3O4 be preferentially dispersed into the PA6 domains.
     Secondly, the effect of selective dispersion of TiO2 in PA6 domian on the phase inversion and morphology evolution of PS/PA6 blend was researched. By adding a small amount of TiO2, the morphology of the PS/PA6 blend abnormally transformed from a co-continuous into a matrix-droplet structure. With further increases in nanoparticle loading, the increase of the content of PA6/TiO2in PS/PA6/TiO2 composite indued the transformation of PA6 phase from the dispersed phase to the continuous one, however, the PA6 domain becomes larger. Morphology evolution of PS/PA6/TiO2 blend during the static annealing process was real-time traced by optical microscopy. These experimental results are different from those in carbon black-filled or silica-filled immiscible polymer blends as reported previously. It was found that by adding a small amount of TiO2, the coarsening of PA6 domain is in accord with the Lifshitz-Slyozov-Wagner (LSW) mechanism, which is the same as the immiscible polymer blend. However, at higher TiO2 loads, the coarsening rate is sharply decreased. Further experiments revealed that unlike carbon black self-agglomeration to form 3D network structure, TiO2 nanoparticles appears to self-coagulation to form separated crowding of clusters in the PA6 phase, which induces PA6 phase to transformate from co-continuity to a matrix-droplet structure by adding low content TiO2 or by annealing process, and thus turns out a larger PA6 domain size at a higher TiO2 loading.
     Furthermore, the influences of the content of PA6, the viscosity ratio of PA6 and PS, the content of compatibilizer and annealing process glomerating PA6 domain on the diameter and size distribution of PA6-based microspheres were investigated. The results showed that a lower PA6 viscosity is favourable to decrease the size of PA6-based microspheres. By adding a small amount of FPS for reactive extrusion, it not only can sharply decrease the diameter of microspheres as well as the size distribution of microspheres, but also increase the phase inversion for PS/PA6 blend to 50/50. By modifying the surface of nanoparticles and optimizing the processing conditions, two kinds of uniform microspheres with different structure were fabricated. One owns structure in which nanoparticles are distributed evenly throughout PA6 microspheres, the other has structure in which nanoparticles were selectively located at the interior interface of PA6 microspheres. It should be mentioned particularly that PA6/Fe3O4 microspheres were prepared with number-average diameter of 1.4μm and very high Fe3O4 content. It's saturation magnetization is about 42.3 emu/g.
     Finally, the protein immobilization utilizing the reactively extruded PA6/Fe3O4 composite magnetic microsphere was preliminarily investigated. Carboxyl functional group, bonded with PA6/Fe3O4 microsphere by copolymerization of acrylic acid with PA6 chain was used as a ligand for protein adsorption. The results showed that the surface concentration of carboxylic acid of the functionalized microsphere can be add up to 1.0 m mol/g, and the adsorption capacity of BSA reaches 215mg/g microspheres which is much higher than the reported value, showing its potential for application in bioseparation and biomedical fields.
引文
[1]Furusawa K., Anzai C. Preparation of composite fine particles by heterocoagulation. Colloid & Polymer Science.1987,265 (10):882-888
    [2]Lansalot M., Sabor M., Elaissari A., Pichot C. Elaboration of fluorescent and highly magnetic submicronic polymer particles via a stepwise heterocoagulation process. Colloid & Polymer Science.2005,283 (12):1267-1277
    [3]Huang J., Li Q., Bao Y.,Wu C. Preparation of raspberry-like polystyrene/carbon black composite microsphere via π-π interactions. Colloid & Polymer Science.2009,287 (1):37-43
    [4]Avivi S., Felner I., Novik I.,Gedanken A. The preparation of magnetic proteinaceous microspheres using the sonochemical method. Biochimica et Biophysica Acta (BBA) General Subjects.2001,1527 (3):123-129
    [5]Zhu Y., Da H., Yang X., Hu Y. Preparation and characterization of core-shell monodispersed magnetic silica microspheres. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2003,231 (1-3):123-129
    [6]Ugelstad J., Mφrk P. C., Schmid R., Ellingsen T., Berge A. Preparation and biochemical and biomedical applications of new monosized polymer particles. Polymer International. 1993,30(2):157-168
    [7]Zhang Y., Fang Y., Wang S., Lin S. Preparation of spherical nanostructured poly(methacrylic acid)/PbS composites by a microgel template method. Journal of Colloid and Interface Science.2004,272 (2):321-325
    [8]Tricot M., Daniel J. Preess for the preparation of magnetic beads of vinylarorratic polymer. US Patent,4339337,1982.
    [9]Yang C., Liu H., Guan Y., Xing J., Liu J., Shan G. Preparation of magnetic poly(methylmethacrylate-divinylbenzene-glycidylmethacrylate) microspheres by spraying suspension polymerization and their use for protein adsorption. Journal of Magnetism and Magnetic Materials.2005,293 (1):187-192
    [10]Guo Z., Bai S., Sun Y Preparation and characterization of immobilized lipase on magnetic hydrophobic microspheres. Enzyme and Microbial Technology.2003,32 (7):776-782
    [11]Santa Maria L. C., Leite M. C. A. M., Costa M. A. S., Ribeiro J. M. S., Senna L. F., Silva M. R. Characterization of magnetic microspheres based on network styrene and divinylbenzene copolymers. Materials Letters.2004,58 (24):3001-3006
    [12]Martin C., Ramirez L.,Cuellar J. Stainless steel microbeads coated with sulfonated polystyrene-co-divinylbenzene. Surface and Coatings Technology.2003,165 (l):58-64
    [13]Shim J., Kim J., Han S., Chang I., Kim H., Kang H., Lee O., Suh K. Zinc oxide/polymethylmethacrylate composite microspheres by in situ suspension polymerization and their morphological study. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2002,207 (l-3):105-111
    [14]Desantamaria L. Characterization of magnetic microspheres based on network styrene and divinylbenzene copolymers. Materials Letters.2004,58 (24):3001-3006
    [15]Denkbas E. B., Kilicay E., Birlikseven C., Ozturk E. Magnetic chitosan microspheres: preparation and characterization. Reactive and Functional Polymers.2002,50 (3):225-232
    [16]Hasegawa T., Mukai S. R., Shirato Y., Tamon H. Preparation of carbon gel microspheres containing silicon powder for lithium ion battery anodes. Carbon.2004,42 (12-13):2573-2579
    [17]Betancourt-Galindo R., Saldivar-Guerrero R., Rodriguez-Fernandez O., Garcia-Cerda L. A.,Matutes-Aquino J. Preparation of magnetic latexes using styrene monomer. Journal of Alloys and Compounds.2004,369 (1-2):87-89
    [18]Zhang Q., Zhang H., Xie G., Zhang J. Effect of surface treatment of magnetic particles on the preparation of magnetic polymer microspheres by miniemulsion polymerization. Journal of Magnetism and Magnetic Materials.2007,311 (1):140-144
    [19]Betancourt G., R. Preparation of magnetic latexes using styrene monomer. Journal of Alloys and Compounds.2004,369 (1-2):87-89
    [20]He X., Ge X., Wang M., Zhang Z. The preparation of composite microsphere with hollow core/porous shell structure by self-assembling of latex particles at emulsion droplet interface. Journal of Colloid and Interface Science.2006,299 (2):791-796
    [21]Luna-Xavier J.-L., Guyot A., Bourgeat-Lami E. Synthesis and Characterization of Silica/Poly (Methyl Methacrylate) Nanocomposite Latex Particles through Emulsion Polymerization Using a Cationic Azo Initiator. Journal of Colloid and Interface Science. 2002,250 (1):82-92
    [22]刘自强,甄卫军,李志娟.水溶性壳聚糖及磁性壳聚糖微球的制备.日用化学工业.2006,(6):361-364
    [23]Nagai K., Satake H., Nishita O., Matsumoto H., Hashimoto H., Kido J., Kuramoto N. Polymer Encapsulation of Porous Silica Particles by Aqueous Vinyl Polymerization Method. Peprints of 7th polymer microspheres symposium.1992,155-158
    [24]Faridi-Majidi R., Sharifi-Sanjani N. Preparation of magnetic latexes functionalized with chloromethyl groups via emulsifier-free miniemulsion polymerization. Journal of Magnetism and Magnetic Materials.2007,311 (1):55-58
    [25]Yanase N., Noguchi H., Asakura H., Suzuta T. Preparation of magnetic latex particles by emulsion polymerization of styrene in the presence of a ferrofluid. Journal of Applied Polymer Science.1993,50 (5):765-776
    [26]Ding X. B., Sun Z. H., Wan G. X., Jiang Y. Preparation of thermosensitive magnetic particles by dispersion polymerization. Reactive and Functional Polymers.1998,38 (1):11-15
    [27]Yu D., An J. Preparation and characterization of titanium dioxide core and polymer shell hybrid composite particles prepared by two-step dispersion polymerization. Polymer. 2004,45 (14):4761-4768
    [28]Kondo A., Fukuda H. Preparation of thermo-sensitive magnetic hydrogel microspheres and application to enzyme immobilization. Journal of Fermentation and Bioengineering. 1997,84 (4):337-341
    [29]Stejskal J., Quadrat O., Sapurina I., Zemek J., Drelinkiewicz A., Hasik M., Krivka I., Prokes J. Polyaniline-coated silica gel. European Polymer Journal.2002,38 (4):631-637
    [30]赵吉丽,韩兆让,王莉,刘春丽.表面含羧基的交联磁性高分子复合微球的合成.功能高分子学报.2007,(1):27-32
    [31]Kim S., Kim S., Ahn J., Kim K. Magnetic and microwave absorbing properties of Co-Fe thin films plated on hollow ceramic microspheres of low density. Journal of Magnetism and Magnetic Materials.2004,271 (1):39-45
    [32]Chatterjee J., Haik Y., Chen C. Modification and characterization of polystyrene-based magnetic microspheres and comparison with albumin-based magnetic microspheres. Journal of Magnetism and Magnetic Materials.2001,225 (1-2):21-29
    [33]Felinto M., Parra D., Lugao A., Batista M., Higa O., Yamaura M., Camilo R., Ribela M.,Sampaio L. Magnetic polymeric microspheres for protein adsorption. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms.2005,236 (1-4):495-500
    [34]Arica M. Y, Yavuz H., Patir S., Denizli A. Immobilization of glucoamylase onto spacer-arm attached magnetic poly(methylmethacrylate) microspheres:characterization and application to a continuous flow reactor. Journal of Molecular Catalysis B:Enzymatic. 2000,11 (2-3):127-138
    [35]Bahar T.,Celebi S. Immobilization of glucoamylase on magnetic poly(styrene) particles. Journal of Applied Polymer Science.1999,72 (l):69-73
    [36]Bruce I. J., Sen T. Surface Modification of Magnetic Nanoparticles with Alkoxysilanes and Their Application in Magnetic Bioseparations. Langmuir.2005,21 (15):7029-703;5
    [37]Guo N., Wu D., Pan X., Lu M. Magnetic polymer microspheres with azidocarbonyl groups:Synthesis, characterization and application in protein immobilization. Journal of Applied Polymer Science.2009,112 (4):2383-2390
    [38]Jiang X., Bai S., Sun Y Fabrication and characterization of rigid magnetic monodisperse microspheres for protein adsorption. Journal of Chromatography B.2007,852 (1-2):62-68
    [39]Mikhaylova M., Kim D., Berry C., Zagorodni A., Toprak M., Curtis A., Muhammed M. BSA Immobilization on Amine-Functionalized Superparamagnetic Iron Oxide Nanoparticles. Chemistry of Materials.2004,16 (12):2344-2354
    [40]Mohapatra S., Pramanik N., Mukherjee S., Ghosh S. K., Pramanik P. A simple synthesis of amine-derivatised superparamagnetic iron oxide nanoparticles for bioapplications. Journal of Materials Science.2007,42 (17):7566-7574
    [41]Molday R., Yen S., Rembaum A. Application of magnetic microspheres in labelling; and separation of cells. Nature.1977,268 (5619):437-438
    [42]Odabasl M., Denizli A. Cibacron Blue F3GA-attached magnetic poly(2-hydroxyethyl methacrylate) beads for human serum albumin adsorption. Polymer International.2004, 53 (3):332-338
    [43]Oster J., Parker J., a Brassard L. Polyvinyl-alcohol-based magnetic beads for rapid and efficient separation of specific or unspecific nucleic acid sequences. Journal of Magnetism and Magnetic Materials.2001,225 (1-2):145-150
    [44]Qiu G, Zhu L., Zhu B., Xu Y. Grafting of styrene/maleic anhydride copolymer onto PVDF membrane by supercritical carbon dioxide:Preparation, characterization and biocompatibility. The Journal of Supercritical Fluids.2008,45 (3):374-383
    [45]Safarikova M., Roy I., Gupta M., Safarik I. Magnetic alginate microparticles for purification of [alpha]-amylases. Journal of Biotechnology.2003,105 (3):255-260
    [46]Treleaven J., Ugelstad J., Philip T., Gibson F., Rembaum A., Caine G, Kemshead J. Removal of neuroblastoma cells from bone marrow with monoclonal antibodies conjugated to magnetic microspheres. The Lancet.1984,323 (8368):70-73
    [47]Josephson. US Patent,1987,672
    [48]H P. C. US Patent,1990,920.
    [49]Tanyolac D.,Ozdural A. BSA adsorption onto magnetic polyvinylbutyral microbeads. Journal of Applied Polymer Science.2001,80 (5):707-715
    [50]钱浩,李春蛟,张莹雪,林志勇.嗜硫性顺磁微球的制备及对入血清抗体的分离.材料研究学报.2009,(1):93-97
    [51]朱以华,王强斌.表面功能化磁性微球的制备及在核酸分离与固定化酶中的应用.中国医学科学院学报.2002,24(2):118-123
    [52]Supsakulchai A., Ma G H., Nagai M.,Omi S. Performance of titanium dioxide microcapsules as a photo-oxidation catalyst for decolourization of methylene blue. Journal of Microencapsulation.2003,20 (1):19-33
    [53]荣宇,吴刚,陈红征,汪茫.电子墨水微胶囊及电泳显示原型器件的制备.高等学校化学学报.2005,(5):982-984
    [54]Werts M., Badila M., Brochon C., Hebraud A., Hadziioannou G Titanium Dioxide-Polymer Core-Shell Particles Dispersions as Electronic Inks for Electrophoretic Displays. Chemistry of Materials.2008,20 (4):1292-1298
    [55]Lee J., Han C. Evolution of polymer blend morphology during compounding in a twin-screw extruder. Polymer.2000,41 (5):1799-1815
    [56]Li R., Xiong C., Kuang D., Dong L., Lei Y., Yao J., Jiang M., Li L. Polyamide 11/Poly(vinylidene fluoride) Blends as Novel Flexible Materials for Capacitors. Macromolecular Rapid Communications.2008,29 (17):1449-1454
    [57]Ratnagiri R., Scott C. Effect of viscosity variation with temperature on the compounding behavior of immiscible blends. Polymer Engineering & Science.1999,39 (9):1823-1835
    [58]Tol R. Phase morphology and stability of co-continuous (PPE/PS)/PA6 and PS/PA6 blends:effect of rheology and reactive compatibilization. Polymer.2004,45 (8):2587-2601
    [59]Wang Y, Zhang Q., Fu Q. Compatibilization of Immiscible Poly(propylene)/Polystyrene Blends Using Clay. Macromolecular Rapid Communications.2003,24 (3):231-235
    [60]Wildes G, Keskkula H., Paul D. Morphology of PC/SAN blends:effect of reactive compatibilization, SAN concentration, processing, and viscosity ratio. Journal of Polymer Science Part B:Polymer Physics.1999,37 (1):71-82
    [61]Yang K., Lee S., Oh J. Effects of viscosity ratio and compatibilizers on the morphology and mechanical properties of polycarbonate/acrylonitrile-butadiene-styrene blends. Polymer Engineering & Science.1999,39 (9):1667-1677
    [62]Cassagnau P. Melt rheology of organoclay and fumed silica nanocomposites. olymer. 2008,49(9):2183-2196
    [63]Cui L., Zhang Y., Zhang Y., Zhang X., Zhou W. Electrical properties and conductive mechanisms of immiscible polypropylene/Novolac blends filled with carbon black. European Polymer Journal.2007,43 (12):5097-5106
    [64]Filippone G., Dintcheva N., Acierno D., La Mantia F. The role of organoclay in promoting co-continuous morphology in high-density poly(ethylene)/poly(amide) 6 blends. Polymer.2008,49 (5):1312-1322
    [65]Hong J., Namkung H., Ahn K., Lee S., Kim C. The role of organically modified layered silicate in the breakup and coalescence of droplets in PBT/PE blends. Polymer.2006,47 (11):3967-3975
    [66]Kelnar I., Khunova V., Kotek J.,Kapralkova L. Effect of clay treatment on structure and mechanical behavior of elastomer-containing polyamide 6 nanocomposite. Polymer.2007, 48(18):5332-5339
    [67]Khatua B., Lee D., Kim H., Kim J. Effect of Organoclay Platelets on Morphology of Nylon-6 and Poly(ethylene-ran-propylene) Rubber Blends. Macromolecules.2004,37 (7):2454-2459
    [68]Kontopoulou M., Liu Y., Austin J., Parent J. The dynamics of montmorillonite clay dispersion and morphology development in immiscible ethylene-propylene rubber/polypropylene blends. Polymer.2007,48 (15):4520-4528
    [69]Levon K., Margolina A., Patashinsky A. Multiple percolation in conducting polymer blends. Macromolecules.1993,26 (15):4061-4063
    [70]Liu Y.,Kontopoulou M. The structure and physical properties of polypropylene and thermoplastic olefin nanocomposites containing nanosilica. Polymer.2006,47 (22):7731-7739
    [71]Mamunya Y. Polymer blends filled with carbon black:structure and electrical properties. Macromolecular Symposia.2001,170 (1):257-264
    [72]Potschke P., Bhattacharyya A., Janke A. Morphology and electrical resistivity of melt mixed blends of polyethylene and carbon nanotube filled polycarbonate. Polymer.2003, 44 (26):8061-8069
    [73]Sinha Ray S., Pouliot S., Bousmina M.,Utracki L. Role of organically modified layered silicate as an active interfacial modifier in immiscible polystyrene/polypropylene blends. Polymer.2004,45 (25):8403-8413
    [74]Sumita M., Sakata K., Asai S., Miyasaka K., Nakagawa H. Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polymer Bulletin.1991, 25 (2):265-271
    [75]Voulgaris D., Petridis D. Emulsifying effect of dimethyldioctadecylammonium-hectorite in polystyrene/poly(ethyl methacrylate) blends. Polymer.2002,43 (8):2213-2218
    [76]Yang H., Zhang X., Qu C., Li B., Zhang L., Zhang Q., Fu Q. Largely improved toughness of PP/EPDM blends by adding nano-SiO2 particles. Polymer.2007,48 (3):860-869
    [77]Zhang M., Yu G, Zeng H., Zhang H., Hou Y. Two-Step Percolation in Polymer Blends Filled with Carbon Black. Macromolecules.1998,31 (19):6724-6726
    [78]Zois H., Mamunya Y., Apekis L. Structure and dielectric properties of a thermoplastic blend containing dispersed metal. Macromolecular Symposia.2003,198 (1):461-472
    [79]Gubbels F., Blacher S., Vanlathem E., Jerome R., Deltour R., Brouers F., Teyssie P. Design of Electrical Composites:Determining the Role of the Morphology on the Electrical Properties of Carbon Black Filled Polymer Blends. Macromolecules.1995,28 (5):1559-1566
    [80]Elias L., Fenouillot F., Majeste J. C., Cassagnau P. Morphology and rheology of immiscible polymer blends filled with silica nanoparticles. Polymer.2007,48 (20):6029-6040
    [81]Li Y, Shimizu H. Co-continuous Polyamide 6 (PA6)/Acrylonitrile-Butadiene-Styrene (ABS) Nanocomposites. Macromolecular Rapid Communications.2005,26 (9):710-715
    [82]Kelarakis A., Giannelis E.,Yoon K. Structure-properties relationships in clay nanocomposites based on PVDF/(ethylene-vinyl acetate) copolymer blends. Polymer. 2007,48 (26):7567-7572
    [83]Bockstaller M., Lapetnikov Y, Margel S., Thomas E. Size-selective organization of enthalpic compatibilized nanocrystals in ternary block copolymer/particle mixtures. Journal of the American Chemical Society.2003,125 (18):5276-5277
    [84]Gupta S., Zhang Q., Emrick T., Balazs A., Russell T. Entropy-driven segregation of nanoparticles to cracks in multilayered composite polymer structures. Nature Materials. 2006,5 (3):229-233
    [85]Roy R, Roy D. Multi-Phasic Ceramic Composites Made by Sol-Gel Technique. Materials Research Society Symposium Proceedings.1984,32:347-356
    [86]Krasteva N., Besnard I., Guse B., Bauer R., Mullen K., Yasuda A.,Vossmeyer T. Self-Assembled Gold Nanoparticle/Dendrimer Composite Films for Vapor Sensing Applications. Nano Letters.2002,2 (5):551-555
    [87]Trindade T., O'Brien P., Pickett N. Nanocrystalline Semiconductors:Synthesis, Properties, and Perspectives. Chemistry of Materials.2001,13 (11):3843-3858
    [88]Vossmeyer T., Guse B., Besnard I., Bauer R., Mullen K.,Yasuda A. Gold Nanoparticle/Polyphenylene Dendrimer Composite Films:Preparation and Vapor-Sensing Properties. Advanced Materials.2002,14 (3):238-242
    [89]Shenhar R., Norsten T., Rotello V. Polymer-Mediated Nanoparticle Assembly:Structural Control and Applications. Advanced Materials.2005,17 (6):657-669
    [90]Hess W., Scott C., Callan J. Carbon black distribution in elstomer blends. Rubber chemistry and technology.1967,40:371-384
    [91]Hess W., Chirico V. Elastomer blend properties-influence of carbon black type and location. Rubber chemistry and technology.1977,50:301-326
    [92]Lee B., Singleton C. Experimental study of the relationship of processing to the morphology in blends of SBR and cis-polybutadiene with carbon black. Journal of Applied Polymer Science.1979,24 (10):2169-2183
    [93]Callan J., Hess W., Scott C. Elastomer blends:compatibility and relative response to fillers. Rubber chemistry and technology.1971,44 (3):814-837
    [94]Sircar A., Lamond T. The effect of carbon black type on the dynamic properties of natural rubber.1973,46 (1):178-183
    [95]Poh B., Ismail H., Tan K. Effect of filler loading on tensile and tear properties of SMR L/ENR 25 and SMR L/SBR blends cured via a semi-efficient vulcanization system. Polymer Testing.2002,21 (7):801-806
    [96]Geuskens G, Gielens J., Geshef D.,Deltour R. The electrical conductivity of polymer blends filled with carbon-black. European Polymer Journal.1987,23 (12):993-995
    [97]Leblanc J. Rubber-filler interactions and rheological properties in filled compounds. Progress in Polymer Science.2002,27 (4):627-687
    [98]Gubbels F., Vanlathem E., Jerome R., Deltour R., Teyssie P. Selective control of the localization of carbon black in polymer blends. The Second International Conference on Carbon Black.1993:Mulhouse
    [99]Sumita M., Sakata K., Hayakawa Y, Asai S., Miyasaka K.,Tanemura M. Double percolation effect on the electrical conductivity of conductive particles filled polymer blends. Colloid & Polymer Science.1992,270 (2):134-139
    [100]Gubbels F., Jerome R., Teyssie P., Vanlathem E., Deltour R., Calderone A., Parente V.,Bredas J. L. Selective Localization of Carbon Black in Immiscible Polymer Blends:A Useful Tool To Design Electrical Conductive Composites. Macromolecules.1994,27 (7):1972-1974
    [101]Lee M., Hu X., Li L., Yue C., Tam K. Flow behaviour and microstructure evolution in novel SiO2/PP/LCP ternary composites:effects of filler properties and mixing sequence. Polymer International.2003,52 (2):276-284
    [102]Lee M., Hu X., Yue C., Li L.,Tam K. Effect of fillers on the structure and mechanical properties of LCP/PP/SiO2 in-situ hybrid nanocomposites. Composites Science and Technology.2003,63 (3-4):339-346
    [103]Markovic G, Radovanovic B., Simendic J., Marinovic-Cincovic M. Thermostability and surface morphology of nano-and micro-filled NBR/CSM and CR/CSM rubber blends. Journal of the Serbian Chemical Society.2004,69 (2):167-173
    [104]Zhang Q., Yang H., Fu Q. Kinetics-controlled compatibilization of immiscible polypropylene/polystyrene blends using nano-SiO2 particles. Polymer.2004,45 (6):1913-1922
    [105]Lavina S., Negro E., Pace G, Gross S., Depaoli G, Vidali M., Di Noto V. Dielectric low-k composite films based on PMMA, PVC and methylsiloxane-silica:Synthesis, characterization and electrical properties. Journal of Non-Crystalline Solids.2007,353 (30-31):2878-2888
    [106]Yang H., Li B., Wang K., Sun T., Wang X., Zhang Q., Fu Q., Dong X., Han C. Rheology and phase structure of PP/EPDM/SiO2 ternary composites. European Polymer Journal. 2008,44(l):113-123
    [107]Yang H., Zhang Q., Guo M., Wang C., Du R., Fu Q. Study on the phase structures and toughening mechanism in PP/EPDM/SiO2 ternary composites. Polymer.2006,47 (6):2106-2115
    [108]Yang H., Zhang X. Q., Qu C., Li B., Zhang L., Zhang Q., Fu Q. Largely improved toughness of PP/EPDM blends by adding nano-SiO2 particles. Polymer.2007,48 (3):860-869
    [109]Qu C., Yang H., Liang D., Cao W., Fu Q. Morphology and properties of PET/PA-6/SiO2 ternary composites. Journal of Applied Polymer Science.2007,104 (4):2288-2296
    [110]Mae H., Omiya M., Kishimoto K. Comparison of mechanical properties of PP/SEBS blends at intermediate and high strain rates with SiO2 nanoparticles vs. CaCO3 fillers. Journal of Applied Polymer Science.2008,110 (2):1145-1157
    [111]Sinha Ray S., Bandyopadhyay J., Bousmina M. Effect of organoclay on the morphology and properties of poly(propylene)/poly [(butylene succinate)-co-adipate] blends. Macromolecular Materials and Engineering.2007,209:729-747
    [112]Sinha Ray S., Bousmina M. Effect of Organic Modification on the Compatibilization Efficiency of Clay in an Immiscible Polymer Blend. Macromolecular Rapid Communications.2005,26 (20):1639-1646
    [113]Gonzalez I., Eguiazabal J., Nazabal J. Nanocomposites based on a polyamide 6/maleated styrene-butylene-co-ethylene-styrene blend:Effects of clay loading on morphology and mechanical properties. European Polymer Journal.2006,42 (ll):2905-2913
    [114]Gonzalez I., Eguiazabal J., Nazabal J. Rubber-toughened polyamide 6/clay nanocomposites. Composites Science and Technology.2006,66 (11-12):1833-1843
    [115]Gonzalez I., Eguiazabal J., Nazabal J. Effects of the processing sequence and critical interparticle distance in PA6-clay/mSEBS nanocomposites. European Polymer Journal. 2008,44 (2):287-299
    [116]Chow W., Ishak Z., Ishiaku U., Karger-Kocsis J., Apostolov A. The effect of organoclay on the mechanical properties and morphology of injection-molded polyamide 6/polypropylene nanocomposites. Journal of Applied Polymer Science.2004,91 (1):175-189
    [117]Kelarakis A., Giannelis E., Yoon K. Structure-properties relationships in clay nanocomposites based on PVDF/(ethylene-vinyl acetate) copolymer blends. Polymer. 2007,48 (26):7567-7572
    [118]Chuang T., Guo W., Cheng K., Chen S., Wang H., Yen Y. Thermal Properties and Flammability of Ethylene-Vinyl Acetate Copolymer/Montmorillonite/Polyethylene Nanocomposites with Flame Retardants. Journal of Polymer Research.2004,11 (3):169-174
    [119]Valera-Zaragoza M., Ramirez-Vargas E., Medellin-Rodriguez F., Huerta-Martinez B. Thermal stability and flammability properties of heterophasic PP-EP/EVA/organoclay nanocomposites. Polymer Degradation and Stability.2006,91 (6):1319-1325
    [120]Frounchi M., Dadbin S., Salehpour Z., Noferesti M. Gas barrier properties of PP/EPDM blend nanocomposites. Journal of Membrane Science.2006,282 (1-2):142-148
    [121]Ou B., Li D., Liu Y Compatibilizing effect of maleated polypropylene on the mechanical properties of injection molded polypropylene/polyamide 6/functionalized-TiO2 nanocomposites. Composites Science and Technology.2009,69 (3-4):421-426
    [122]Ou B., Li D. The effect of functionalized-TiO2 on the mechanical properties of PP/PA6/functionalized-TiO2 nanocomposites prepared by reactive compatibilization
    Journal of Composite Materials.2009,43 (12):1361-1372
    [123]欧宝立.PP/PA6/TiO2纳米复合材料的制备、结构与性能研究.中南大学博士学位论文.2009,
    [124]Ou B., Li D. Location of functionalized-TiO2 nanoparticle in an immiscible PP/PA6 blends and its effect on the compatibility of the components. Polymer Bulletin.2009,63 (3):441-447
    [125]Li W., Schlarb A., Evstatiev M. Study of PET/PP/TiO2microfibrillar-structured composites, part 1:Preparation, morphology, and dynamic mechanical analysis of fibrillized blends. Journal of Applied Polymer Science.2009,113 (3):1471-1479
    [126]Li W., Schlarb A., Evstatiev M. Study of PET/PP/TiO2 microfibrillar-structured composites, Part 2:Morphology and mechanical properties. Journal of Applied Polymer Science.2009,113 (5):3300-3306
    [127]Li W., Karger-Kocsis J.,Thomann R. Compatibilization effect of TiO2 nanoparticles on the phase structure of PET/PP/TiO2nanocomposites. Journal of Polymer Science Part B: Polymer Physics.2009,47 (16):1616-1624
    [128]Elias L., Fenouillot F., Majeste J. C., Martin G.,Cassagnau P. Migration of nanosilica particles in polymer blends. Journal of Polymer Science Part B:Polymer Physics.2008, 46(18):1976-1983
    [129]Elias L., Fenouillot F., Majeste J., Alcouffe P., Cassagnau P. Immiscible polymer blends stabilized with nano-silica particles:Rheology and effective interfacial tension. Polymer. 2008,49 (20):4378-4385
    [130]Chung H., Ohno K., Fukuda T., Composto R. Self-Regulated Structures in Nanocomposites by Directed Nanoparticle Assembly. Nano Letters.2005,5 (10):1878-1882
    [131]Wu D., Zhang Y., Zhang M.,Yu W. Selective Localization of Multiwalled Carbon Nanotubes in Poly(ε-caprolactone)/Polylactide Blend. Biomacromolecules.2009,10 (2):417-424
    [132]Ma H., Fang Z.,Tong L. Preferential melt intercalation of clay in ABS/brominated epoxy resin-antimony oxide (BER-AO) nanocomposites and its synergistic effect on thermal degradation and combustion behavior. Polymer Degradation and Stability.2006, 91 (9):1972-1979
    [133]Hasegawa N.,Usuki A. Arranged Microdomain Structure Induced by Clay Silicate Layers in Block Copolymer-Clay Nanocomposites. Polymer Bulletin.2003,51 (1):77-83
    [134]Hasegawa N., Okamoto H., Kato M.,Usuki A. Preparation and mechanical properties of polypropylene-clay hybrids based on modified polypropylene and organophilic clay. Journal of Applied Polymer Science.2000,78 (11):1918-1922
    [135]Zhu Y, Xu Y., Tong L., Xu Z.,Fang Z. Influence of polarity on the preferential intercalation behavior of clay in immiscible polypropylene/polystyrene blend. Journal of Applied Polymer Science.2008,110 (5):3130-3139
    [136]Adamson A. W. Physical chemistry of surfaces.1990, John Wiley & Sons:New York, (Chapter X, Section 4.)
    [137]Wu S. Calculation of interfacial tension in polymer systems. Journal of Polymer Science Part C:Polymer Symposia.1971,34 (1):19-30
    [138]Wu S. Surface and interfacial tensions of polymer melts. Ⅱ. Poly(methyl methacrylate), poly(n-butyl methacrylate), and polystyrene. The Journal of Physical Chemistry.1970,74 (3):632-638
    [139]Asai S, Kazuya S, Sumita M, K. M. Effect of interfacial free energy on the heterogeneous distribution of oxidized carbon black in polymer blends, polymer Journal. 1992,24 (5):415-420
    [140]Katada A., Buys Y., Tominaga Y., Asai S.,Sumita M. Resistivity control in the semiconductive region for carbon-black-filled polymer composites. Colloid & Polymer Science.2005,283 (4):367-374
    [141]Wu M.,Shaw L. Electrical and mechanical behaviors of carbon nanotube-filled polymer blends. Journal of Applied Polymer Science.2006,99 (2):477-488
    [142]Baudouin A., Devaux J., Bailly C. Localization of carbon nanotubes at the interface in blends of polyamide and ethylene-acrylate copolymer. Polymer.2010,51 (6):1341-1354
    [143]Goldel A., Kasaliwal G., Potschke P. Selective Localization and Migration of Multiwalled Carbon Nanotubes in Blends of Polycarbonate and Poly(styrene-acrylonitrile). Macromolecular Rapid Communications.2009,30 (6):423-429
    [144]Wu S. Polymer interface and adhesion. Marcel Dekker:.1982, New York
    [145]Feng J., Chan C., Li J. A method to control the dispersion of carbon black in an immiscible polymer blend. Polymer Engineering & Science.2003,43 (5):1058-1063
    [146]Thompson R., Ginzburg V., Matsen M., Balazs A. Predicting the Mesophases of Copolymer-Nanoparticle Composites. Science.2001,292 (5526):2469-2472
    [147]Kim J. U., O'Shaughnessy B. Nanoinclusions in Dry Polymer Brushes. Macromolecules. 2005,39(1):413-425
    [148]Mackay M. General Strategies for Nanoparticle Dispersion. Science.2006,311 (5768):1740-1743
    [149]Wu G., Asai S., Sumita M.,Yui H. Entropy Penalty-Induced Self-Assembly in Carbon Black or Carbon Fiber Filled Polymer Blends. Macromolecules.2001,35 (3):945-951
    [150]Zaikin A., Zharinova E., Bikmullin R. Specifics of localization of carbon black at the interface between polymeric phases. Polymer Science Series A.2007,49 (3):328-336
    [151]Zaikin A., Karimov R., Arkhireev V. A Study of the Redistribution Conditions of Carbon Black Particles from the Bulk to the Interface in Heterogeneous Polymer Blends. Colloid Journal.2001,63 (1):53-59
    [152]Dai K., Xu X., Li Z. Electrically conductive carbon black (CB) filled in situ microfibrillar poly(ethylene terephthalate) (PET)/polyethylene (PE) composite with a selective CB distribution. Polymer.2007,48 (3):849-859
    [153]Gubbels F., Jerome R., Vanlathem E., Deltour R., Blacher S., Brouers F. Kinetic and Thermodynamic Control of the Selective Localization of Carbon Black at the Interface of Immiscible Polymer Blends. Chemistry of Materials.1998,10 (5):1227-1235
    [154]Clarke J., Freakley B., Sutherland I. Compatibilising effect of carbon black on morphology of NR-NBR blends Plastics, rubber and composites,.2001,30 (1):39-44
    [155]Zhou P., Yu W., Zhou C., Liu F., Hou L.,Wang J. Morphology and electrical properties of carbon black filled LLDPE/EMA composites. Journal of Applied Polymer Science. 2007,103 (1):487-492
    [156]Persson A. L., Bertilsson H. Viscosity difference as distributing factor in selective absorption of aluminium borate whiskers in immiscible polymer blends. Polymer.1998, 39 (23):5633-5642
    [157]Ramsden W. Separation of solids in the surface-layers of solutions and 'suspensions'(Observations concerning surface diaphragms, foam blisters, emulsions and mechanical coagulation)—preliminary account. Proceedings of the Royal Society of London Series A:Mathematical and Physical Science.1903,72 (15):156-164
    [158]Pickering S. Emulsions. Journal of the American Chemical Society.1907,91 (7):2001-2021
    [159]Hom S., Bhattacharyya A., Khare R., Kulkarni A., Saroop M., Biswas A. PP/ABS blends with carbon black:Morphology and electrical properties. Journal of Applied Polymer Science.2009,112 (2):998-1004
    [160]Vandebril S., Vermant J., Moldenaers P. Efficiently suppressing coalescence in polymer blends using nanoparticles:role of interfacial rheology. Soft Matter.2010,6 (14):3353-3362
    [161]Hom S., Bhattacharyya A., Khare R., Kulkarni A., Saroop M., Biswas A. Blends of polypropylene and ethylene octene comonomer with conducting fillers:Influence of state of dispersion of conducting fillers on electrical conductivity. Polymer Engineering & Science.2009,49 (8):1502-1510
    [162]Li Y, Shimizu H. Novel morphologies of poly(phenylene oxide) (PPO)/polyamide 6 (PA6) blend nanocomposites. Polymer.2004,45 (22):7381-7388
    [163]Filippone G, Dintcheva N., La Mantia F., Acierno D. Using organoclay to promote morphology refinement and co-continuity in high-density polyethylene/polyamide 6 blends-Effect of filler content and polymer matrix composition. Polymer.2010,51 (17):3956-3965
    [164]Ray S., Bousmina M., Maazouz A. Morphology and properties of organoclay modified polycarbonate/poly(methyl methacrylate) blend. Polymer Engineering & Science.2006, 46 (8):1121-1129
    [165]Austin J., Kontopoulou M. Effect of organoclay content on the rheology, morphology, and physical properties of polyolefin elastomers and their blends with polypropylene. Polymer Engineering & Science.2006,46 (11):1491-1501
    [166]Zhang L., Wan C., Zhang Y. Morphology and electrical properties of polyamide 6/polypropylene/multi-walled carbon nanotubes composites. Composites Science and Technology.2009,69 (13):2212-2217
    [167]Liu L., Wang Y, Xiang F., Li Y, Han L., Zhou Z. Effects of functionalized multiwalled carbon nanotubes on the morphologies and mechanical properties of PP/EVA blend. Journal of Polymer Science Part B:Polymer Physics.2009,47 (15):1481-1491
    [168]Steinmann S., Gronski W., Friedrich C. Influence of selective filling on rheological properties and phase inversion of two-phase polymer blends. Polymer.2002,43 (16):4467-4477
    [169]Laura D., Keskkula H., Barlow J., Paul D. Effect of glass fiber surface chemistry on the mechanical properties of glass fiber reinforced, rubber-toughened nylon 6. Polymer.2002, 43 (17):4673-4687
    [170]Dasari A., Yu Z., Mai Y. Effect of blending sequence on microstructure of ternary nanocomposites. Polymer.2005,46 (16):5986-5991
    [171]Stockelhuber K., Das A., Jurk R., Heinrich G. Contribution of physico-chemical properties of interfaces on dispersibility, adhesion and flocculation of filler particles in rubber. Polymer.2010,51 (9):1954-1963
    [172]Fenouillot F., Cassagnau P., Majeste J. Uneven distribution of nanoparticles in immiscible fluids:Morphology development in polymer blends. Polymer.2009,50 (6):1333-1350
    [173]Jiang Y., Tao Z. Powder Engineering. Wuhan University of Technology Press.2009. p. 54-55.
    [174]Chesters A. Transactions of the Institution of Chemical Engineer.1991,69:259
    [175]Janssen J. In Materials Science and Technology:A Comprehensive Treatment, Processing of Polymers; Meijer, H. E. H., Ed.; Wiley:Weinheim 1997; Vol.18, pp 113-188.
    [176]Charoensirisomboon P., Inoue T., Weber M. Pull-out of copolymer in situ-formed during reactive blending:effect of the copolymer architecture. Polymer.2000,41 (18):6907-6912
    [177]Ju M., Chang F. Compatibilization of PET/PS blends through SMA and PMPI dual compatibilizers. Polymer.2000,41 (5):1719-1730
    [178]Baker W, Scott C, G. H. Reactive Polymer Blending, Munich:Hanser; 2001.p.217-9.Chapter8.
    [179]Potschke P., Bhattacharyya A., Janke A. Carbon nanotube-filled polycarbonate composites produced by melt mixing and their use in blends with polyethylene. Carbon. 2004,42 (5-6):965-969
    [180]刘文娟,黄亚江,吴冬生,高灵强,杨其,李光宪.纳米SiO2填充PMMA-PS复合物共连续范围的研究.高分子学报.2009,(6):553-559
    [181]Jeon H. Reactively formed block and graft copolymers as compatibilizers for polyamide 6.6/PS blends. Polymer.2004,45 (1):197-206
    [182]Dedecker K., Groeninckx G. Reactive compatibilization of the polyamide 6/poly(phenylene oxide) blend by means of styrene-maleic anhydride copolymer. Journal of Applied Polymer Science.1999,73 (6):889-898
    [183]Kitayama N., Keskkula H., Paul D. Reactive compatibilization of nylon 6/styrene-acrylonitrile copolymer blends. Part 1. Phase inversion behavior. Polymer.2000,41 (22):8041-8052
    [184]Palierne J. Linear Rheology of viscoelastic Emulsions with Interfacial Tension. Rheologica Acta.1990,29 (13):204-214
    [185]Yang K., Lee S., Oh J. Effects of viscosity ratio and compatibilizers on the morphology and mechanical properties of polycarbonate/acrylonitrile-butadiene-styrene blends. Polymer Engineering & Science.1999,39 (9):1667-1677
    [186]Lerdwijitjarud W., Sirivat A., Larson R. Influence of elasticity on dispersed-phase droplet size in immiscible polymer blends in simple shearing flow. Polymer Engineering & Science.2002,42 (4):798-809
    [187]杜遥雪,瞿金平.不相容共混聚合物相形态控制的理论研究.现代塑料加工应用.2005,(4):58-61
    [188]Paul D., Barlow J. Reviews in Macromolecular Chemistry & Physics. Journal of Macromolecular Science.1980, C18:1O9-119
    [189]Bourry D., Favis B. Cocontinuity and phase inversion in HDPE/PS blends:Influence of interfacial modification and elasticity. Journal of Polymer Science Part B:Polymer Physics.1998,36 (11):1889-1899
    [190]Lyngaae-Jφrgensen J.,Utracki L. Structuring polymer blends with bicontinuous phase morphology. Part II. Tailoring blends with ultralow critical volume fraction. Polymer. 2003,44(5):1661-1669
    [191]Steinmann S., Gronski W.,Friedrich C. Cocontinuous polymer blends:influence of viscosity and elasticity ratios of the constituent polymers on phase inversion. Polymer. 2001,42(15):6619-6629
    [192]Steinmann S., Gronski W., Friedrich C. Quantitative rheological evaluation of phase inversion in two-phase polymer blends with cocontinuous morphology. Rheologica Acta. 2002,41 (l):77-86
    [193]Willemse R. Co-continuous morphologies in polymer blends:stability. Polymer.1999, 40 (8):2175-2178
    [194]Willemse R., Posthuma de Boer A., van Dam J., Gotsis A. Co-continuous morphologies in polymer blends:a new model. Polymer.1998,39 (24):5879-5887
    [195]Willemse R. C., Posthuma de Boer A., van Dam J.,Gotsis A. D. Co-continuous morphologies in polymer blends:the influence of the interfacial tension. Polymer.1999, 40 (4):827-834
    [196]Macosko C. Rheology, principles, measurements, and applications. Weinheim:VCH Publishers; 1994. Chapter 4.
    [197]Lyngaae-Jφrgensen J., Rasmussen K., Chtcherbakova E., Utracki L. Flow induced deformation of dual-phase continuity in polymer blends and alloys. Part I. Polymer Engineering & Science.1999,39 (6):1060-1071
    [198]Fortelny Ivan, Kovar Josef, Michael S. Analysis of the Phase Structure Development during the Melt Mixing of Polymer Blends Journal of Elastomers and Plastics.1996,28: 106-139
    [199]Schoolenberg G., During F., Ingenbleek G. Coalescence and interfacial tension measurements for polymer melts:experiments on a PS-PE model system. Polymer.1998, 39 (4):765-772
    [200]Huneault M., Shi Z., Utracki L. Development of polymer blend morphology during compounding in a twin-screw extruder. Part Ⅳ:A new computational model with coalescence. Polymer Engineering & Science.1995,35 (1):115-127
    [201]Utracki L., Shi Z. Development of polymer blend morphology during compounding in a twin-screw extruder. Part I:Droplet dispersion and coalescence—a review. Polymer Engineering & Science.1992,32 (24):1824-1833
    [202]Lee H., Fasulo P., Rodgers W. R., Paul D. TPO based nanocomposites. Part 1. Morphology and mechanical properties. Polymer.2005,46 (25):11673-11689
    [203]Cheah K., Forsyth M., Simon G. Processing and morphological development of carbon black filled conducting blends using a binary host of poly(styrene co-acrylonitrile) and poly(styrene). Journal of Polymer Science Part B:Polymer Physics.2000,38 (23):3106-3119
    [204]Calberg C., Blacher S., Gubbels F., Brouers F., Deltour R., Jerome R. Electrical and dielectric properties of carbon black filled co-continuous two-phase polymer blends Journal of Physics D:Applied Physics.1999,32 (13):1517-1525
    [205]Tanaka H., Lovinger A., Davis D. Pattern evolution caused by dynamic coupling between wetting and phase separation in binary liquid mixture containing glass particles. Physical Review Letters.1994,72 (16):2581
    [206]Wu G, Li B., Jiang J. Carbon black self-networking induced co-continuity of immiscible polymer blends. Polymer.2010,51 (9):2077-2083
    [207]Si M., Araki T., Ade H., Kilcoyne A., Fisher R., Sokolov J., Rafailovich M. Compatibilizing Bulk Polymer Blends by Using Organoclays. Macromolecules.2006,39 (14):4793-4801
    [208]Ivan Fortelny, Josef Kovar, Stephan M. Analysis of the Phase Structure Development during the Melt Mixing of Polymer Blends Journal of Elastomers and Plastics.1996, 28:106-139
    [209]Fortelny I.,Zivny A. Coalescence in molten quiescent polymer blends. Polymer.1995, 36(21):4113-4118
    [210]Yu W., Zhou C., Inoue T. A coalescence mechanism for the coarsening behavior of polymer blends during a quiescent annealing process. Ⅱ. Polydispersed particle system. Journal of Polymer Science Part B:Polymer Physics.2000,38 (18):2390-2399
    [211]Crist B. On "Pinning" Domain Growth in Two-Phase Polymer Liquids. Macromolecules 1996,29 (22):7276-7279
    [212]Hui S., Chaki T., Chattopadhyay S. Effect of silica-based nanofillers on the properties of a low-density polyethylene/ethylene vinyl acetate copolymer based thermoplastic elastomer. Journal of Applied Polymer Science.2008,110 (2):825-836
    [213]Chen P., Chen J., Zhang B., Zhang J., He J. Effect of glass bead packing on the fibrillation of liquid-crystalline polymer in polycarbonate. Journal of Polymer Science Part B:Polymer Physics.2006,44 (6):1020-1030
    [214]Wu S., Brandrup J., EH I. Polymer handbook.3rd ed. John Wiley and Sons; 1989. p. 411-434.
    [215]Kamal M., Calderon J., Lennox B. Surface Energy of Modified Nanoclays and Its Effect on Polymer/Clay Nanocomposites Journal of Adhesion Science and Technology. 2009,23 (5):663-688
    [216]Nuriel S., Liu L., Barber A. H., Wagner H. Direct measurement of multiwall nanotube surface tension. Chemical Physics Letters.2005,404 (4-6):263-266
    [217]Barber A., Cohen S.,Wagner H. Static and Dynamic Wetting Measurements of Single Carbon Nanotubes. Physical Review Letters.2004,92 (18):186103
    [218]Cavanaugh T., Nauman E. Particulate growth in phase-separated polymer blends. Journal of Polymer Science Part B:Polymer Physics.1998,36 (12):2191-2196
    [219]Romeo G, Filippone G, Fernandez-Nieves A., Russo P., Acierno D. Elasticity and dynamics of particle gels in non-Newtonian melts. Rheologica Acta.2008,47 (9):989-997
    [220]Peng G Forming Supramolecular Networks from Nanoscale Rods in Binary, Phase-Separating Mixtures. Science.2000,288 (5472):1802-1804
    [221]Acierno D., Filippone G, Romeo G, Russo P. Rheological Aspects of PP-TiO2 Micro and Nanocomposites:A Preliminary Investigation. Macromolecular Symposia.2007,247 (1):59-66
    [222]Sundararaj U., Macosko C. Drop Breakup and Coalescence in Polymer Blends:The Effects of Concentration and Compatibilization. Macromolecules.1995,28 (8):2647-2657
    [223]Wu S. Formation of Dispersed Phase in Incompatible Polymer Blends:Interfacial and Rheological Effects. Polymer Engneering and Science.1987,27 (5):335-343
    [224]Crist B., Nesarikar A. Coarsening in Polyethylene-Copolymer Blends. Macromolecules. 1995,28 (4):890-896
    [225]Hong R., Feng B., Liu G, Wang S., Li H., Ding J., Zheng Y.,Wei D. Preparation and characterization of Fe3O4/polystyrene composite particles via inverse emulsion polymerization. Journal of Alloys and Compounds.2009,476 (1-2):612-618
    [226]徐翠香,仓理,高强.复合磁性壳聚糖微球对BSA的吸附机理研究.云南化工.2008,35(1):12-16
    [227]Shao D., Xu K., Song X., Hu J., Yang W.,Wang C. Effective adsorption and separation of lysozyme with PAA-modified Fe3O4@silica core/shell microspheres. Journal of Colloid and Interface Science.2009,336 (2):526-532
    [228]邱广明,孙宗华.磁性高分子微球共价结合中性蛋白酶.生物医学工程学杂志.1995, 12(3):209-213
    [229]Hoare T., Pelton R. Functional Group Distributions in Carboxylic Acid Containing Poly(N-isopropylacrylamide) Microgels. Langmuir.2004,20 (6):2123-2133
    [230]Li P., Xu J., Wang Q., Wu C. Surface Functionalization of Polymer Latex Particles:4. Tailor-Making of Aldehyde-Functional Poly(methylstyrene) Latexes in an Emulsifier-Free System. Langmuir.2000,16 (9):4141-4147

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700