新型穿心莲内酯衍生物抗肿瘤作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
穿心莲内酯(Andrographolide, AD)是我国传统中草药穿心莲(Andrographis paniculata)的主要有效成分之一。近年来,AD作为抗肿瘤、抗病毒药物开发的先导化合物已成为基于AD新药开发的热点之一。为提高AD对肿瘤的细胞毒活性,研究者们针对其第3位、第19位羟基以及第8、第17位双键等位点进行结构修饰,合成了许多新型的化合物。然而,其体内有效性未见提高,有关AD及其衍生物调节肿瘤微环境的抗肿瘤作用机制研究及结构修饰还很欠缺。课题组前期研究发现,AD脱水后的新型C-15位取代衍生物AD-3及其3,19-烟酰酯(AD-2)体外抑制肿瘤细胞与血管内皮细胞的黏附、抗肿瘤细胞迁移及抑制毛细血管通透性增加等活性均较AD大幅提高。本研究采用鸡胚尿囊膜模型、荷H22肝癌小鼠模型、血管内皮细胞ECV304二维、三维迁移模型研究衍生物的体内外抗血管新生作用;采用荷S180肉瘤小鼠模型,荷H22肝癌小鼠模型研究衍生物的抑瘤作用,同时考察衍生物对荷S180肉瘤小鼠免疫器官的影响,并通过ELISA和免疫组化等方法研究化合物对荷瘤小鼠血清及肿瘤组织中相关因子表达的影响,以期阐明AD-2和AD-3调节肿瘤微环境、抗肿瘤血管新生,调节机体免疫力,进而抑制肿瘤组织生长的综合作用机制,为新型穿心莲内酯衍生物的合成及其药效评价,乃至抗肿瘤药物的开发奠定良好的基础。本研究主要结果如下:
     1.AD-2和AD-3具有良好的体内抗肿瘤作用,且显著强于其母体化合物AD(P<0.05)。其中AD-3 (0.85 mmol/kg; ig)对S180肉瘤生长的抑制率为53.38±683%,且AD-30.85 mmol/kg和1.10 mmol/kg剂量组的肿瘤扩散级别均为0,与模型组和AD组相比,差异均具有极显著性意义(P<0.01)。说明将AD脱水后,进一步对15位进行修饰可使衍生物的体内抗肿瘤作用显著提高,为基于AD合成抗肿瘤活性更高的衍生物奠定了基础。
     2.AD-2和AD-3具有良好的抗血管新生作用。用20μmol/L的AD-2和AD-3处理鸡胚尿囊膜,使血管分支点数量较模型组分别减少了75%和56%,差异具有显著性意义(P<0.05); AD-2 (1.35 mmol/kg; ig)和AD-3 (1.00 mmol/kg;ig)组H22荷瘤小鼠肿瘤组织中的血管指数分别为3.14±1.69和330±1.43,与模型组(4.82±243)和AD组(5.10±2.13)相比,差异均具有显著性意义(P<0.05);机制研究表明,AD-2和AD-3通过显著上调基质金属蛋白酶MMPs抑制剂TIMP-1,下调血管内皮生长因子VEGF的表达,抑制血管内皮细胞的迁移,阻遏肿瘤组织中微血管的形成,切断肿瘤的氧气和营养供应。
     3.AD-2和AD-3能够显著下调荷S180小鼠血清中IL-1β、PGE2及iNOS的表达,抑制肿瘤组织中NF-κB的核位移,抑制肿瘤恶性增殖及血管新生;同时,显著促进荷瘤小鼠血清及肿瘤微环境中肿瘤坏死因子TNF-α的分泌,起到直接抑制肿瘤生长的作用。
     4.与环磷酰胺显著不同,实验期间AD-2和AD-3组小鼠体重增加未受影响,且能够在一定程度上调节荷瘤小鼠胸腺及脾脏的免疫指数。AD-2和AD-3提高机体免疫力可能与其抗肿瘤综合效应有关。
     综上所述,穿心莲内酯衍生物AD-2、AD-3通过上调肿瘤微环境中TIMP-1 TNF-α的表达,下调VEGF、IL-1β、PGE2、iNOS等的表达,抑制促肿瘤发生发展的NF-κB通路,发挥其抗血管新生、抑制肿瘤的生长及扩散等抗肿瘤作用,而且无明显毒副作用。因而AD-2和AD-3,尤其是AD-3,具备开发为新型高效低毒的调节肿瘤微环境,抑制肿瘤发生发展的抗肿瘤药物的潜力。
Andrographolide (AD) is one of the major active constituents from Andrographis [Andrographis paniculata (Burm. f) Nees], a traditional Chinese herbal medicine. In recent years, AD, as a lead compound for the synthesis of anti-tumor and anti-viral drugs, has become one of the hot spots in the new drug development area. To improve the cytotoxic activity on tumor cells, a lot of derivatives of AD modified in the sites of 3,19-hydroxies and/or 8,17 double bonds have been synthesized by many researchers. However, the in vivo anti-tumor activities of the known derivatives have not been enhanced efficiently. In our previous studies, it was found that two C-15-substituted AD derivatives, AD-3 and AD-2, could significantly inhibit the adhesion between tumor cells and vascular endothelial cells actived by LPS, the migration of tumor cells and the increasing vascular permeability, compared with AD.
     In this study, the in vivo anti-angiogenesis effects of AD-2 and AD-3 were investigated by the chick chorioallantoic membrane model (CAM assay) and the H22 tumor-bearing mice model; their in vitro anti-angiogenesis effects were studied by the two-dimensional and three-dimensional migration models. The effects on inhibiting the growth of tumor tissue were also evaluated with both H22 and S180 tumor-bearing mice models. The expression of some cytokines in the tumor tissues and serum of the tumor-bearing mice were evaluated with the immunohistochemistry method and ELISA, respectively, to clarify the complex mechanism of AD-2 and AD-3 on regulating the tumor microenvironment, anti-angiogenesis and enhancing immunity of the mice. These efforts will establish favourable groundwork for the synthesis of novel andrographolide derivatives, even for the development of anti-cancer drugs. The main results are as follows:
     1. The in vivo anti-tumor effect of AD-2 and AD-3 were significantly stronger than that of the parent compound AD (P<0.05). AD-3 significantly decreased the weight of tumor tissues by 53.38±6.83% in the dosage of 0.85 mmol/kg (ig). It also significantly inhibited the spread of solid tumor under the dosages of 0.85 mmol/kg (ig) and 1.10 mmol/kg (ig), compared either with the model group or the AD group (P <0.01). These results illustrated that the anti-tumor activity in vivo could be significantly improved by modifying AD in the C-15 site, witch will contribute to the synthesis of AD derivatives with stronger anti-cancer activities.
     2. AD-2 and AD-3 showed good anti-angiogenic effects in vitro and in vivo. The vascular branch number in the CAM was significantly reduced about 75% and 56% by AD-2 and AD-3, respectively, compared with that of the model group (P<0.05). In the H22 tumor bearing mice treated with AD-2 (1.35 mmol/kg, ig) and AD-3 (1.00 mmol/kg, ig), the vascular index of the tumor tissue were 3.14±1.69 and 3.30±1.43, separately, which were significantly decreased (P<0.05) when compared with that of the mice in model group (4.82±2.43) and AD group (5.10±2.13).
     The results about mechanism studies demonstrated that AD-2 and AD-3 could deter the formation of microvessels in tumor tissues by significantly inhibiting the expression of vascular endothelial growth factor (VEGF), increasing the expression of matrix metalloproteinase inhibitor-1 (TIMP-1), and then inhibiting the migration of vascular endothelial cell ECV304.
     3. AD-2 and AD-3 significantly inhibited the NF-κB activation by down-regulating the expression of IL-1β, PGE2 and iNOS in the serum of the S180 tumor bearing mice, then inhibited the proliferation and angiogenesis of the malignant tumor tissues. Meanwhile, the secretion of tumor necrosis factor (TNF-a) also could be significantly enhanced by them to directly inhibit the tumor growth.
     4. Unlike cyclophosphamide, the weight increase of mice was not influenced by AD-2 or AD-3, and their immunity index of thymus and spleen had been strengthened in a certain level. The results indicated that AD-2 and AD-3 were able to enhance the immunity of organisms, which was possibly related with their comprehensive effects on anti-tumor.
     In conclusion, andrographolide derivatives, AD-2 and AD-3, could inhibit the formation of microvessels, the growth and diffusion of the solid tumor tissues through up-regulating the expression of TNF-a and TIMP-1, down-regulating the expression of VEGF, IL-1(3, PGE2 and iNOS, inhibiting the NF-κB pathway which could promote the tumor genesis and development in the tumor microenvironment. Therefore, AD-2 and AD-3, especially the AD-3, are potentially to be developed as the new anti-tumor drugs, which can regulate the tumor microenvironment and inhibit the tumor development with great efficiency and low toxicity.
引文
[1]世界卫生组织.媒体中心(实况报道 第297号):癌症[EB].2011.http://www.who.int/mediacentre/factsheets/fs297/zh/#
    [2]张先,高向东.肿瘤微环境:多糖抗肿瘤治疗的靶点.中国药科大学学报[J],2010,41(1):1-10
    [3]Bhat T A, Singh R P. Tumor angiogenesis-A potential target in cancer chemoprevention [J]. Food and Chemical Toxicology,2008,46(4):1334-1345
    [4]Makrilia N, Lappa T, Xyla V, et al. The role of angiogenesis in solid tumours:An overview [J]. The European Journal of Internal Medicine,2009,20(7):663-671
    [5]严明,陈万涛.NF-kB信号转导通路和肿瘤发生、转移关系的研究进展[J].北京口腔医学,2007,15(1):53-55
    [6]Rajagopal S, Kumar R A, Deevi D S, Satyanarayana C, Rajagopalan R. Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata [J]. Journal of Experimental Therapeutics and Oncology,2003,3(3):147-158
    [7]赵进.新型α-葡萄糖苷酶抑制剂AD-2的抗炎作用及机制研究[D].郑州:郑州大学,2009
    [1]世界卫生组织.媒体中心(实况报道 第297号):癌症[EB].2011.http://www.who.int/mediacentre/factsheets/fs297/zh/#
    [2]世界卫生组织.2008年世界卫生报告-初级卫生保健:过去重要,现在更重要[R].日内瓦:世界卫生组织,2008,8
    [3]韩锐,孙燕.新世纪癌的化学预防与药物治疗[M].北京:人民军医出版社,2005
    [4]Abegunde D O, Mathers C D, Adam T, Ortegon M, Strong K. The burden and costs of chronic diseases in low-income and middle-income countries [J]. Lancet,2007,370:1929-1938
    [5]Pitot H C, Loeb D D. Fundamentals of Oncology [M]. New York:Marcel Dekker, Inc,2002, 27-39
    [6]高进,章静波.癌的侵袭与转移基础与临床[M].北京:科学出版社,2003
    [7]甄永苏.抗肿瘤药物研究与开发[M].北京:化学工业出版社,2004
    [8]Morris J, Dobson J. Small Animal Oncology [M]. Oxford:Blackwell Science,2001,1-3
    [9]Hahn K A. Veterinary Oncology (Fourth Edition) [M]. Woburn:Butterworth-Heinemann,2002
    [10]Folkman J, Merler E, Abernathy C, Williams G. Isolation of a tumor factor responsible for angiogenesis [J]. Journal of Experimental Medicine,1971,133:275-288
    [11]Folkman J. Tumor angiogenesis:therapeutic implications [J]. New England Journal of Medicine,1971,285(21):1182-1186
    [12]Folkman J. Tumor angiogenesis factor [J]. Cancer Research,1974,34:2109-2113
    [13]Peterson F, Amstutz R. Natural Products as Drugs (Progress in Drug Research) [M]. Basel: Birkhauser,2008
    [14]赵进.新型α-葡萄糖苷酶抑制剂AD-2的抗炎作用及机制研究[D].郑州:郑州大学,2009
    [15]Padmavathi B, Rath P C, Rao A R, Singh R P. Roots of Withania somnifera inhibit forestomach and skin carcinogenesis in mice [J]. Evidence-Based Complementary and Alternative Medicine,2005,2(1):99-105
    [16]Olalde Rangel J A, Magarici M, Amendola F, del Castillo O. The systemic theory of living systems. Part IV:systemic medicine-the praxis [J]. Evidence-Based Complementary and Alternative Medicine,2005,2(4):429-439
    [17]黄宁.炎症因子与肿瘤[J].中国民族民间医药,2010,87-89
    [18]Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation [J]. Nature,2008, 454(7203):436-444
    [19]Karin M. Nuclear factor-κB in cancer development and progression [J]. Nature,2006,441: 431-436
    [20]Greten F R, Eckmann L, Greten T F, Park J M, Li Z W, Egan L J, Kagnoff M F, Karin M. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer [J]. Cell,2004,118:285-296
    [21]Huang S, Robinson J B, Deguzman A, Bucana C D, Fidler I J. Blockade of nuclear factor-KB signaling inhibits angiogenesis and tumorigenicity of human ovarian cancer cells by suppressing expression of vascular endothelial growth factor and interleukin [J]. Cancer Research,2000,60(19):5334-5339
    [22]Stephens F O, Aigner K R. Basics of Oncology [M]. Heidelberg:Springer,2009,3-16
    [23]张于,李贵森,周岚.抗肿瘤植物药的展望[J].民营科技,2010,7:104
    [24]刘娟,文静,王晶,谢铮铮.传统中药抗肿瘤血管生成的临床研究进展[J].中国医院用药评价与分析,2010,10(3):287-288
    [25]杨宝印.癌症的中药疗法[M].石家庄:河北科学技术出版社,1992
    [26]黄自丽,黄修燕,郑起.中药抗肿瘤作用及其作用机制研究进展[J].医学综述,2010,16(3):386-389
    [27]季秀海,钱晓萍,刘宝瑞.中药有效成分抗肿瘤血管生成研究进展[J].现代肿瘤医学,2010,18(3):594-597
    [28]Chabner B A, Roberts Jr T G. Chemotherapy and the war on cancer [J]. Nature Reviews Cancer,2005,5(1):65-72
    [29]Cragg G M, Newman D J. Plants as a source of anti-cancer agents [J]. Journal of Ethnopharmacology,2005,100(1/2):72-79
    [30]Mans D R, Rocha A B, Schwartsmann G. Plant-based anti-cancer drug discovery and development [J]. The Oncologist,2005,5:185-198
    [31]Rocha A B Da, Lopes R M, Schwartsmann G. Natural products in anticancer therapy [J]. Current Opinion in Pharmacology,2001,1(4):364-369
    [32]Warber S L, Seymour M, Kaufman P B, Kirakosyan A, Cseke L J. Modes of action at target sites [A]. In:Cseke L J, Kirakosyan A, Kaufman P B, Warber S L, Duke J A, Brielmann H L eds. Natural Products from Plants [C]. Boca Raton:CRC Press,2006,415-440
    [33]Butler M S, Newman D J. Mother nature's gifts to diseases of man:the impact of natural products on anti-infective, anticholestemics and anticancer drug discovery [A]. In:Peterson F, Amstutz R eds. Progress in Drug Research, Natural Products as Drugs [C]. Basel:Birkhauser, 2008,2-44
    [34]Oberlies N H, Kim N C, Brine D R, Collins B J, Handy R W, Sparacino C M, Wani M C, Wall M E. Analysis of herbal teas made from the leaves of comfrey (Symphytum cfficinale): reduction of N-oxides results in order of magnitude increases in the measurable concentration of pyrrolizidine alkaloids [J]. Public Health Nutrition,2004,7:919-924
    [35]Ebadi M. Pharmacodynamic Basis of Herbal Medicine (Second Edition) [M]. Boca Raton: CRC Press,2007
    [36]Patwardhan B, Warude D, Pushpangadan P, Bhatt N. Ayurveda and traditional Chinese medicine:a comparative overview [J]. Evidence-Based Complementary and Alternative Medicine,2005,2(4):465-473
    [37]Konkimalla V B, Efferth T. Anti-cancer natural product library from traditional Chinese medicine [J]. Combinatorial Chemistry and High Throughput Screening,2008,11(1):7-15
    [38]Sabu K K, Padmesh P, Seeni S. Intraspecific variation in active principle content and isozymes of Andrographis paniculata Nees (Kalmegh):a traditional hepatoprotective medicinal herb [J]. Journal of Medicinal and Aromatic Plant Sciences,2000,23:637-647
    [39]Woo A Y H, Waye M M Y, Tsui S K W, Yeung S T W, Cheng C H K. Andrographolide up-regulates cellular-reduced glutathione level and protects cardiomyocytes against hypoxia/ reoxygenation injury [J]. Journal of Pharmacology and Experimental Therapeutics,2008, 325(1):226-235
    [40]Rao N K. Anti-hyperglycemic and renal protective activities of Andrographis paniculata roots chloroform extract [J]. Iranian Journal of Pharmacology and Therapeutics,2006,5(1): 47-50
    [41]中华人民共和国卫生部药典委员会.中华人民共和国中药彩色图集(1995年版)[M].广州:广东科技出版社,1996,361-362
    [42]Patarapanich C, Laungcholatan S, Mahaverawat N, Chaichantipayuth C, Pummangura S. HPLC determination of active diterpene lactones from Andrographis paniculata Nees planted in various seasons and regions in Thailand [J]. Thai Journal of Pharmaceutical Sciences,2007,31:91-99
    [43]Panossian A, Davtyan T, Gukassyan N et al. Effect of andrographolide and Kan Jang-fixed combination of extract SHA-10 and extract SHE-3 on proliferation of human lymphocytes, production of cytokines and immune activation markers in the whole blood cells culture [J]. Phytomedicine,2002,9(7):598-605
    [44]Mishra S K, N S Sangwan, R S Sangwan. Andrographis paniculata (Kalmegh):a review [J]. Pharmacognosy Reviews,2007,1:283-298
    [45]Jarukamjorn K, Nemoto N. Pharmacological aspects of Andrographis paniculata on health and its major diterpenoid constituent andrographolide [J]. Journal of Health Science,2008, 54(4):370-381
    [46]Koteswara Y Rao, Vimalamma G, Rao C V, Tzeng Y M. Flavonoids and andrographolides from Andrographis paniculata [J]. Phytochemistry,2004,65(16):2317-2321
    [47]Li W, Xu X, Zhang H et al. Secondary metabolites from Andrographis paniculata [J]. Chemical and Pharmaceutical Bulletin,2007,55(3):455-458
    [48]王国才,胡永美,张晓琦,叶文才.穿心莲的化学成分[J].中国药科大学学报,2005,36(5):405-407
    [49]陈丽霞,曲戈霞,邱峰.穿心莲二萜内酯类化学成分的研究[J].中国中药杂志,2006,31(19):1594-1597
    [50]Maiti K, Gantait A, Mukherjee K, Saha B P, Mukherjee P K. Therapeutic potentials of andrographolide from Andrographis paniculata:a review [J]. Journal of Natural Remedies, 2006,6(1):1-13
    [51]Yu B C, Hung C R, Chen W C, Cheng J T. Anti-hyperglycemic effect of andrographolide in streptozotocin-induced diabetic rats [J]. Planta Medica,2003,69(12):1075-1079
    [52]杨静.穿心莲内酯的研究进展[J].中草药,2009,40(7):1168-1170
    [53]陈伶俐,王振华.穿心莲内酯基本理化性质考察[J].今日药学,2010,20(1):41-43
    [54]于波涛,张志荣,刘文胜,杨婷,王平.穿心莲内酯体外稳定性研究[J].中成药.2002,24(5):331-333
    [55]罗瑞娟.不同产地穿心莲中穿心莲内酯、脱水穿心莲内酯含量的比较[J].黑龙江医药.2005,18(2):7-8
    [56]Rajagopal S, Kumar R A, Deevi D S, Satyanarayana C, Rajagopalan R. Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata [J]. Journal of Experimental Therapeutics and Oncology,2003,3(3):147-158
    [57]刘国利,叶再元.穿心莲内酯的研究进展[J].医学导报,2006,25(1):48-50
    [58]亓翠玲,王丽京,周鑫磊.穿心莲内酯抗肿瘤作用机制的研究进展[J].中国中药杂志,2007,32(20):2095-2097
    [59]Jada S R, Subur G S, Matthews C, Hamzah A S, Lajis N H, Saad M S, Stevens M F, Stanslas J. Semisynthesis and in vitro anticancer activities of andrographolide analogues [J]. Phytochemistry,2007,68(6):904-912
    [60]Wang Y J, Wang J T, Fan Q X, Geng J G. Andrographolide inhibits NF-kB activation and attenuates neointimal hyperplasia in arterial restenosis [J]. Cell Research,2007,17(11): 933-941
    [61]Zhao F, He E Q, Wang L, Liu K. Anti-tumoractivities of andrographolide, a diterpene from Andrographis paniculata, by inducing apoptosis and inhibiting VEGF level [J]. Journal of Asian Natural Products Research,2008,10(5):473-479
    [62]李曙光,叶再元.穿心莲内酯的药理活性作用[J].中华中医药学刊,2008,26(5):984-986
    [63]Calabrese C, S H Berman, Babish J G et al. A phase I trial of andrographolide in HTV positive patients and normal volunteers [J]. Phytotherapy Research,2000,14(5):333-338
    [64]Samy R P, Gopalakrishnakone P. Therapeutic potentials of plants as anti-microbials for drug discovery [J]. Evidence-Based Complementary and Alternative Medicine,2010,7(3): 283-294
    [65]Xu H W, Zhang J, Liu H M, Wang J F. Synthesis of andrographolide cyclophosphate derivatives and their antitumor activities [J]. Synthetic Communications,2006,36(4): 407-414
    [66]刘改芝,徐海伟,孙凯,王君,刘宏民.穿心莲内酯衍生物的合成研究进展[J].有机化学,2008,28(2):201-209
    [67]韩光,杜钢军,许启泰.穿心莲二萜内酯类化合物的合成及抗肿瘤构效关系研究[J].中国药学杂志,2008,43(10):790-794
    [68]徐浩,王新扬,黄文龙,等.N2酰基2 122氨基亚甲基2 142脱氧穿心莲内酯衍生物的合成及其抗肿瘤活性[J].中国药科大学学报,2005,36(6):496-499
    [69]徐冲,王峥涛.12-(N-酰基氨甲基)-14-去氧穿心莲内酯衍生物的合成及抗肿瘤活性[J].中国药科大学学报,2011,42(1):29-33
    [70]Xu C, Wang Z T. Synthesis and cytotoxic activity of 12-methyleneurea-14-deoxy-andrographolide derivatives [J]. Chinese Journal of Natural Medicines,2011,9(1):46-50
    [71]戴桂馥,马文艳,刘宏民,徐海伟,杨清波,王菲,安莉莎,郝利平,王俊峰.穿心莲内酯衍生物体外抗肿瘤作用及构效关系研究[J].中国新药杂志,2011,20(4):362-366
    [72]翟娜,许启泰,宋沛然,等.穿心莲内酯衍生物的急性毒性实验[J].时珍国医国药,2008,19(5):1156-1157
    [73]戈扬,刘永霞,张树来,李莉.穿心莲内酯亚硫酸氢钠加成物大鼠长期毒性试验研究[J].齐鲁药事,2005,24(9):562-564
    [74]刘新建,王一飞,李贵生.穿心莲内酯及其衍生物的药理研究进展[J].中药材,2003,26(2):135-138
    [75]戴桂馥,王俊峰,何帅伟,徐海伟,林琳,杨莹,刘宏民.穿心莲内酯及其衍生物的药理活性研究进展[J].中成药,2006,28(7):1032-1035
    [76]杨琼,李曙光,董建华,叶再元.穿心莲内酯及其衍生物的抗肿瘤作用及机制[J].山东医药,2009,49(12):108-109
    [1]陈龙邦.肿瘤微环境:抗血管治疗的重要靶点[J].癌症进展杂志,2009,7(5):479-480
    [2]Brown L F, Yeo K T, Berse B, et al. Expression of vascular permeability factor (vascular endothelial factor) by epidermal keratinocytes during wound healing [J]. The Journal of Experimental Medicine,1992,176:1375-1379
    [3]周哲,谷小虎.原发胃癌中VEGF检测与临床病理因素的相关性研究[J].实用肿瘤学杂 志,2006,20(2):103-105
    [4]袁捷,刘顺英.血管内皮细胞生长因子在胃癌外周血微转移中的作用[J].中华消化杂志,2005,25(10):629-630
    [5]Sheeja K, Guruvayoorappan C, Kuttan G. Antiangiogenic activity of Andrographis paniculata extract and andrographolide [J]. International Immunopharmacology.2007,7:211-221
    [6]O'Reilly M S. Antiangiogenesis and VEGF/VEGFR targeting as part of a combined modality approach to the treatment of cancer [J]. International Journal of Radiation Oncology · Biology · Physics,2007,69(2Suppl):S64-S66
    [7]许成云,倪庆桂,张陆勇.肿瘤微环境与血管新生[J].中国医疗前沿.2009,4(4):21-24
    [8]吴万桂,袁捷,林惠华.肿瘤抗血管生成治疗的研究进展[J].中国肿瘤生物治疗杂志,2010,17(1):76-77
    [9]肖新建.恶性肿瘤微血管形成与肿瘤转移[J].中国实用医药,2010,5(19):64-65
    [10]Ferrara N, Gerber H P, LeCouter J. The biology of VEGF and its receptors [J]. Nature Medicine,2003,9:669-676
    [11]Zhao F; He E Q; Wang L; Liu K. Anti-tumor activities of andrographolide, a diterpene from Andrographis paniculata, by inducing apoptosis and inhibiting VEGF level [J]. Jouranl of Asian Natural Products Research,2008,10(5-6):467-473
    [12]Suzuki M, Izasa T, Fujisawa T, et al. Expression of matrix metalloproteinases ans tissue inhibitor of matrix in non-small lung cancer [J]. Invasion Metastasis.1999,18(3):134-141
    [13]Hornebeck W, Lambert E, Petitfrere E, Bernard P. Beneficial and detrimental influences of tissue inhibitor of metalloproteinase-1 (TIMP-1) in tumor progression [J]. Biochimie,2005, 87:377-383
    [14]Gomez D E, Alonso D F, Yoshiji H, Thorgeirsson U P, Tissue inhibitors of metalloproteinases; structure, regulation and biological function [J]. European Journal of Cell Biology,1997,74: 111-122
    [15]Jiang Y, Goldberg I D, Shi Y E. Complex roles of tissue inhibitors of metalloproteinases in cancer [J]. Oncogene,2002,21:2245-2252
    [16]Schultz R M, Silberman S, Persky B, Bajkowski A S, Carmichael D F. Inhibition by human recombinant tissue inhibitor of metalloproteinases of human amnion invasion and lung colonization by murine B16-F10 melanoma cells [J]. Cancer Research,1988,48:5539-5545
    [17]Tsuchiya Y, Sato H, Endo Y, Okada Y, Mai M, Sasaki T, Seiki M. Tissue inhibitor of metalloproteinase 1 is a negative regulator of the metastatic ability of a human gastric cancer cell line, KKLS, in the chick embryo [J]. Cancer Research,1993,53:1397-1402
    [18]Takigawa M, Nishida Y, Suzuki F, Kishi J, Yamashita K, Hayakawa T. Induction of angiogenesis in chick yolk-sac membrane by polyamines and its inhibition by tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) [J]. Biochemical and Biophysical Research Communications,1990,171:1264-1271
    [19]Johnson M D, Kim H R C, Chesler L, Tsao-Wu G, Bouck N, Polverini P J. Inhibition of angiogenesis by tissue inhibitor of metal-loproteinase [J]. Journal of Cellular Physiology, 1994,160:194-202
    [20]Ikenaka Y, Yoshiji H, Kuriyama S, Yoshii J, Noguchi R, Tsujinoue H, Yanase K, Namisaki T, Imazu H, Masaki T, Fukui H. Tissue inhibitor of metalloproteinases-1 (TIMP-1) inhibits tumor growth and angiogenesis in the TIMP-1 transgenic mouse model [J]. International Journal of Cancer,2003,105:340-346
    [21]Martin D C, Ruther U, Sonchez-Sweatman O H, Orr F W, Khokha R. Inhibition of SV40T antigen-induced hepatocellular carcinoma in TIMP-1 trangenic mice [J]. Oncogene,1996,13: 569-576
    [22]Ikenaka Y, Yoshiji H, Kuriyama S, Yoshii J, Noguchi R, Tsujinoue H, YanaseK, Namisaki T, Imazu H, Mazaki T, Fukui H. Tissue inhibitor of metalloproteinases-1 (TIMP-1) inhibits tumor growth and angiogenesis in the TIMP-1 transgenic mouse model [J]. International Journal of Cancer,2003,105:340-346
    [23]罗彬,秦蓁,王旭东.肺癌MMP-9、TIMP-1表达与微血管密度的关系及意义[J].临床与实验病理学杂志,2009,25(5):510-512
    [24]Akahane T, Akahane M, Shah A, Connor C M, Thorgeirsson U P. TIMP-1 inhibits microvascular endothelial cell migration by MMP-dependent and MMP-Independent mechanisms [J]. Experimental Cell Research,2004,301:158-167
    [1]汪雨潇.关于肿瘤微环境的几个问题[J].科技创新论坛,2010,168-169
    [2]王宁,陈海滨.NF-KB及其在肿瘤发生发展中的作用[J].解剖学研究.2008,30(2):141-144
    [3]戴桂馥,赵进,王庆端,毛世杰,夏薇,刘宏民.穿心莲内酯诱导人食管癌Ec9706细胞凋亡机制研究[J].中国药理学通报.2009,25(2):173-176
    [4]Sen R, Baltimore D. Inducibility of kappa immunoglobulin enhancer-binding protein NF-kappaB by a post-translational mechanism [J]. Cell,1986,47 (6):921-928
    [5]Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle [J], Cell,2002,109(Suppl.): S81-S96
    [6]Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination:the control of NF-κB activity [J],2000, Annual Review of Immunology,18:621-663
    [7]严明,陈万涛.NF-KB信号转导通路和肿瘤发生、转移关系的研究进展[J].北京口腔医学.2007,15(1):53-55
    [8]Manlatis T. Signal transduction:catalysis by a mutiprotein IB kinase complex [J]. Science, 1997,278(5339):818-819
    [9]Bharti A C, Aggarwal B B. Nuclear factor-kappa B and cancer:its role in prevention and therapy. Biochemical Pharmacology,2002,64(5-6):883-888
    [10]任丹红,方堃,应可净.穿心莲内酯对人肺癌A549细胞NF-κB通路的调控作用[J].中国药理学与毒理学杂志.2010,24(4):106-110
    [11]Bidwell J, Keen L, Gallagher G, Kimberly R, Huizinga T, McDermott M F, Oksenberg J, McNicholl J, Pociot F, Hardt C, D'Alfonso S. Cytokine gene polymorphism in human disease:on-line databases [J].Genes & Immunity,1999,1(1):3-19
    [12]Howell W M, Calder P C, Grimble R F. Gene polymorphisms, inflammatory diseases and cancer [J]. Proceedings of Nutrition Society,2002,61:447-456
    [13]Barber M D, Powell J J, Lynch S F, Fearon K C, Ross J A. A polymorphism of the interleukin-1 beta gene influences survival in pancreatic cancer [J]. British Journal of Cancer, 2000,83:1443-1447
    [14]Wang Y, Kato N, Hoshida Y, Yoshida H, Taniguchi H, Goto T, Moriyama M, Otsuka M, Shiina S, Shiratori Y, et al. Interleukin-1 beta gene polymorphisms associated with hepatocellular carcinoma in hepatitis C virus infection [J]. Hepatology,2003,37:65-71
    [15]Figueiredo C, Machado J C, Pharoah P, Seruca R, Sousa S, Carvalho R, Capelinha A F, Quint W, Caldas C, van Doom L J, et al. Helicobacter pylori and interleukin 1 genotyping:an opportunity to identify high-risk individuals for gastric carcinoma [J]. Journal of the National Cancer Institute,2002,94:1680-1687
    [16]Dinarello C A. Biologic basis for interleukin-1 in disease [J]. Blood,1996,87:2095-2147
    [17]Bunt S K, Yang L, Sinha P, Clements V K, Leips J, Ostrand-Rosenberg S. Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression [J]. Cancer Research,2007,67:10019-10026
    [18]Dolcetti L, Marigo I, Mantelli B, Peranzoni E, Zanovello P, Bronte V Myeloid-derived suppressor cell role in tumor-related inflammation [J]. Cancer Letters,2008,267:216-225
    [19]Ahn G O, Brown, J M. Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis:role of bone marrow-derived myelomonocytic cells [J]. Cancer Cell, 2008,13:193-205
    [20]Du R, Lu K V, Petritsch C, Liu P, Ganss R, Passegue E, Song H, Vandenberg S, Johnson R S, Werb Z, Bergers G. HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion [J]. Cancer Cell,2008,13: 206-220
    [21]Song X, Krelin Y, Dvorkin T, Bjorkdahl O, Segal S, Dinarello C A, Voronov E, Apte R N. CD11b+/Gr-1+ immature myeloid cells mediate suppression of T cells in mice bearing tumors of IL-1beta-secreting cells [J]. The Journal of Immunology,2005,175:8200-8208
    [22]Tu S P, Bhagat G, Cui G L, et al. Overexpression of interleukin-1b induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice [J]. Cancer Cell,2008,14:408-419
    [23]朱穗,王帆,李霞,赵亚双.前列腺素E2与肿瘤的关系[J].中华疾病控制杂志,2010,14(4):345-349
    [24]Watson J, Chuah S Y. Prost aglandins, steroids and human mammary cancer [J]. European Journal of Cancer and Clinical Oncology,1985,21(9):1051-1055
    [25]Ratnasinghe D, Tangrea J, Roth M J, et al. Expression of cyclooxygenase-2 in human squamous cell carcinoma of the esophagus; an immunohistochemical survey [J]. Anticancer Research,1999,19(1A):171-174
    [26]Chan G, Boyle J O, Yang E K, et al. Cyclooxygenase -2 expression is up-regulated in squamous cell carcinoma of the head and neck [J]. Cancer Research,1999,59(5):991-994
    [27]Uefuji K, Ichikura T, Mochizuki H. Expression of cyclooxygenase-2 in human gastric adenomas and adenocarcinomas [J]. Journal of Surgical Oncology,2001,76(1):26-30
    [28]Pai R, Soreghan B, Szabo I L, et al. Prost aglandin E2 transactivates EGF receptor:a novel mechanism for promoting coloncancer growth and gastrointestinal hypertrophy [J]. Nature Medicine,2002,8(3):289-293
    [29]Poligone B, Baldwin A S. Positive and negative regulation of NF-kappaB by COX-2:roles of different prost aglandins [J]. The Journal of Biological Chemeistry,2001,276(42): 38658-38664
    [30]Sheng H, Shao J, Morrow J D, et al. Modulation of apoptosisand Bcl-2 expression by prostaglandin E2 in human colon cancer cells [J]. Cancer Research,1998,58(2):362-366
    [31]Haynes V, Elfering S, Traaseth N,Giulivi C. Mitochondrial nitric oxide synthase:enzyme expression, characterization, and regulation [J]. Journal of Bioenergetics and Biomembranes, 2004,36:341-346
    [32]Lin A W, Chang C C, McCormick C C. Molecular cloning and expression of an avian macrophage nitric-oxide synthase cDNA and the analysis of the genomic 5'-flanking region [J]. The Journal of Biological Chemeistry,1996,271:11911-11919
    [33]Kleinert H, Pautz A, Linker K, Schwarz P M. Regulation of the expression of inducible nitric oxide synthase [J]. European Journal of Pharmacology,2004,500:255-266
    [34]Ghosh S, May M J, Kopp E B. NF-kappa B and Rel proteins:evolutionarily conserved mediators of immune responses [J]. Annual Review of Immunology,1998,16,225-260
    [35]Blaise G A, Gauvin D, Gangal M, Authier S. Nitric oxide, cell signaling and cell death [J]. Toxicology,2005,208:177-192
    [36]Ziche M, Morbidelli L. Nitric oxide and angiogenesis [J]. Journal of Neuro-Oncology,2000, 50,139-148
    [37]郭辉,杨惠玲,郑芹.S180移植瘤组织发展中的NO水平变化[J].中山大学学报(医学科学版),2007,28(3S):250-251
    [38]Varma A, Padh H, Shrivastava N. Andrographolide:a new plant-derived antineoplastic entity on horizon [J]. Evidence-Based Complementary and Alternative Medicine,2011,2011: article ID:815390,9 pages

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700