CD4~+CD25~+T调节细胞在中晚期鼻咽癌微环境免疫耐受的病理意义及益气解毒方的逆转效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     通过检测鼻咽癌患者CD4+CD25+T调节细胞比例、转录因子Foxp3mRNA表达水平、细胞因子IFN-γ、IL-2、TGF-β、IL-10、IL-6、 IL-17含量、益气解毒方的干预作用及其对BALB/c小鼠的影响,分析CD4+CD25+T调节细胞在鼻咽癌肿瘤微环境免疫耐受现象中的免疫病理意义,探讨益气解毒方对鼻咽癌肿瘤微环境中CD4+CD25+T调节细胞主导的免疫耐受现象的调节作用,为建立鼻咽癌中医药免疫调节治疗提供新的思路。
     方法:
     1、收集健康人群、中晚期鼻咽癌患者外周血,流式细胞术检测外周血CD4+CD25+T调节细胞、CD4+CD25+Foxp3+T调节细胞和Th17细胞比例,比较分析其组间差异。
     2、将中晚期鼻咽癌患者分为常规治疗组和益气解毒方+常规治疗组,进行临床研究。流式细胞术检测外周血CD4+CD25+T调节细胞、CD4+CD25+Foxp3+T调节细胞和Th17细胞比例,对比分析常规治疗组、益气解毒方+常规治疗组的组间差异。
     3、随机将BALB/c小鼠分成三个组,空白组、生理盐水组和益气解毒方组,进行相应处理。采集小鼠外周血,流式细胞术检测血标本CD4+CD25+T调节细胞、CD4+CD25+Foxp3+T调节细胞比例,比较其组间差异。
     4、采集中晚期鼻咽癌患者和健康人群外周血,分离血清,ELISA检测血清细胞因子IFN-γ、IL-2、TGF-β、IL-10、IL-6、IL-17含量,比较分析组间差异。
     5、采集鼻咽癌患者常规治疗组和益气解毒方+常规治疗组外周血,分离血清。ELISA法检测血清细胞因子IFN-γ、IL-2、TGF-β、 IL-10、IL-6、IL-17含量,比较分析其组间差异。
     6、采集空白组、生理盐水组和益气解毒方组BALB/c小鼠静脉血,ELISA法检血清细胞因子IFN-γ、IL-2、TGF-β、IL-10、IL-6、 IL-17含量,比较分析其组间差异。
     7、采集中晚期鼻咽癌患者和健康人群静脉血,RT-PCR法检测外周血Foxp3mRNA、ROR-γt mRNA转录水平,比较其组间差异,分析其与CD4+CD25+T调节细胞比例的关系。
     8、分别采集常规治疗组、益气解毒方+常规治疗组鼻咽癌患者外周血,分离单个核细胞。提取总RNA, RT-PCR法检测外周血Foxp3mRNA、ROR-γt mRNA转录水平,比较分析其组间差异。
     结果:
     1、流式细胞术检测结果表明,健康人群、中晚期鼻咽癌患者外周血CD4+CD25+T调节细胞比例分别为(2.65±0.31)%、(4.23±0.53)%, CD4+CD25+Foxp3+T调节细胞比例分别为(0.48±0.05)%、(0.98±0.15)%,Th17细胞比例分别为(1.80±0.30)%、(0.50±0.21)%。中晚期鼻咽癌患者外周血CD4+CD25+、CD4+CD25+Foxp3+T细胞比例显著高于健康人群(P<0.05),而Th17细胞比例显著降低(P<0.05)。
     2、临床治疗观察结果显示,常规治疗组、益气解毒方+常规治疗组外周血CD4+CD25+T细胞比例分别为(4.75±0.39)%、(3.09±0.49)%, CD4+CD25+Foxp3'T调节细胞比例分别为(0.93±0.15)%、(0.53±0.04)%,Th17细胞比例分别为(0.63±0.20)%、(2.09±0.34)%。益气解毒方+常规治疗组患者外周血CD4+CD25+T调节细胞、CD4+CD25+Foxp3+T调节细胞比例显著降低(P<0.05),而Th17细胞比例则显著升高(P<0.05)。
     3、动物实验结果显示,空白对照组、生理盐水组、益气解毒方组BALB/c小鼠外周血CD4+CD25+T细胞比例分别为(6.53±1.09)%.(6.79±1.22)%.(4.52±0.61)%,CD4+CD25+Foxp3+T调节细胞比例分别为(12.16±2.51)%、(11.01±2.00)%、(8.25±1.43)%。益气解毒方组小鼠外周血CD4+CD25+T调节细胞、CD4+CD25+Foxp3+T调节细胞显著降低(P<0.01);而空白对照组与生理盐水组相比较,则其无明显差异(P>0.05)。
     4、外周血细胞因子测定表明,健康人群IFN-γ、IL-2、IL-17、 TGF-β、IL-10、IL-6分别为(220.36±18.76)pg/ml.(174.79±7.55) pg/ml、(7.71±0.34)pg/ml、(488.82±36.91)pg/ml、(0.68±0.08)pg/ml、(1.37±0.03)pg/ml,中晚期鼻咽癌患者IFN-γ、IL-2、IL-17、TGF-β、 IL-10、IL-6分别为(124.95±4.22)pg/ml、(81.88±10.84)pg/ml、(4.61±0.09)pg/ml、(645.56±39.61)pg/ml、(1.27±0.21)pg/ml、(1.88±0.13)pg/ml、中晚期鼻咽癌患者IFN-γ、IL-2、IL-17含量低于健康人群(P<0.05),而TGF-β、IL-10、IL-6含量则高于健康人群(P<0.05)。
     5、中晚期鼻咽癌患者临床治疗实验结果表明,常规治疗组患者血清IFN-γ、IL-2、IL-17、TGF-β、IL-10、IL-6分别为(155.26±4.99) pg/ml、(128.89±9.27) pg/ml、(2.97±0.14) pg/ml、(544.47±21.96) pg/ml、(0.99±0.04) pg/ml、(2.86±0.19) pg/ml。益气解毒方+常规治疗组IFN-γ、IL-2、IL-17、TGF-β、IL-10、IL-6分别为(321.60±41.19) pg/ml、(231.91±24.24) pg/ml、(5.54±0.14) pg/ml、(421.62±25.42) pg/ml、(0.67±0.11) pg/ml、(1.47±0.05) pg/ml。益气解毒方+常规治疗组患者IFN-γ、IL-2、IL-17含量显著升高(P<0.05),而TGF-β、 IL-10、IL-6含量则显著降低(P<0.05)。
     6、在益气解毒方干预实验中,益气解毒方组IFN-γ、IL-2、IL-17、 TGF-β、IL-10、IL-6分别为(229.72±5.72) pg/ml、(70.24±3.34) pg/ml、(11.22±0.35) pg/ml、(126.31±16.50) pg/ml、(128.43±9.86) pg/ml、(20.55±0.92) pg/ml。与空白组、生理盐水组相比,益气解毒方组BABL/c小鼠TGF-β、IL-10含量显著降低(P<0.05),而IFN-γ、IL-2、 IL-17、IL-6含量明显升高(P<0.05);空白组与对照组相比较则差异无统计学意义(P>0.05)。
     7、Foxp3mRNA检测结果发现,中晚期鼻咽癌患者外周血Foxp3mRNA转录水平(3.699±0.309)显著高于健康人群(1.019±0.146)(P<0.05),而ROR-γt mRNA水平(0.303±0.115)则低于健康人群(1.007±0.039)(P<0.05), CD4+CD25+Treg细胞与CD4+CD25Toxp3-细胞比例呈正相关(r2=0.163,P<0.05),而Foxp3mRNA与ROR-yt mRNA转录水平并不相关(r2=-0.127,P>0.05)。加用益气解毒方干预后,患者外周血Foxp3mRNA转录水平明显降低(P<0.05),而ROR-yt mRNA水平则明显升高(P<0.05)。
     结论:
     1. CD4+CD25+T调节细胞比例及功能活性是中晚期鼻咽癌患者肿瘤微环境免疫耐受形成的重要因素之一,有效干预CD4+CD25+T调节细胞和Th17细胞免疫活性及分化影响因素,可改善鼻咽癌肿瘤微环境中的免疫耐受现象。
     2、细胞因子IFN-γ、IL-2、IL-17及转录因子ROR-yt mRNA是中晚期鼻咽癌患者CD4+CD25+T调节细胞的负性调节因子,而细胞因子TGF-β、IL-6、IL-10及转录因子Foxp3mRNA是其正性因子。
     3、中药复方益气解毒方的有效干预可以降低中晚期鼻咽癌患者免疫抑制细胞CD4+CD25+T调节细胞比例和活性,提高免疫效应细胞Th17比例和功能活性,有助于实现鼻咽癌肿瘤微环境中免疫耐受现象的逆转,进而增强鼻咽癌患者的抗瘤能力。
     4、益气解毒方对CD4+CD25+T调节细胞的抑制效应,可能是通过对其负性与正性双调节而实现的,体现了中药复方多靶点微效应的药理作用模式特点。
     5、益气解毒方对BALB/c小鼠CD4+CD25+T调节细胞比例及功能活性、负性调节因子TGF-β、IL-10表达水平、正性调节因子IFN-γ、IL-2、IL-17、JL-6分泌水平的作用模式,佐证了益气解毒方对中晚期鼻咽癌患者CD4+CD25+T调节细胞的干预作用模式特点。
     6、由CD4+CD25+T调节细胞主导的肿瘤微环境免疫耐受现象的逆转,可能成为中药抗肿瘤疗法的重要途径,藉此体现并充分发挥中医药抗肿瘤的独特优势。
OBJECTIVE
     To detect the percentage of CD4+CD25+Tregs cells,the levels of Foxp3mRNA, the content of its relative cytokines (IFN-γ、IL-2、TGF-β、 IL-10、IL-6、IL-17), intervention reaction of QBTRF in the patients with middle to late staged NPC and QBTRF's influence on BALB/c animals, the pathological significance of CD4+CD25+Tregs cells and the reversing effect of Qi-Boosting Toxin-Resolving Formula(QBTRF) were investigated in the immune tolerance of tumor microenvironment among patients with middle to late staged nasopharyngeal carcinoma (NPC), which it is provided a new clue for establishing immune regulation therapy of traditional Chinese medicine in NPC.
     METHODS
     1.The peripheral blood samples were taken form healthy population, patients with middle to late staged NPC. Flow-cytometry was performed to detect the percentage of CD4+CD25+Tregs cells, CD4+CD25+Foxp3Tregs cells and Th17cells of peripheral blood cells, which the differences was compared between these groups.
     2.The percentage of CD4+CD25+Tregs cells, CD4+CD25+Foxp3Tregs cells and Th17cells were detected by Flow-cytometry in the peripheral blood among middle to late staged NPC patients treated by conventional therapy and conventional therapy add to QBTRF, which the differences was compared between these groups.
     3.The percentage of CD4+CD25+Tregs cells, CD4+CD25+Foxp3Tregs cells and Th17cells were detected by Flow-cytometry in peripheral blood of the blank group, saline group and QBTRF group of BALB/c mice, which the differences was compared between these groups.
     4.The serum levels of IFN-γ, IL-2, TGF-p, IL-10, EL-6and IL-17were determined by ELISA in the healthy population and patients with middle to late staged NPC, which the differences of every cytokine was compared between these groups.
     5.The serum levels of IFN-γ, IL-2, TGF-β, IL-10, IL-6and IL-17were determined by ELISA in the peripheral blood among middle to late staged NPC patients treated by conventional therapy and conventional therapy add to QBTRF, which the differences of every cytokine was compared between these groups.
     6.To further confirm the regulatory effect of QBTRF on immune system, the serum levels of IFN-γ, IL-2, TGF-β, IL-10, IL-6and IL-17were determined by ELISA in peripheral blood of the blank group, saline group and QBTRF group of BALB/c mice, which the differences of every cytokine was compared between these groups.
     7.The transcriptional levels of Foxp3mRNA and ROR-yt mRNA were detected by real-time PCR in the peripheral blood among the healthy population and patients with middle to late staged NPC, which the differences the relation of CD4+CD25+Tregs cells, Foxp3mRNA and ROR-yt mRNA was compared between these groups.
     8.The transcriptional levels of Foxp3mRNA and ROR-yt mRNA were detected by real-time PCR in the peripheral blood among middle to late staged NPC patients treated by conventional therapy and conventional therapy add to QBTRF, which the differences was compared between these groups.
     RESULTS
     1. The results of flow cytometry show that the percentage of CD4+CD25+Tregs cells were respectively (2.65±0.31)%、(4.23±0.53)%, the percentage of CD4+CD25+Foxp3Tregs cells were respectively (0.48±0.05)%、(0.98±0.15)%, and the percentage of Th17cell were respectively (1.80±0.30)%、(0.50±0.21)%in peripheral blood among healthy control and middle to late staged NPC patients. Compared with the healthy control, the percentage of CD4+CD25+Tregs cells and CD4+CD25TFoxp3Tregs cells was significantly higher in peripheral blood among middle to late staged NPC patients (P<0.05), while the percentage of Th17cell is significantly decreased (P<0.05).
     2. The results of clinic treatment show that the percentage of CD4+CD25+Tregs cells were respectively (4.75±0.39)%、(3.09±0.49)%, the percentage of CD4+CD25+Foxp3Tregs cells were respectively (0.93±0.15)%、(0.53±0.04)%, and the percentage of Th17cell were respectively (0.63±0.20)%、(2.09±0.34)%in peripheral blood among NPC patients treated by conventional therapy and conventional therapy add to QBTRF. Compared with NPC patients treated by conventional therapy, the percentage of CD4+CD25+Tregs cells and CD4+CD25+Foxp3Tregs cells was significantly lower in peripheral blood among NPC patients treated by conventional therapy add to QBTRF (P<0.05), while the percentage of Th17cell is significantly increased (P<0.05).
     3. The results of animal experiment show that the percentage of CD4+CD25+Tregs cells were respectively (6.53±1.09)%、(6.79±1.22)%、(4.52±0.61)%, and the percentage of CD4+CD25+Foxp3Tregs cells were respectively (12.16±2.51)%、(11.01±2.00)%、(8.25±1.43)%in peripheral blood among the blank group, the NS group and QBTRF of BALB/c mouse. Compared with the blank group and the NS group of BALB/c mouse, the percentage of CD4+CD25+Tregs cells and CD4+CD25+Foxp3Tregs cells was significantly lower in peripheral blood among BABL/c mice intervened by QBTRF (P<0.05), while the percentage of CD4+CD25+Tregs cells and CD4+CD25+Foxp3Tregs cells had no significant difference between the blank group and the NS group (P>0.05).
     4. The detection of cytokines show that the serum levels of IFN-γ、IL-2、 IL-17、TGF-β、IL-10、IL-6were respectively (220.36±18.76) pg/ml、(174.79±7.55) pg/ml、(7.71±0.34) pg/ml、(488.82±36.91) pg/ml、(0.68±0.08)pg/ml、(1.37±0.03)pg/ml in peripheral blood among among the healthy control, the serum levels of IFN-γ、IL-2、IL-17、TGF-β、 IL-10、IL-6were respectively (124.95±4.22) pg/ml、(81.88±10.84) pg/ml、(4.61±0.09) pg/ml、(645.56±39.61) pg/ml、(1.27±0.21) pg/ml、(1.88±0.13) pg/ml in peripheral blood among middle to late staged NPC patients. Compared with the healthy control, the serum levels of TGF-β、IL-10、IL-6was significantly higher in peripheral blood among middle to late staged NPC patients (P<0.05), while the serum levels of IFN-γ、IL-2、IL-17is significantly decreased (P<0.05).
     5.The experimental result of clinical treatment in middle to late staged NPC show that the serum levels of IFN-γ、IL-2、IL-17、TGF-β、IL-10、 IL-6were respectively (155.26±4.99) pg/ml、(128.89±9.27) pg/ml、(2.97±0.14) pg/ml、(544.47±21.96) pg/ml、(0.99±0.04) pg/ml、(2.86±0.19) pg/ml in the NPC group treated by conventional therapy. The serum levels of IFN-γ、IL-2、IL-17、TGF-β、IL-10、IL-6were respectively (321.60±41.19)pg/ml、(231.91±24.24)pg/ml、(5.54±0.14) pg/ml、(421.62±25.42) pg/ml、(0.67±0.11) pg/ml、(1.47±0.05) pg/ml in the NPC group treated by conventional therapy add to QBTRF. Compared with the NPC group treated by conventional therapy, the serum levels of IFN-γ、IL-2、IL-17was significantly higher in the NPC group treated by conventional therapy add to QBTRF (P<0.05), while the serum levels of TGF-P, IL-10, IL-6is significantly decreased (P<0.05).
     6. The serum levels of IFN-γ、IL-2、IL-17、TGF-β、IL-10、IL-6were respectively (229.72±5.72) pg/ml.(70.24±3.34) pg/ml、(11.22±0.35) pg/ml、(126.31±16.50)pg/ml、(128.43±9.86)pg/ml、(20.55±0.92) pg/ml in peripheral blood among BABL/c mice intervened by QBTRF. Compared with the blank group and NS group of BALB/c mouse, the serum levels of TGF-β、IL-10、IL-6was significantly decreased (P<0.05), but IFN-γ、IL-2、IL-17was significantly higher in peripheral blood among BABL/c mice intervened by QBTRF (P<0.05), while there was no significant difference between the blank group and the NS group (P>0.05).
     7.Compared with the healthy controls, the transcriptional levels(3.699±0.309) of Foxp3mRNA was significantly higher in peripheral blood among patients with middle to late staged NPC (P<0.05), while ROR-yt mRNA(O.303±0.115) was significantly decreased (P <0.05). The ratio of CD4+CD25+Tregs cells was positively related with CD4+CD25+Foxp3Tregs cells in peripheral blood among patients with middle to late staged NPC (r2=0.163, P<0.05),but there was no relation between the transcriptional levels of Foxp3mRNA and ROR-yt mRNA(r2=-0.127, P>0.05). The transcriptional levels of ROR-yt mRNA is significantly higher in peripheral blood among the NPC treated by QBTRF (P<0.05), while the transcriptional levels of Foxp3mRNA is significantly decreased (P<0.05).
     CONCLUSION
     1.The advantaged percentage and functional activity of CD4+CD25+Tregs cells is one of important reasons produced the phenomenon of immune tolerance in the tumor microenvironment in patients with middle to late staged NPC, which was maintained by influencing the differentiatial factors of CD4+CD25+Tregs cells and Th17cells and its immune activity.
     2.The activity regulation and effect factors of CD4+CD25+Tregs cells is negatively related with the cytokines of IFN-y, IL-2, IL-17and transcriptional factor ROR-yt mRNA in patients with middle to late staged NPC, but positively with the level of TGF-β、IL-6、IL-10and transcriptional factor Foxp3mRNA
     3. Intervention effect of compound Chinese medicine QBTRF can reduce the percentage and functional activity of suppressor cell CD4+CD25+Tregs cells in patients with middle to late staged NPC, improve the percentage and functional activity of effect cell Th17cells, which be help to reverse the phenomenon of immune tolerance in tumor microenvironment and enhance the resistance of tumor in patients with NPC.
     4. Inhibition effect of QBTRF for CD4+CD25+Tregs cells may be realized on the extensively intervention of negative and positive regulating factors, which embodies pharmacological pattern characteristics of more target micro effect in traditional Chinese medicine compound.
     5. The percentage and functional change of CD4+CD25+Tregs cells, the expression levels of negative regulation factors(TGF-β、IL-10) and the secretion levels of positive regulation factors (IFN-γ、IL-2、IL-17、IL-6) in BALB/c mice intervened by QBTRF further supported the role characteristics of QBTRF for CD4+CD25+Tregs cells in patients with middle to late staged NPC.
     6.The reversal of immune tolerance dominated by CD4+CD25+Tregs cells in the tumor microenvironment should be the important way of antitumor therapy of traditional Chinese medicine, which embody and give full play to the unique advantages of traditional Chinese medicine anticancer.
引文
[1]Parkin DM, Whelan SL, Ferlay J, Teppo L, Thomas DB, editors. Cancer incidence in five continents [M]. vol. VIII. IARC scientific publication No.155. Lyon:IAR; 2002.
    [2]Li J, Mo HY, Xiong G, et al.Tumor microenvironment macrophage inhibitory factor directs the accumulation of interleukin-17-producing tumor-infiltrating lymphocytes and predicts favorable survival in nasopharyngeal carcinoma patients[J]. J Biol Chem,2012,287(42):35484-95.
    [3]Watanbe MA, Oda JM, Amarante MK, et al. Regulatory T cells and breast cancer: implications for immunopathogenesis[J]. Cancer Metas Rev,2010,29(4):569-579.
    [4]Feng X, Li B, Ye H, et al. Increased frequency of CD4+CD25+high"Foxp3+ regulatory T cells in patients with hepatocellular carcinoma[J]. Arch Immunol Ther Exp,2011,59(4):309-314.
    [5]Dong C. Th17 cells in development:an updated view of their molecular identity and genetic programming[J]. Nat Rev Immunol,2008,8:337-348.
    [6]Monteleone G, Pallone F, MacDonald TT. Intedeukin-21:a critical regulator Of the balance between effector and regulatory T-cell responses[J].Trends Immunol,2008,6:290-294.
    [7]沈立松,李美星,葛海良.Foxp3对CD4+CD25+调节性T细胞中基因的调控作用[J].现代免疫学,2009,29:72-75.
    [8]Liu VC, Wong LY, Jang T, et al. Tumor evasion of the immunesystem by converting CD4+C25+T Cells into CD4+C25+Tregulatory Cells:role of tumor-derived TGF-p[J]. J Immunol,2007,178(5):2883-2892.
    [9]Bailey SL, Schreiner B, McMahon EJ, et al. CNS myeloid DCs presenting endogenous myelin peptides'preferentially'polarize CD4+T(H)-17 cells in relapsing EAE[J]. Nat Immunol,2007,8:172-180.
    [10]Wilke CM, Bishop K, Fox D, et al. Deciphering the role of Thl7 cells in human disease [J].Trends Immunol,2011.32 (12):603-611.
    [11]Korn T, Betteli E, Oukka M, et al. IL-17 and Th17 cells[J]. Annu Rev Immunol, 2009,27:485-517
    [12]Kryczek I, Wei S, Zou L, et al. Cutting rage:Th17 and regulatory T cell dynamics and the regulation by IL-2 in the tumor microenviroment[J]. J Immunol, 2007,178:6730-6733.
    [13]Zhang B, Rong G, Wei H, et al. The prevalence of Th17 cells in patients with gastric cancer. Biechem Biophys Res Commun,2008,374:533-537.
    [14]Le Gouvello S, Bastuji-Garin S, Aloulou N, et al. High prevalence Of Foxp3 and IL-17 in MMR-proficient colorectal carcinomas[J].Cut,2008,57:772-779.
    [15]Muranski P, Boni A, Antony PA, et al. Tumor-specific Th17-polarized cells eradicate large established melanoma[J]. Blood,2008,112:362-373.
    [16]Kiyczek I, Banerjee M, Cheng P, et al. Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments [J].Blood,2009,114 (6):1141-1149.
    [17]Chaudhry A, Rudra D, Treuting P, et al. CD4+ regulatory T cells control Th17 responses in a Stat3-dependent manner [J].Science,2009,326(5955):986-991.
    [18]Corthay A. How do regulatory T cells work? [J]. Scand J Immunol,2009,70 (4):326-336.
    [19]Manwaring JM, Readman E, Maher PJ. The effect of heated humidified carbon dioxide on postoperative pain, core temperature, and recovery times in patients having laparoscopic surgery:a randomized controlled trial[J]. J Minim Invasive Gynecol,2008,15 (2):161-165.
    [20]Xu JZ, Chen FH. Effect of laparoscopic surgery on the immune function of patients with endometriosis [J]. Nan Fang Yi ke Da Xue Bao,2008,28 (8):1463-1465.
    [21]江洁琼,贺安意,田道法,等.益气解毒方对TgN(p53mt-LMP1)/HT转基因小鼠鼻腔和鼻咽粘膜上皮细胞增殖及凋亡相关基因表达的影响[J].中国组织工程研究与临床康复,2008,12(42):8201-8205.
    [22]何迎春,刘丹丹,尚云峰.益气解毒方对CNE2鼻咽癌细胞迁徙运动和c-myc、 p-Ezrin基因转录活性的影响[J].中国中国中西医结合耳鼻咽喉科杂志,2010,18(1):14-17.
    [23]Liu Z, Kim Jn, Falo LD Jr, et al. Tumor regulatory T cells potently abrogate mmunity. J Immunol,2009,182(10):6160-6167.
    [24]Sakaguehi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptord chains(CD25): Breakdown of a single mechanism of self-tolerance causes Various autoimmuno diseases [J]. J Immunol,1995,155(3):1151-1164.
    [25]Rudensky AY. Regulatory T cells and Foxp3[J]. Immunol Rev,2011,241(1): 260-268.
    [26]Rudge G, Gleeson P A, van Driel R. Control of immune responses by immunoregulatory T cells[J]. Arch Immunol Ther Exp(Warsz).2006,54(6):381-391.
    [27]Tian L, Humblet-Baron S, Liston A, et al. Immune tolerance:are regulatory T cell subsets needed to explain suppression of autoimmunity? Bioessays,2012,34(7):569-75
    [28]Cao X. Regulatory T cells and immune tolerance to tumors[J]. Immunol Res,2010,46(3):111-113.
    [29]Yang XO, Pappu BP, Nurieva R, et al. T helper 17 lineage differentiation is programmed by organ nuclear receptors ROR alpha and ROR gamma[J]. Immunity,2008,28(1):29-39.
    [30]Mucida D, Perk Y, Kim G, et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid[J]. Science.2007,317:256-260.
    [31]Wilke CM, Kryczek I, Wei S, et al. Th 17 cells in cancer:help or hindrance [J].Carcinogenesis,2011,32(5):643-649.
    [32]Derhovanessian E, Adams V, Hahnel K, et al. Pretreatment frequency of circulating IL-17+CD4+T-cells, but not Tregs, correlates with clinical response to whole-cell vaccination in prostate cancer patients [J]. Int J Cancer, 2009,125(6):1372-1379.
    [33]李婕,任万华,石军,等.原发性肝癌患者外周血Th17细胞与CD4+CD25+调节性T细胞表达的相关性研究[J].中华临床感染病杂志,2012,5(5):257-260.
    [34]周小军,田道法.鼻咽癌前病变“气虚染毒”病机理论研究[J].中医耳鼻喉科学研究,2008,(1):24-29.
    [35]Beyer M,Schuhze JL. Regulatory T cells:major players in the turnor microenvironment.Curt Phaiin Des,2009,15(16):1879-1892.
    [36]Han Y,Guo Q,Zhang M,et al.CD69+CD4+CD25+cells,a new subset of regulatory T cells,suppress T cell proliferation through membrane bound TGF.betal[J].J Immunol,2009,182(1):111-120.
    [37]Nishikawa H,Sakaguchi S.Regulatory T cells in tumor immunity[J].Int J Cancer,2010,127(4):759-767.
    [38]Hoeming A,Koss K,Datta D,et al.Subsets of human CD4+regulatory,T eells express the peripheral homing receptor CXCR3[J]. Eur J Immunol,2011,41(8):2291-2302.
    [39]Hori S,Nomura T,Sakaguchi S,et al.Control of regulatory T cell development by the transcription factor Foxp3[J].Science,2003,299(5609):1057-1061.
    [40]Shen LS,Wang J,Shen DF,et al.CD4+CD25+CD 127low-regulatory T cells express Foxp3 and suppress effector T cell proliferation and contribute to gastric cancers progression[J].Clin Immunol,2009,131(6):109-118.
    [41]Mo WN,Tang AZ,Zhou L,et al.Analysis of Epstein-Barrviral DNA load,EBV-LMP2 specific cytotoxic T -lymphoeytes and levels of CD4+CD25+T cells in patients with nasopharyngeal careinomas positive for IgA antibody to EBV viral capsid antigen[J].Chin Med J(Engl),2009,122(10):1173-1178.
    [42]Dooley S,Weng H,Mertens PR.HyPotheses on the role of transforming growth factor-beta in the onset and progression of hepatocellular careinoma. Dig Dis, 2009.27:93-101.
    [43]Strauss L, Bergmann C, Szczepanski M, et al. A unique subset of CD4^CD25high Foxp3+T cells secreting interleukin-10 and transforming growth factor-betal mediates suppression in the tumor microenvironment. Clin Cancer Res,2007,13(15 Pt 1):4345-4354.
    [44]郭美姿,江华,牛宪萍,等.高龄肝癌患者CD4+CD25+调节性T细胞及转化因子-p1检测的临床意义[J].中华老年医学杂志,2012,31(7):589-592.
    [45]Giannelli G, Mazzocca A, Fransyea E, et al. Inhibiting TGF-P signaling in hepatocellular carcinoma[J]. Biochim Biophys Aeta,2011,1815:214-223.
    [46]Fan H,Wang J,Zhou X,et al.Induction of antigen-specific immune tolerance by TGF-beta-induced CD4+Foxp3+ regulatory T cells[J].Int J Clin Exp Med,2009,25(3):212-220.
    [47]Jiang SP. Regulatory T cells and Clinical Application [M].New York. Springer Science Business Media, LL C.2008:111-114.
    [48]Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells[J]. Nature, 2006,441(709):235-238.
    [49]Acosta-Rodriguez EV, Napelitani G, Lanzavecehia A,et al. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells[J].Nat Immunol,2007,8:942-949.
    [50]Yang XO, Nurieva R, Marfinez cJ, et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs[J]. Immunity.2008,29:44-56.
    [51]彭素芳,王-胜军,陈建国,等.胃癌患者外周血Th17细胞和Treg细胞的特异性转录因子与相关细胞因子的检测及临床意义[J].中华肿瘤杂志,,2010,32(3):185-189.
    [52]王维维,沈茜.Th17细胞和Treg细胞的细胞因子调节网络[J].生命的化学,,2010.30(2):270.
    [53]Duhen R, Glatigny S, Arbelaez CA, et al. Cutting Edge:The pathogenicity of IFN-y-producing Th17 cells is independent of T-bet.[J]. J Immunol,2013, 190(9):4478-82.
    [54]Sallusto F,Lanzavecchia A. Heterogeneity of CD4+memory T cells:functional modules for tailored immunity[J]. Eur J Immunol,2009,39:2076-2082
    [55]Wei L, Laurence A, Elias KM, et al. IL-21 is produced by Thl7cells nd drives IL-17 production in a STAT3-dependent manner[J]. J Biol Chem,2007, 282(48):34605-34610.
    [56]Veldhoen M, Hocking RJ, Atkins CJ, et al. TGF-beta in the context of an inflammatory cytokine milieu supports develop differentiation of IL-17-producing T cells[J]. Immunity.2006,24:179-189.
    [57]Zhou L, Ivanov II, Spolski R, et al. IL-6 programs Th-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways[J].Nat Immunol,2007,8:967-974.
    [58]Yang ZZ, Grote DM, Ziesmer SC, et al. Soluble and membrance-bound TGF-P-mediated regulation of intratumoral T cell differentiation and function in B-cell Non-Hodgkin Lymphoma[J]. Plos one,2013,8(3):179-189.
    [59]Kurebayashi Y, Nagai S, Ikejiri, et al. Recent advances in understanding the molecular mechanisms of the development and function of Th17 cells[J]. Genes Cells,2013,18(4):247-265.
    [60]Greten TF, Zhao F, Gamrekelashvili J, et al. Human Th17 Cells in patients with cancer:Friends or foe?[J]. Oncoimmunology,2013,1(8):1438-1439.
    [61]Martin-Orozco N, Muranski P, Chung Y, et al. T helper 17 cells promote cytotoxic T cell activation in tumor immunity[J]. Immunity,2009,31(5):787-798.
    [62]Miyahara Y, Odunsi K, Chen W, et al. Generation and regulation of human CD4+IL-17-producing T cells in ovarian cancer[J]. Proc Natl Acad Sci USA,2008,105:15505-15510.
    [63]Zhang JP, Yan J, Xu J, et al. Increased intratumomr IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients[J]. J Hepatol,2009,50:980-989.
    [64]Xie Y, Sheng W, Xiang J, et al. Interleukin-17F suppresses hepatocarcinoma cell growth via inhibition of tumor angiogenesis[J]. Cancer Invest.2010,28(6): 598~607.
    [65]Horlock C, Stott B, Dyson PJ, et al. The effects of trastuzumab on the CD4+CD25+Foxp3+and CD4+IL17A+T-cell axis in patients with breast cancer[J]. Br J Cancer,2009,100:1061~1067.
    [66]Damsker JM, Hansen AM, Caspi RR. Thl and Th17 cells:adversaries and collaborators [J]. Ann N Y Acad Sci,2010.1183:211~221.
    [67]0'Shea JJ, Paul WE. Mechanisms underlying lineage commitment and plasticity of helper CD4+T cells [J]. Science,2010,327(5969).1098~1102.
    [68]Zhou F, Ciric B, Zhang GX, et al. Immune tolerance induced by intravenous transfer of immature dendritic cells via up-regulating numbers of suppressive IL-10(+) IFN-y (+)-producing CD4 (+) T cells. Immunol Res.,2013,Jan 5.
    [69]Wei H, Hongya P, Linlin J, et al. IFN-y enhances the anti-tumour immune response of dendritic cells against oral squamous cell carcinoma. Arch Oral Biol,2011,56(9):891-898
    [70]Miles F L,Tung N SAguiar A A,et al.Increased TGF-betal-mediated suppression of growth and motility in castrate-resistant prostate cancer cells is consistent with Smad2/3signaling[J]. Prostate,2012,72(12):1339-1350.
    [71]Zheng SG, Wang JH, Horwitz DA, et al. Cutting edge:Foxp3+CD4+CD25+ regulatory T cells induced by IL-2 and TGF-β are resistant to TH17 conversion by IL-6[J]. J Immunol,2008,180(11):7112-7116.
    [72]Laurence A, Tato CM, Davidson TS, et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation[J]. Immunity,2007,26(3):371-381
    [73]Bergmann C, Wild CA, Narwan M, et al. Human tumor-induced Treg cells and naturally occurring Treg cells differentially affect NK cells activated by interleukin-2 or target cells[J]. EurJ Immunol,2011,41(12):3564~3573.
    [74]Nair S, Boczkowski D, FassnachtM, et al. Vaccination against the forkhead family transcription factor Foxp3 enhances tumor immunity [J]. Cancer Res, 2007,67(1):371~380.
    [75]Piconese S, Valzasina B, Colombo MP. OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection[J]. J Exp Med,2008,205(4): 825-839.
    [76]Njau MN, Jacob j.The CD28/B7 Pathway:A Novel Regulator of Plasma Cell Function[J]. Adv Exp Med Biol,2013,785:67~75.
    [77]Ariganmi T, Uenosono Y, Ishigami S, et al.Clinical significance of the B7-H4 coregulatory molecule as a novel prognostic marker in gastric cancer[J]. World J Surg,2011,35(9):2051~2057.
    [78]王大海,田道法.益气解毒方配合放射治疗鼻咽癌的临床研究[J].湖南中医学院学报,2006,26(1):36-37.
    [79]成细华,杨美辉,田道法,等.“益气解毒”法对力竭性游泳所致气虚体质状态小鼠运动能力及免疫功能的影响[J].中华中医药学刊,2007,25(4):712-714.
    [80]何迎春,田道法,等.中药益气解毒颗粒下调端粒酶活性抑制鼻咽癌细胞的生长[J].中国现代医学杂志,2005,15(1):53-55.
    [81]唐发清,田道法,易红,等.益气解毒片对鼻咽癌细胞端粒酶和端粒酶RNA抑制作用的实验研究[J].湖南医科大学学报,2000,20(1):15-17.
    [82]唐发清,顾焕华,胡智,等.EB病毒潜伏膜蛋白1通过Survivin介导细胞增殖和抑制细胞凋亡[J].中国生物化学与分子生物学报,2003,19(5):646-652.
    [1]Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol,2006; 6(4):295~307.
    [2]Sakaguchi S, SakaguchiN, AsanoM, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol,1995; 155(3):1151~1164.
    [3]Yong Z, Chang L, Mei YX, et al. Role and mechanisms of D4(+) CD25(+) regulatory T cells in the induction and maintenance of ransplantation tolerance. Transpl Immunol,2007;17(2):120~129.
    [4]Belkaid Y, Rouse BT. Natural regulatory T cells in infectious disease. Nat Immunol,2005; 6(4):353~360.
    [5]Kondelkova K,Vokurkova D, Krejsek J, et al. Regulatory T cells(TBEG)and their roles in immune system with respect to immunopathological disorders. Acta Medica(Hradec Kralove),2010;53(2):73~77.
    [6]Sakaguchi S, Yamaguchi T, Nomura T, et al. Regulatory T cells and immune tolerance. Cell,2008; 133(5):775~787.
    [7]陈中,晏建军,黄亮,等.肝癌微环境中CD4+CD25+调节性T细胞与T细胞免疫的关系.中国肿瘤生物治疗杂志,2007;14(6):582-584.
    [8]Miyara M, Sakaguchi S. Natural regulatory T cells:mechanisms of suppres-sion. Trends Mol Med,2007;13(3):108~116.
    [9]Fu Bm,He Xs,Yu S, et al. A toleregenic semimature dendritic cells induce effector T-cell hyporesponsiveness by activation of antigen-specific CD4+CD25+T regulatory cells that promotes skin allograft survival in mice. Cell Immunol, 2010;261(1):69-76.
    [10]Lal G, Zhang N, van der Touw W, et al. Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J Immunol,2009; 182(1): 259~273.
    [11]张燕,李红岩,蔡建辉.CD4+CD25+Trea细胞对肿瘤特异性CTL杀伤效果的影响.中华实验外科杂志,,2010;12(27):1859-1861.
    [12]Li B, Greene MI. Special regulatory T-cell review:FOXP3 biochemistry in regulatory T cells-how diverse signals regulate suppression. Immunology,2008; 123(1):17-19.
    [13]IchiyamaK, YoshidaH,Wakabayashi Y, et al. Foxp3 inhibits RORgammat-mediated IL-17A mRNA transcription through direct interaction with ROR gammat. J Biol Chem,2008;283(25):17003-17008.
    [14]van Loosdregt J, Vercoulen Y, Guichelaar T, et al. Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood,2010; 115(5):965-974.
    [15]Orentas RJ, Kohler ME, Johnson BD, et al. Suppression of anti-cancer immunity by regulatory T cells:back to future. Semin Cancer Biol,2006; 16:137-149.
    [16]Baecher-Allan C, Anderson DE.Regulatory cells and human cancer. Semin Cancer Biol,2006; 16(2):98-105.
    [17]沈玮,田庚.CD4+CD25+Treg细胞、TGF-β和IL-10在上皮性卵巢癌中的变化.中国老年学杂志,2011;12(31):4776-4778.
    [18]Kono K, Kawaida H, Takahashi A, et al. CD4+CD25high regulatory T cells increase with tumor stage in patients with gastric and esophageal cancers. Cancer Immunol Immunother,2006; 55(9):1064-1071.
    [19]Rezvani K et al. High donor Foxp3-positive regulatory T-cell (Treg) content is associated with a low risk of GVHD following HLA-matched allogeneic SCT. Blood,2006,108:1291-1297.
    [20]姜晓峰,朱磊,崔哲铭,等.CD4+CD25+调节性T细胞对小鼠肝脏移植自发性免疫耐受的影响.中华肝胆外科杂志,2011;6(17):497-500.
    [21]Levings MK,Allan S,d'Hennezel E,et al. Functional dynamics of naturally occurring regulatory T cells in health and autoimmunit. Adv Immunol,2006;92: 119.
    [22]Carson B D, Lopes J E, Soper D M, et al. Insights into transcriptional regulation by Foxp3[J]. Front Biosci,2006;11:1607-1619.
    [23]Fontenot JD, Rasmussen JP, Williams LM, et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity,2005;22(3): 329-341.
    [24]GambineriE, Torgerson TR, OchsHD. Immunedysregulation, polyendocrino-pathy, enteropathy, and X-linked inheritance(IPEX), a syndrome of systemic autoimmunity caused bymutations of FOXP3, a critical regulator of T-cell homeostasis. Curr Opin Rheumatol,2003; 15(4):430~435.
    [25]Ramsdell F, Ziegler SF. Transcription factors in autoimmunity. Curr Opin Immunol,2003; 15(6):718~724.
    [26]Foss FM. DAB(389)IL-2(ONTAK):a novel fusion toxin therapy For lymphoma. Clin Lymphoma,2000;1(2):110~116.
    [27]Beyer M, Schultze JL. Regulatory T cels in cancer. Blood,2006; 108(3):804-811.
    [28]Powell DJ Jr, Felipe-Silva A, Merino MJ, Ahmadzadeh M, Allen T, Levy C, etal. Administration of a CD25-directed immunotoxin, LMB-2, to patients with metastatic melanoma induces a selective partial reduction in regulatory T cells in vivo[J]. J Immunol,2007;179(7):4919~4928.
    [29]Chen A, Liu S, Park D, et al. Depleting intratumoral CD4+CD25+regulatory T cells via FasL protein transfer enhances the therapeutic efficacy of adoptive T cell transfer.Cancer Res,2007; 67(3):1291~1298.
    [30]Valzasina B, Piconese S, Guiducci C, et al. Tumor-induced expansion of regulatory T cells by conversion of CD4+CD25 lymphocytes is thymus and proliferation independent. Cancer Res,2006; 66(8):4488-4495.
    [31]Nair S, Boczkowski D, Fassnacht M, et al. Vaccination against the forkhead family transcription factor Foxp3 enhances tumor immunity. Cancer Res,2007; 67(1):371~380.
    [32]Nomura T, Sakaguchi S. Naturally arising CD4+CD25+ regulatory T cells in tumor immunity. Curr Top Microbiol Immunol,2005; 293:287~302
    [33]Belkaid Y. Tarbell K. Regulatory T cells in the control of host-microorganism interactions. Annu Rev Immunol,2009:27:551~589.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700