炒籽对花生油风味和品质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浓香花生油特殊的加工工艺保留了其独特的风味和营养成分,其浓郁的风味符合东方人的饮食习惯,倍受赞誉。风味是浓香花生油的重要指标,炒籽是浓香花生油风味形成的重要加工工序。因此,研究和分析炒籽对花生油特征风味形成的影响及特征风味物质的形成路径、炒籽对花生油品质影响以及浓香花生油在煎炸过程中风味和品质变化规律,对企业生产高质量浓香花生油具有重大的理论意义和实用价值。本论文主要研究内容如下:
     首先,采用顶空固相微萃取法(HS-SPME)结合气相色谱-质谱联用技术(GC-MS),建立了花生油挥发性成分分析方法。通过单因素分析得出最佳萃取条件为:PDMS/DVB萃取头、搅拌状态、萃取温度50℃、萃取时间40 min和解吸时间5 min。采用HS-SPME-GC/MS对浓香花生油风味进行了初步分析,发现吡嗪类化合物含量最高,占总挥发物的32.89%,是浓香花生油顶空挥发物的主要组成。
     结合GC-O分析确定了浓香花生油特征风味化合物。浓香花生油特征风味组成为烘烤味/坚果味、花香味/水果香味/甜香味和脂味/青草味,其中烘烤味/坚果味为浓香花生油主体特征风味。甲基吡嗪、2,5-二甲基吡嗪、2,6-二甲基吡嗪、2,3-二甲基吡嗪、2,3,5-三甲基吡嗪、3-乙基-2,5-二甲基吡嗪、2-乙酰基-3-甲基吡嗪为烘烤味/坚果味特征风味成分,2-乙酰基吡咯、2-醛基吡咯、3-羟基-4,4-二甲基-γ-丁内酯、2,3-二氢苯并呋喃、苯乙醇、苯甲醛、间乙基苯酚、2-甲氧基-4-乙烯基苯酚为花香味/水果香味/甜香味特征风味成分,己醛、2-辛烯醛为脂味/青草味特征风味成分。
     HS-SPME-GC/MS、感官评定和电子鼻(EN)相结合分析了炒籽对花生油特征风味形成的影响。HS-SPME-GC/MS分析结果表明,炒籽过程中花生油风味化合物包括氮杂环化合物(20种吡嗪、5种吡啶、8种吡咯)、氧杂环化合物(11种呋喃、1种吡喃)和非杂环化合物(12种醛、12种醇、3种酮、12种酸、2种烷烃、2种烯烃以及7种酯)。炒籽30 min后氮杂环化合物含量随炒籽时间迅速增加,取代非杂环类化合物成为花生油中主要风味物质。感官评定结果表明,炒籽30 min前花生油总风味强度不大,以脂味/青草味为主,烘炒味/坚果味非常微弱;炒籽30 min后花生油总风味强度显著增强,烘炒味/坚果味对总体风味起主要贡献。风味化合物PCA分析结合感官评定结果表明,吡嗪类化合物是炒籽过程中形成风味的主要贡献化合物,赋予花生油强烈的烘炒味/坚果味。电子鼻分析结果表明炒籽时间对花生油风味具有显著影响。炒籽30 min前花生油风味特征非常接近,炒籽30 min后花生油与其他花生油风味特征差异显著。与感官评定结果一致。综上分析,炒籽时间对花生油主体特征风味形成起着非常关键的影响,其中30 min是花生油炒籽过程中重要转折点,30 min后的炒籽阶段对主体特征风味化合物吡嗪的形成非常重要。吡嗪类化合物由美拉德反应生成,炒籽30 min后温度攀升为反应提供了良好的反应条件。同时确定了花生油主体特征风味前体物质为游离氨基酸(谷氨酸、精氨酸、天冬氨酸、苯并氨酸、酪氨酸)和还原糖(果糖、葡萄糖),分别为风味化合物形成提供氮源和碳源。
     也系统分析了炒籽对花生油色泽、酸价、过氧化值、脂肪酸组成、微量成分和氧化稳定性等品质的影响。分析发现,经炒籽过程的花生油具有非常良好的品质:酸价和过氧化值均达到国家标准,微量脂质伴随物(维生素E、甾醇和角鲨烯)含量均未受显著影响,氧化稳定性30 min后显著升高。炒籽对花生油色泽影响较大,与炒籽后期花生中形成的大量褐变物质有关;炒籽过程中美拉德反应非挥发产物的形成减弱了花生油中以生育酚为代表的天然抗氧化成分抗氧化活性的损失。因此,花生油整体抗氧化性能得以保持或甚至随炒籽时间延长而得以提高。
     通过煎炸薯条模型考察了浓香花生油在食品加工过程中风味和品质的变化规律。花生油在煎炸过程中品质下降明显:酸价呈波动上升,过氧化值呈波动趋势,茴香胺值持续增长,氧化指数随煎炸进行不断增大,极性物质和反式脂肪酸含量也随煎炸进行缓慢增加,油脂色泽变深,维生素E含量煎炸初期即急剧下降消失,氧化稳定性非常差。原油中含有的吡嗪类化合物在煎炸初期完全挥发,花生油不再具有原有主体特征风味。整个煎炸过程中花生油顶空挥发物以醛类化合物为主,且醛含量随煎炸进行呈指数级增长,是花生油煎炸过程中重要的风味组成,主要由花生油中不饱和酯自动氧化形成的氢过氧化物降解生成。PCA分析结果表明,反,反-2,4-癸二烯醛是茴香胺值的重要贡献醛,其次依次为反-2-癸烯醛、顺-2-庚烯醛、反,顺-2,4-癸二烯醛、2-十一烯醛、壬醛、反-2-辛烯醛和己醛。因此,煎炸过程中醛类化合物的种类和含量可作为花生油风味和品质的重要指标。
     综上分析,炒籽过程中花生油特征风味形成和品质保持是由美拉德反应为主导,而在煎炸过程中花生油风味的改变和品质的降低则主要由油脂氧化反应所控制。
Special production process of aromatic roasted peanut oil (ARPO) not only can generate its unique flavor but also can retain minor nutrients, which makes it award-winning among consumers. Flavor is a significant indicator of ARPO, and roasting process is the key and important production process for ARPO flavor formation. Therefore, the study on the the effect of roasting process on the formation of flavor components, the impact of roasting on peanut oil quality and the variation of ARPO flavor and quality during frying has great theoretical and practical value for the production of high-quality ARPO. The main contents of this paper were listed as follows.
     Firstly, an analysis method using HS-SPME technique combined with GC-MS was established for analyzing volatiles in peanut oil. Optimum HS-SPME conditions were as follows: PDMS/DVB fiber, magnetic stirring, extraction temperature of 50℃, extraction time of 40 min and desorption time of 5 min. Then volatiles of ARPO were well separated and identified using the optimized HS-SPME-GC/MS. Among these volatiles, pyrazines accounted for the largest relative percentage area (RPA) of 32.89%, which were major headspace volatile components of ARPO.
     Seventeen aroma-active compounds of ARPO were identified using GC-MS combined with GC-O. The ARPO aroma could be described as strong roasty/nutty, soft floral/fruity/sweet with light fatty/grassy. Methyl pyrazine, 2,5-dimethyl pyrazine, 2,6-dimethyl pyrazine, 2,3-dimethyl pyrazine, 2,3,5-trimethyl pyrazine, 3-ethyl-2,5-dimethyl pyrazine, 2- acetyl-3-methyl pyrazine were the main sources for roasty/nutty odor; 2-acetyl pyrrole, Pyrrole-2-carboxaldehyde, 3-hydroxy-4,4-dimethyl-γ-butyrolactone, 2,3-dihydro-benzofuran, benzaldehyde, benzeneethanol, guaiacol, 2- methoxy-4-vinylphenol for floral/fruity/sweet odor; hexanal, 2-octenal for fatty/grassy odor.
     HS-SPME-GC/MS, sensory evauation and electronic nose (EN) were combined to analyze the effect of roasting process on the flavor formation of peanut oil. A total of 95 volatiles were identified using HS-SPME-GC/MS, including N-heterocyclic compounds (20 pyrazines, 5 pyridines and 8 pyrroles), O-heterocyclic compounds (11 furans and 1 pyran) and non-heterocyclic compounds (12 aldehydes, 12 alcohols, 3 ketones, 12 acids, 2 alkanes, 2 alkenes and 7 esters). N-heterocyclic comounds increased significantly and replaced non-heterocyclic compounds to be the major flavor components of peanut oil after 30 min-roasting. Sensory evaluation results showed that peanut oil samples before 30 min-roasting owned much lower total flavor intensity, mainly presenting fatty/grassy odor; peanut oil samples after 30 min-roasting had a sharp increase in total flavor intensity, mainly presenting strong nutty/roasty aroma.? The PCA results showed that pyrazines play a major contribution to the typical flavor generated during the roasting process, presenting high-intensity roasty/nutty flavor. Also, the EN results showed that roasting time had a remarkable effect on the flavor of peanut oil. Flavor of samples before 30 min-roasting were very close to each other; after 30 min-roasting, samples had significant differences in their flavor, which were in accordance with the sensory evaluation results. In summary, it’s clearly shown that roasting time plays a critical impact on the formation of typical flavor of ARPO; 30 min is especially an important turing point during the roasting and thus the roasting stage after 30 min is very important for the formation of pyrazines. Pyrazine compounds generated by the Maillard reaction and the sharp temperature rise after 30 min-roasting provided a well reaction condition for the Maillard reaction. Also, flavor precursors of nutty/roasty flavor of peanut oil were identified as free amino acids (glutamic acid, arginine, aspartic acid, phenylalanine, tyrosine) and reducing sugar (fructose, glucose), which provided nitrogen source and carbon source respectively for the Maillard reaction.
     A systematic analysis was conducted to analyze the influence of roasting process on the quality of peanut oil. The results showed that peanut oil samples during the roasting process owned high quality. The acid value and peroxide value reached the national standard; minor components (vitamin E, sterols and squalene) contents were not significantly affected; OSI value significantly increased after 30 min-roasting. Also, roasting showed a great impact on oil color, which could be due to the formation of a large number of browning substances (Maillard reaction products) during the post-roasting. It can be speculated that the formation of Maillard reaction products during the roasting process weakened the loss of nature antioxidants (such as tocopherols) in peanut oil. Therefore, overall antioxidant ability can be maintaind or even improved with the roasting time extending.
     The flavor and quality variation of peanut oil in cooking were studied by using French fries-frying model. Peanut oil quality showed a significant decrease with the frying going on. The acid value, peroxide value, p-anisidine value, oxidative index, polar compounds and trans fatty acid content all showed different degrees of increase; oil become darker in color; vitamin E content showed a sharp decline and disappearance in the early stage of frying; and peanut oil owned very low OSI. Flavor also had great changes. Pyrazines evaporated completely in the initial frying, and peanut oil had no original nutty/roasty aroma from then on. Throughout the frying process, aldehydes were the major compounds in the peanut oil headspace, which mainly from degradation of hydroperoxide generated by autoxidation of unsaturated esters and showed an exponential growth with the frying extending. PCA results showed that E,E-2,4-decadienal showed an important contribution to the p-anisidine value, followed by E-2-decenal, Z-2-heptenal, E,Z-2,4-decadienal, 2-undecenal, nonanal, E-2-octenal and hexanal. Thus, aldehydes can be used as an important indicator of peanut oil flavor and quality during the frying process.
     According to the analysis above, it can be proved that the formation of typical nutty/roasty flavor and enhancement of quality during the roasting process are dominated by the Maillard reaction. However, flavor change and quality decline during the frying process are mainly affected by the autoxidation of unsaturated esters.
引文
[1] Fereidoon S. Bailey’s industrial oil and fat products [M]. 6th ed. New York: John Wiley & Sons, Inc., 2005.
    [2]周垂钦,祝清俊,段友臣,等.我国花生油产业发展现状与前景[J].中国油脂,2009,34(10):5-8.
    [3]中华人民共和国国家标准花生油(GB 1534-2003)[J].花生学报,2005,34(1):37-40.
    [4]何东平.浓香花生油制取技术[M].北京:中国轻工业出版社,2004.
    [5]吴道银,荣菊,冯子宪等.浓香花生油生产技术[J].粮食与油脂,2003,8:49-50.
    [6]侯汉学,张锦丽,董海洲等.影响浓香花生油质量的关键因素研究[J].食品科学,2004,25(11):171-172.
    [7]夏延斌.食品风味化学[M].北京:化学工业出版社,2008.
    [8] Wong J M, Bernhard R A. Effect of nitrogen source on pyrazine formation [J]. Journal of Agricultural and Food Chemistry, 1988, 36:123-129.
    [9] Parliament T H, Morello M J, McGorrin R J. Thermal generated flavors: Maillard, microwave, and extrusion processes [M]. Washington, DC: ACS Publications, 1992.
    [10] Heath H B, Reineccius G. Flavor chemistry and technology [M]. Westport, Connecticut: Avi Publication Company, Inc., 1986.
    [11] Eriksson. Maillard reactions in food: chemical, physiological and technological aspects [M]. Oxford, U.K.: Pergamon Press Ltd., 1981.
    [12] Waller G R, Feather M S. The maillard reaction in foods and nutrition [M]. Washington, DC: ACS Publications, 1983.
    [13] Fujimaki M, Namiki M, Kato H. Amino-carbonyl reactions in food and biological systems [M]. Tokyo: Kodansha Ltd., 1986.
    [14] Richardson T, Finley J W. Chemical changes in food during processing [M]. Westport, Connecticut: Avi Publication Company, Inc., 1985.
    [15] Obretenov T, Vernin G. Melanoidins in the maillard reaction [J]. Food flavors: Formation, Analysis and Packaging Influences. 1998, 455-482.
    [16]吴松,秦军.Maillard反应的机理研究[J].贵州工业大学学报(自然科学版),2005,34(4):17-20.
    [17] Maga J A. Pyrazine update [J]. Food Reviews International, 1992, 8(4):479-558.
    [18] Nikiforov A, Knapp M, Buchbauer G, et al. Zur Bestimmung der dominierenden Geruchskomponenten von steirishern Kürbiskern?il [J]. Ern?hrung/Nutrition, 1996, 20:607-611.
    [19] Buchbauer G, Boucek B, Nikiforov A. On the aroma of Australian pumpkin seed oil: correlation of analytical data with olfactoric characteristics [J]. Ern?hrung/Nutrition, 1998, 22:246-249.
    [20]张鑫,薛毅,苏运东等.浓香花生小磨油的工艺研究与香气成分分析[J].食品科学,1999,4:32-34.
    [21]顾黎.花生油中脂肪酸组成的气相色谱-质谱分析[J].林区教学.2007,119(2):124-125.
    [22]李丹华,朱圣陶.气相色谱法测定常见植物油中脂肪酸[J].粮食与油脂,2006,8:46-48.
    [23] Kamal-Eldin A. Lipid oxidation pathways [M]. Champaign, Illinois: AOCS, 2003.
    [24] Frankel E N, Selke E, Neff W E, et al. Autoxidation of polyunsaturated triacylglycerols. IV. Volatile decomposition products from triacylglycerols containing linoleate and linolenate [J]. Lipids, 1992, 27(6):442-446.
    [25] Frankel E N. Rencent advances in lipid oxidation [J]. Journal of the Science of Food and Agriculture, 1991, 54:495-511.
    [26] Siegmund B, Murkovic M. Changes in chemical composition of pumpkin seeds during the roasting process for production of pumpkin seed oil (Part 2: volatile compounds) [J]. Food Chemistry, 2004, 84:367-374.
    [27] Guth H, Grosch W. Deterioration of soy-bean oil: quantification of primary flavour compounds using a stable isotope dilution assay [J]. Lebensmittel-Wissenschaft and Technologie, 1990, 23:59-65.
    [28] VranováJ, CiesarováZ. Furan in food- a review [J]. Czech Journal of Food Sciences, 2009, 27(1):1-10.
    [29] Crews C, Castle L. A review of the occurrence, formation and analysis of furan in heat-processed foods [J]. Trends in Food Science and Technology, 2007, 18(7):365-372.
    [30] Yaylayan V A. Precursors, formation and determination of furan in food [J]. Journal of Consumer Protection and Food Safety, 2006, 1:5-9.
    [31]谢明勇,黄军根,聂少平.热加工食品中呋喃的研究进展[J].食品与生物技术学报,2010,29(1):1-8.
    [32] Frankel E N. Volatile lipid oxidation products [J]. Progress in Lipid Research, 1982, 22:1-33.
    [33] Mottram D S. Flavour formation in meat and meat products: a review [J]. Food Chemistry, 1998, 62(4): 415-424.
    [34] Servili M, Esposto S, Fabiani R, et al. Phenolic compounds in olive oil: antioxidant, health and organoleptic activities according to their chemical structure [J]. Inflammopharmacology, 2009, 17:76-84.
    [35] Sánchez C S, Troncoso González A M, García-Parrilla M C. Different radical scavenging tests in virgin olive oil and their relation to the total phenol content [J]. Analytica Chimica Acta, 2007, 593:103-107.
    [36] Yen G C. Influence of seed roasting process on the changes in composition and quality of sesame (Sesame indicum) oil [J]. Journal of the Science of Food and Agriculture, 1990, 50(4):563-570.
    [37] Yoshida H, Takagi S. Effects of seed roasting temperature and time on the quality characteristics of sesame oil [J]. Journal of the Science of Food and Agriculture, 1997, 75:19-26.
    [38] Fukuda Y, Nagata M, Osawa T, et al. Contribution of lignan analoguest to antioxidant activity of refined unroasted sesame seed oil [J]. Journal of the American Oil Chemists’Society, 63(8):1027-1031.
    [39] Yen G C, Shyu S L. Oxidative stability of sesame oil prepared from sesame seed with different roasting temperatures [J]. Food Chemistry, 1989, 31:215-224.
    [40] Koizumi Y, Fukuda Y, Namiki M. Marked antioxidative activity of seed oils developed by roasting of oil sesame seeds [J]. Nippon Shokuhin Kagaku Kogaku Kaishi, 1996, 43:689-694.
    [41] Mohamed H M A, Awatif I I. The use of sesame oil unsaponifiable matter as a natural antioxidant [J]. Food chemistry, 1998, 62(3):269-276.
    [42] Fukuda Y, Koizumi Y, Ito R, et al. Synergistic action of the antioxidative components in roasted sesame seed oil [J]. Nippon Shokuhin Kagaku Kogaku Kaishi, 1996, 43(12):1272-1277.
    [43] Jung M Y, Bock J Y, Back S O, et al. Pyrazine contents and oxidative stabilities of roasted soybean oils [J]. Food Chemistry, 1997, 60(1):95-102.
    [44]徐清萍.食品类黑精的功能、结构及制备研究进展[J].中国酿造,2008,22:13-15.
    [45] Summa C, Raposo F C, McCourt J, et al. Effect of roasting on the radical scavenging activity of cocoa beans [J]. European Food Research and Technology, 2006, 222:368-375.
    [46] Xu Q, Tao W, Ao Z. Antioxidant activity of vinegar melanoidins [J]. Food Chemistry, 2007, 102:841-849.
    [47] Borrelli R C, Visconti A, Mennella C, et al. Chemical characterization and antioxidant properties of coffee melanoidins [J]. Journal of Agricultural and Food Chemistry, 2002, 50:6527-6533.
    [48] Ames J M. EU COST action 919 melanoidins in food and health [J]. International Congress Series, 2002, 1245:389-390.
    [49] Didzbalis J, Ritter K A, Trail A C, et al. Identification of fruity/fermented odorants in high-temperature-cured roasted peanuts [J]. Journal of Agricultural and Food Chemistry, 2004, 52(15):4828-4833.
    [50] Hui Y H. Handbook of fruit and vegetable flavors [M]. 1st ed. New York: John Wiley & Sons, Inc., 2010.
    [51] Mason M E and Johnson B. Flavor components of roasted peanuts. Some low molecular weight pyrazines and a pyrrole [J]. Journal of Agricultural and Food Chemistry, 1966, 14:454-460.
    [52] Mason ME, Johnson B, Hamming M C. Volatile components of roasted peanuts. Major monocarbonyls and some noncarbonyl components [J]. Journal of Agricultural and Food Chemistry, 1967, 15(1):66-73.
    [53] Walradt J P, Pittet A O, Kinlin T E, et al. Volatile components of roasted peanuts [J]. Journal of Agricultural and Food Chemistry, 1971, 19:972-979.
    [54] Van Straten S. Volatile compounds in food [M]. 4th ed. Zeist: Central Institute for Nutrition and Food Research TNO, 1997.
    [55] Ho C T, Lee M H, Chang S S. Isolation and identification of volatile compounds from roasted peanuts [J]. Journal of Food Science, 1981, 47:127-133.
    [56] Teranishi R, Barrera-Benitez H. Quality of selected fruits and vegetables of North America [M]. 1st ed. Washington: ACS Publications, 1981.
    [57] Leunissen M, Davidson V J, Kakuda Y. Analysis of volatile flavor components in roastedpeanuts using supercritical fluid extraction and gas chromatography-mass spectrometry [J]. Journal of Agricultural and Food Chemistry, 1996, 44:2694-2699.
    [58] Baker G L. Flavor formation and sensory perception of selected peanut genotypes (Arachis Hypogea L.) as affected by storage water activity, roasting, and planting date [D]:[dissertation]. Gainesville, Florida: University of Florida, 2002.
    [59] Newell J A, Mason M E, Matlock R S. Precursors of typical and atypical roasted peanut flavor [J]. Journal of Agricultural and Food Chemistry, 1967, 15(5):767-772.
    [60] Buckholz L L, Daun H, Stier E, et al. Influence of roasting time on sensory attributes of fresh roasted peanuts [J]. Journal of Agricultural and Food Chemistry, 1980, 45:547-554.
    [61]张春红,王丽,李淑荣等.烘烤花生仁、花生粕和花生壳中挥发性物质的研究[J].食品科技,2009,34(1):32-36.
    [62]李淑荣,王丽,张春红等.烘烤花生中关键香味化合物的研究[J].中国农业科学,2010,43(15):3199-3203.
    [63] Chung T Y, Eiserich J P, Shibamoto T. Volatile compounds identified in headspace samples of peanut oil heated under temperatures ranging from 50-200℃[J]. Journal of Agricultural and Food Chemistry, 1993, 41:1467-1470.
    [64] Lee S H, Joo K J. Analysis of volatile flavor compounds in sesame oil extracted by purge and trap method [J]. Korean Journal of Food Science and Technology, 1998, 30:260-265.
    [65] Nakamura S, Nishimura O, Masuda H, et al. Identification of volatile flavor components of the oil from roasted sesame seeds [J]. Agricultural and Biological Chemistry, 1989, 53:1891-1899.
    [66] Lee Y G, Lim S U, Kim J O. Influence of roasting conditions for the flavor quality of sesame seed oil [J]. Journal of the Korean Agricultural Chemical Society, 1993, 36(6):407-415.
    [67]谢建春.现代香味分析技术及应用[M].北京:中国标准出版社,2008.
    [68] Fabio A, Alexandre L, Claudia A Z. Sampling and sample preparation for analysis of aromas and fragrances [J]. Trends in Analytical Chemistry, 2003, 22(3):160-169.
    [69]郭凯,芮汉明.食品中挥发性风味成分的分离、分析技术和评价方法研究进展[J].食品与发酵工业,2007,33(4):110-115.
    [70]廖劲松,张水华.食品风味物质的分离研究进展与应用[J].食品工业科技,2003,24(8):106-108.
    [71] Kataoka H, Lord H L, Pawliszyn J. Applications of solid-phase microextraction in food analysis [J]. Journal of Chromatography A, 2000, 880:35-62.
    [72] Yang X, Peppard T. Solid-phase microextraction for flavor analysis [J]. Journal of Agricultural and Food Chemistry, 1994, 42(9):1925-1930.
    [73]黄永辉,钟海雁,李忠海.固相微萃取及其在食用植物油香气研究中的应用[J].食品研究与开发,2006,27(8):192-196.
    [74] Vichi S, Pizzale L, Conte L S, et al. Simultaneous determination of volatile and semi-volatile aromatic hydrocarbons in virgin olive oil by headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry [J]. Journal ofChromatography A, 2005, 1090:146-154.
    [75] Jiménez A, Aguilera M P, Beltrán G, et al. Application of solid-phase microextraction to virgin olive oil quality-control [J]. Journal of Chromatography A, 2006, 1121:140-144.
    [76] Doleschall F, Kemény Z, Recseg K, et al. A new analytical method to monitor lipid peroxidation during bleaching [J]. European Journal of Lipid Science and Technology, 2002, 104:14-18.
    [77] JeleńH H, Obuchowska M, Zawirska-Wojtasiak R, et al. Headspace solid-phase microextaction use for the characterization of volatile compounds in vegetable oils of different sensory quality [J]. Journal of Agricultural and Food Chemistry, 2000, 48:2360-2367.
    [78]蓝芳,谢丽琪,杨左军,等.顶空固相微萃取-气相色谱法测定油脂中浸出油溶剂残留的方法研究[J].分析试验室,2004,23(4):70-72.
    [79] Zellner B A, Dugo P, Dugo G, et al. Gas chromatography-olfactometry in food flavor analysis [J]. Journal of Chromatography A, 2008, 1186:123-143.
    [80] Ruth S M. Methods for gas chromatography-olfactometry: a review [J]. Journal of Chromatography A, 2001, 17:121-128.
    [81] Kim T H, Lee S M, Kim Y S, et al. Aroma dilution method using GC injector split ratio for volatile compounds extracted by headspace solid phase microextraction [J]. Food Chemistry, 2003, 83:151-158.
    [82] Ruth S M. Evaluation of two gas chromatography-olfactometry methods: the detection frequency and perceived intensity method [J]. Journal of Chromatography A, 2004, 1054:33-37.
    [83] Ruth S M, O’Connor C H. Evaluation of three gas chromatography-olfactometry methods: comparison of odour intensity-concentration relationships of eight volatile compounds with sensory headspace data [J]. Food Chemistry, 2001, 74:341-347.
    [84] Reiners J, Grosch W. Odorants of virgin olive oils with different flavor profiles [J]. Journal of Agricultural and Food Chemistry, 1998, 46(7):2754-2763.
    [85] van Ruth S M, Shaker E S, Morrissey P A. Influence of methanolic extracts of soybean seeds and soybean oil on lipid oxidation in linseed oil [J]. Food Chemistry, 2001, 75(2):177-184(8).
    [86] Lin J, Rouseff R L. Characterization of aroma-impact compounds in cold-pressed grapefruit oil using time-intensity GC-O and GC-MS [J]. Flavor Fragrance Journal, 2001, 16(6):457-463.
    [87] Hartvigsen K, Lund P, Hansen L, et al. Dynamic headspace gas chromatography/mass spectrometry characterization of volatiles produced in fish oil enriched mayonnaise during storage [J]. Journal of Agricultural and Food Chemistry, 2000, 48:4858-4867.
    [88] Peris M, Escuder-Gilabert L. A 21st century technique for food control: electronic noses [J]. Analytica Chimica Acta, 2009, 638:1-15.
    [89]王平,陈裕泉,吴坚等.人工嗅觉——电子鼻的研究[J].中国生物医学工程学报,1996,15(4):346-353.
    [90]周亦斌,王俊.电子鼻在食品感官检测中的应用进展[J].食品与发酵工业,2004,30(2):129-132.
    [91] Datale C D, Macagnano A, Davide F, et al. An electronic nose for food analysis [J]. Sensors and Actuators B, 1997, 44:521-526.
    [92] Bartlett P N, Elliott J M, Gardner J W. Electronic noses and their application in the food industry [J]. Food Technology, 1997, 51(12):44-48.
    [93] Schaller E, Bosset J O, Escher F.‘Electronic noses’and their application to food [J]. Lebensmittel-Wissenschaft und-Technologie, 1998, 31(4):305-316.
    [94] Shen N, Moizuddin S, Wilson L, et al. Relationship of electronic nose analyses and sensory evaluation of vegetable oils during storage [J]. JAOCS, 2001, 78(9):937-940.
    [95] Cosio M S, Ballabio D, Benedetti S, et al. Evaluation of different storage conditions of extra virgin olive oils with an innovative recognition tool built by means of electronic nose and electronic tongue [J]. Food Chemistry, 2007, 101:485-491.
    [96] Aparicio R, Rocha S M, Delgadillo I, et al. Detection of rancid defect in virgin olive oil by the electronic nose [J]. Journal of Agricultural and Food Chemistry, 2000, 48:853-860.
    [97]海铮,王俊.基于电子鼻山茶油芝麻油掺假的检测研究[J].中国粮油学报,2006,21(3):192-197.
    [98]楼飞,刘源,孙晓红等.花生酱挥发性风味成分的鉴定[J].食品科学,2009, 30(24): 393-396.
    [1] Hiroyuki Kataoka, Heather L. Lord, Janusz Pawliszyn. Applications of solid-phase microextraction in food analysis[J]. Journal of Chromatography A, 2000, 880:35-62.
    [2]黄永辉,钟海雁,李忠海.固相微萃取及其在食用植物油香气研究中的应用[J].食品研究与开发,2006,27(8):192-196.
    [3] Stefania Vichi, Lorena Pizzale, Lanfranco S. Conte, et al. Simultaneous determination of volatile and semi-volatile aromatic hydrocarbons in virgin olive oil by headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry[J]. Journal of Chromatography A, 2005, 1090:146-154.
    [4] Antonio Jiménez, Maria P. Aguilera, Gabriel Beltrán, et al. Application of solid-phase microextraction to virgin olive oil quality-control[J]. Journal of chromatography A, 2006, 1121:140-144.
    [5] Fruzsina Doleschall, Zsolt Kemény, Katalin Recseg, et al. A new analytical method to monitor lipid peroxidation during bleaching[J]. Eur. J. Lipid Sci. Technol. 2002, 104:14-18.
    [6]蓝芳,谢丽琪,杨左军,等.顶空固相微萃取-气相色谱法测定油脂中浸出油溶剂残留的方法研究[J].分析试验室,2004,23(4):70-72.
    [7]傅彦斌.固相微萃取分析条件的优化[J].干旱环境监测.2006,20(1):49-51.
    [8]张影陆,范文来,姜文广等.顶空固相微萃取法测定果酒中的挥发性成分[J].食品与生物技术学报,2008,27(6):115-120.
    [9]谢建春.现代香味分析技术及应用[M].北京:中国标准出版社,2008.
    [10]党亚丽.金华火腿和巴马火腿风味的研究[D]:[博士论文].江苏无锡:江南大学,2009.
    [11] Yang X, Peppard T. Solid-phase microextraction for flavor analysis [J]. Journal of Agricultural and Food Chemistry, 1994, 42(9):1925-1930.
    [12]马传国,梁少华,王建国,田华达等.浓香花生油特殊脱胶工艺的研究[J].中国油脂.2000, 25(5):5-6.
    [13]谢建春,孙宝国,刘玉平等.固相微萃取在食品香味分析中的应用[J].食品科学,2003,24(8): 229-233.
    [14]张岚,李连元,李淑敏等.固相微萃取检验技术应用及影响因素分析[J].中国公共卫生,2005,21(6):746-747.
    [15]田怀香,王璋,许时婴.顶空固相微萃取-气相色谱-质谱法分离鉴定金华火腿的挥发性风味物质[J].色谱,2006,24(2):177-180.
    [16]杨科峰,厉曙光,蔡智鸣.食用油及其加热产物中酞酸酯类增塑剂的分析[J].环境与职业医学, 2002,19(1):37-39.
    [17] Ho C T, Lee M H, Chang S S. Isolation and identification of volatile compounds from roasted peanuts [J]. Journal of Food Science, 1981, 47:127-133.
    [18] Teranishi R, Barrera-Benitez H. Quality of selected fruits and vegetables of North America [M]. 1st ed. Washington: ACS Publications, 1981.
    [19] Baker G L. Flavor formation and sensory perception of selected peanut genotypes(Arachis Hypogea L.) as affected by storage water activity, roasting, and planting date [D]:[dissertation]. Gainesville, Florida: University of Florida, 2002.
    [20] Parliament T H, Morello M J, McGorrin R J. Thermal generated flavors: Maillard, microwave, and extrusion processes [M]. Washington, DC: ACS Publications, 1992.
    [21] Fereidoon S. Baileys industrial oil and fat products [M]. 6th ed. New York: John Wiley & Sons, Inc., 2005.
    [22] Maga J A, Sizer C E. Pyrazines in foods. A Review [J]. Journal of Agricultural and Food Chemistry, 1973, 21(1):22-30.
    [23] Johnson B R, Waller G R, Burlingame A L. Volatile components of roasted peanuts: basic fraction [J]. Journal of Agricultural and Food Chemistry, 1971, 19(5): 1020-1024.
    [24] Mason M E and Johnson B. Flavor components of roasted peanuts. Some low molecular weight pyrazines and a pyrrole [J]. Journal of Agricultural and Food Chemistry, 1966, 14:454-460.
    [25] Walradt J P, Pittet A O, Kinlin T E, et al. Volatile components of roasted peanuts [J]. Journal of Agricultural and Food Chemistry, 1971, 19:972-979.
    [1] Osada Y, Shibamoto T. Antioxidative activity of volatile extracts from Maillard model systems [J]. Food Chemistry, 2006, 98:522-528.
    [2] Zhang Y, Li X, Lo C K, et al. Characterization of the volatile substances and aroma components from traditional soypaste [J]. Molecules, 2010, 15:3421-3427.
    [3] Mahajan S S, Goddik L, Qian M C. Aroma compounds in sweet whey powder [J]. Journal of Dairy Science, 2004, 87:4057-4063.
    [4] Chung T Y, Eiserich J P, Shibamoto T. Volatile compounds identified in headspace samples of peanut oil heated under temperatures ranging from 50 to 200°C [J]. Journal of Agricultural and Food Chemistry, 1993, 41:1467-1470.
    [5] Mason M E and Johnson B. Flavor components of roasted peanuts. Some low molecular weight pyrazines and a pyrrole [J]. Journal of Agricultural and Food Chemistry, 1966, 14:454-460.
    [6] Walradt J P, Pittet A O, Kinlin T E, et al. Volatile components of roasted peanuts [J]. Journal of Agricultural and Food Chemistry, 1971, 19:972-979.
    [7] Ho C T, Lee M H, Chang S S. Isolation and identification of volatile compounds from roasted peanuts [J]. Journal of Food Science, 1981, 47:127-133.
    [8] Baker G L, Cornell J A, Gorbet D W, et al. Determination of pyrazine and flavor variations in peanut genotypes during roasting [J]. Journal of Food Science, 2003, 68:394-400.
    [9] Ho C W, Wan Aida W M, Maskat M Y, et al. Changes in volatile compounds of palm sap (Arenga pinnata) during the heating process for production of palm sugar [J]. Food Chemistry, 2007, 102:1156-1162.
    [10] Flament I. Coffee flavor chemistry [M]. Chichester, U.K.: John Wiley & Sons, Ltd., 2002.
    [11] Schieberle P. Primary odorants in popcorn [J]. Journal of Agricultural and Food Chemistry, 1991, 39:1141-1144.
    [12] Kato H, Doi Y, Tsugita T, et al. Changes in volatile flavour components of soybeans during roasting [J]. Food Chemistry, 1981, 7:87-94.
    [13] Jung M Y, Bock J Y, Baik S O, et al. Effect of roasting on pyrazine contents and oxidative stability of red pepper seed oil prior to its extraction [J]. Journal of Agricultural and Food Chemistry, 1999, 47:1700-1704.
    [14] Jayalekshmy A, Narayanan C S, Mathew A G. Identification of Volatile Flavor Compounds in Roasted Coconut [J]. Journal of the American Oil Chemists’Society, 1991, 68(11):873-880.
    [15] Maga J A, Sizer C E. Pyrazines in foods. A Review [J]. Journal of Agricultural and Food Chemistry, 1973, 21(1): 22-30.
    [16] Waller G R, Feather M S. The Maillard Reaction in Foods and Nutrition [M]. Washington, DC, USA: American chemical society, 1983.
    [17] Parliment T H, Morello M J, McGorrin R J. Thermally Generated Flavors: Maillard, Microwave, and Extrusion Processes [M]. Washington, DC, USA: American chemical society,1994.
    [18] Maga J A. Pyraines update [J]. Food Reviews International, 1992, 8(4):479-558.
    [19] Siegmund B, Murkovic M. Changes in chemical composition of pumpkin seeds during the roasting process for production of pumpkin seed oil (Part 2: volatile compounds) [J]. Food Chemistry, 2004, 84:367-374.
    [20] VranováJ, CiesarováZ. Furan in food- a review [J]. Czech Journal of Food Science, 2009, 27(1):1-10.
    [21] Maga J A, Katz I. Furans in foods [J]. Critical Reviews in Food Science, 1979, 11(4):355-400.
    [22] Eriksson C. Maillard reactions in food. Chemical, physiological and technological aspects [M]. Great Britain: Pergamon Press, 1981.
    [23] Shahidi F. Bailey’s industrial oil and fat products [M]. New Jersey: John Wiley & Sons, Inc., 2005.
    [24] Kalua C M, Allen M S, Bedgood Jr D R, et al. Olive oil volatile compounds, flavour development and quality: A critical review [J]. Food Chemistry, 2007, 100:273-286.
    [25] Shahidi F, Pegg R B. Hexanal as an indicator of meat flavor deterioration [J]. Journal of Food Lipids, 1994, 1:177-186.
    [26] Ullrich F, Grosch W. Identification of the most intense volatile flavor compounds formed during autoxidation of linoleic acid [J]. Z Lebensm Unters Forsch, 1987, 184(4):277-282.
    [27] Ullrich F, Grosch W. Flavour deterioration of soya-bean oil: identification of intense odour compounds formed during flavour reversion [J]. European Journal of Lipid Science and Technology, 1988, 90(9):332-336.
    [28] Cliff M, Yuksel D, Girard B, et al. Characterization of canadian ice wines by sensory and compositional analyses [J]. American Journal of Enology and Viticulture, 2002, 53(1):46-53.
    [29]海铮,王俊.电子鼻信号特征提取与传感器优化的研究[J].传感技术学报,2006,19(3):606-610.
    [30] Gómez A H, Hu G, Wang J, et al. Evaluation of tomato maturity by electronic nose [J]. Computers and Electronics in Agriculture, 2006, 54:44-52.
    [31] Newell J A, Mason M E, Matlock R S. Precursors of typical and atypical roasted peanut flavor [J]. Journal of Agricultural and Food Chemistry, 1967, 15(5):767-772.
    [32]邹凤,于炟,金青哲等.花生粕蛋白酶解液与还原糖共热发生美拉德反应产生浓香花生油风味物的工艺研究[J].粮油加工,2010,12:24-28.
    [1]何东平.浓香花生油制取技术[M].北京:中国轻工业出版社,2004.
    [2] Yen G C. Influence of seed roasting process on the changes in composition and quality of sesame (Sesame indicum) oil [J]. Journal of the Science of Food and Agriculture, 1990, 50(4):563-570.
    [3] Yoshida H, Takagi S. Effects of seed roasting temperature and time on the quality characteristics of sesame oil [J]. Journal of the Science of Food and Agriculture, 1997, 75:19-26.
    [4] Fukuda Y, Nagata M, Osawa T, et al. Contribution of lignan analoguest to antioxidant activity of refined unroasted sesame seed oil [J]. Journal of the American Oil Chemists’Society, 63(8):1027-1031.
    [5] Yen G C, Shyu S L. Oxidative stability of sesame oil prepared from sesame seed with different roasting temperatures [J]. Food Chemistry, 1989, 31:215-224.
    [6] Koizumi Y, Fukuda Y, Namiki M. Marked antioxidative activity of seed oils developed by roasting of oil sesame seeds [J]. Nippon Shokuhin Kagaku Kogaku Kaishi, 1996, 43:689-694.
    [7] Mohamed H M A, Awatif I I. The use of sesame oil unsaponifiable matter as a natural antioxidant [J]. Food chemistry, 1998, 62(3):269-276.
    [8] Fukuda Y, Koizumi Y, Ito R, et al. Synergistic action of the antioxidative components in roasted sesame seed oil [J]. Nippon Shokuhin Kagaku Kogaku Kaishi, 1996, 43(12):1272-1277.
    [9] Gerde J, Hardy C, Fehr W, et al. Frying performance of no-trans, low-linolenic acid soybean oils [J]. JAOCS, 2007, 84:557-563.
    [10]宋志华,单良,王兴国.毛细管气相色谱法测定精炼和氢化大豆油中的反式脂肪酸[J].中国油脂,2006,31(12):37-39.
    [11] Giacometti J.橄榄油脂肪醇、角鲨烯、α-生育酚和甾醇的测定:不可皂化部分硅烷化处理后气相色谱分析[J].热带农业工程,2001,4:28-31.
    [12] Kiritsakis A, Kanavouras A, Kiritsakis K. Chemical analysis, quality control and packaging issues of olive oil [J]. European Journal of Lipid Science and Technology, 2002, 104: 628-638.
    [13] Schwarz K, Bertelsen G, Nissen L R, et al. Investigation of plant extracts for the protection of processed foods against lipid oxidation. Comparison of antioxidant assays based on radical scavenging, lipid oxidation and analysis of the principal antioxidant compounds [J]. European Food Research and Technology, 2001, 212:319-328.
    [14] Pokorny J, Yanishlieva N, Gordon M. Antioxidants in Food: Practical Applications [M]. Woodhead Publishing, Ltd., Cambridge, England, 2001.
    [15] Canizares-Macias M P, Garcia-Mesa J A, Luque de Castro M D. Determination of the oxidative stability of olive oil, using focused-microwave energy to accelerate the oxidation process [J]. Analytical and Bioanalytical Chemistry, 2004, 378:479-483.
    [16] Tan C P, Che-Man Y B, Selamat J, et al. Comparative studies of oxidative stability ofedible oils by differential scanning calorimetry and oxidative stability index methods [J]. Food Chemistry, 2002, 76:385-389.
    [17] León K, Mery D, Pedreschi F, et al. Color measurement in L*a*b* units from RGB digital images [J]. Food Research International, 2006, 39:1084-1091.
    [18] Yen G C. Influence of seed roasting process on the changes in composition and quality of sesame (Sesame indicum) oil [J]. Journal of the Science of Food and Agriculture, 1990, 50:563-570.
    [19]中华人民共和国国家标准花生油(GB 1534-2003)[J].花生学报,2005,34(1):37-40.
    [20]穆昭.煎炸油加热过程品质变化与评价[D]:[硕士论文].无锡:江南大学食品学院,2008.
    [21]孙永风,李立勇,武明宇.维生素E营养研究进展[J].现代农业科技,2007,23:209-210.
    [22] Codex Alimentarius Commission, Joint FAO/WHO Food Standards Programme, Codex Alimentarius. Vol.8-Fats, Oil and Related Products [D]. 2nd ed. Codex Stan 210-1999, Rome, Italy.
    [23] Zawistowski J,胡春,Kitts D D.植物甾醇和植物甾烷醇:来源、安全性以及在保健食品中的应用[J].中国食品学报,2002,2(2):48-56.
    [24] Seher A. Cholesterol content of vegetable oils [J]. Fett Wissenschaft Technologie, 1987, 89(1):27-30.
    [25] Fereidoon S. Bailey’s industrial oil and fat products [M]. 6th ed. New York: John Wiley & Sons, Inc., 2005.
    [26]穆同娜,张惠,景全荣.油脂的氧化机理及天然抗氧化物的简介[J].食品科学,2004,25:241-244.
    [27] Murkovic M, Piironen V, Lampi A M, et al. Changes in chemical composition of pumpkin seeds during the roasting process for production of pumpkin seed oil (Part 1: non-volatile compounds) [J]. Food Chemistry, 2004, 84:359-365.
    [28] López-Galilea I, Andueza S, Leonardo I, et al. Influence of torrefacto roast on antioxidant and pro-oxidant activity of coffee [J]. Food chemistry,2006,94:75-80.
    [29] Steinhart H, Luger A, Piost J. Antioxidative effect of coffee melanoidins [J]. Proceedings of the 19th Colloquium ASIC, Trieste, in CD.
    [1] Hebash K A, Fadel H H M. Changes in oil and potato chips during frying [J]. Die Nahrung, 1994, 38(3):278-282.
    [2] Tyagi V K, Vasishtha A K. Changes in the characteristics and composition of oils during deep-fat frying [J]. JAOCS, 1996, 73:499-506.
    [3] Wagner R, Grosch W. Evaluation of potent odorants of French fries [J]. Lebensmittel-Wissenschaft und-Technologie, 1997, 30:164-169.
    [4]陈媛,陈智斌,张立伟.食用油脂安全性及对人体健康的影响[J].西部粮油科技,2001,26(2):42-45.
    [5]徐学兵.油脂化学[M].北京:中国商业出版社,1993.
    [6]侯佩强,胡作林.长期使用的煎炸油对人体淋巴细胞的影响[J].山东食品科技,2000(3):20-23.
    [7] Fereidoon S. Bailey’s industrial oil and fat products [M]. 6th ed. New York: John Wiley & Sons, Inc., 2005.
    [8]穆昭.煎炸油加热过程品质变化与评价[D]:[硕士论文].无锡:江南大学食品学院,2008.
    [9] Kamal-Eldin A, Marquez-Ruiz G, Dobarganes C. Characterisation of aldehydic acids in used and unused frying oils [J]. Journal of Chromatography A, 1997, 776 (3):245-254.
    [10] Dobson G, Christie W W, Sebedio J L. Saturated bicyclic fatty acids formed in heated sunflower oils [J]. Chemistry and Physics of Lipids, 1997, 87 (5):137-147.
    [11] Ho C T, Hartman T G. Lipids in food flavors [M]. Washington D.C., USA: American Chemical Society, 1994.
    [12] Rossi M, Alamprese C, Ratti S. Tocopherols and tocotrienols as free radical-scavengers in refined vegetable oils and their stability during deep-fat frying [J]. Food Chemistry .2007, 102(7): 812–817.
    [13] Tompkins C, Perkins E G. The evaluation of frying oils with the p-anisidine value [J]. JAOCS, 1999, 76(8): 945–947.
    [14] Fujisaki M, Endo Y, and Fujimoto K. Retardation of volatile aldehyde formation in the exhaust of frying oil by heating under low oxygen atmospheres [J]. JAOCS, 2002, 79 (9): 909–914.
    [15] Sahin S, Sastry S K, Bayindirli L.The determination of convective heat transfer coefficient during frying [J]. Journal of Food Engineering, 1999, 39(11):307-311.
    [16] Krokida M K, Oreopoulou V, Maroulis Z B. Water loss and oil uptake as a function of frying time [J].Journal of Food Engineering, 2000, 44(11):39-46.
    [17] Sosa-Morales M E, Orzuna-Espiritu R, Velez-Ruiz J F. Mass, thermal and quality aspects of deep-fat frying of pork meat [J]. Journal of Food Engineering, 2006, 77(10):731-738.
    [18] Tangduangdee C, Bhumiratana S, Tia S. The role of moisture movement and crust thermal property on heat and mass transfer process during deep-fat frying [J]. Comm. Heat Mass Transfer, 2004, 31(1):73-84.
    [19] Costa R M, Oliveira F A R. Modelling the kinetics of water loss during potato fryingwith a compartmental dynamic model. Journal of Food Engineering, 1999, 41(5):177-185.
    [20] Sahin S, Sastry S K, Bayindirli L. The determination of convective heat transfer coefficient during frying [J].Journal of Food Engineering, 1999, 39(11):307-311.
    [21] Ufheil G, Escher F. Dynamics of oil uptake during deep-fat frying of potato slices [J]. Lebensmittel-Wissenschaft and Technologie, 1996, 29(11):640-644.
    [22] Mai Tran T T, Chen X D. Reducing oil content of fried potato crisps considerably using a sweet pre-treatment technique [J]. Journal of Food Engineering, 2007, 80(9):719-726.
    [23] Kumar A, Singh R R B, Patel A A, Patil G R. Kinetics of color and texture changes in Gulabjamun balls during deep-fat frying [J]. Lebensmittel-Wissenschaft and Technologie, 2006, 39(7): 827-833.
    [24] Romero A, Cuesta C, Sanchez-Muniz J. Trans fatty acid production in deep fat frying of frozen foods with different oils and frying modalities [J]. Nutrition Research, 2000, 20(4):599-608.
    [25] Hu F B, Stampfer M J, Manson J E, et al. Dietary fat intake and the risk of coronary heart disease in women [J]. Journal of Medicine, 1997, 337:1491-1499.
    [26] Salmeron J, Hu F B. Dietary fat intake and risk of typeⅡdiabetes in women [J]. The American Journal of Clinical Nutrition, 2001, 73:1019-1026.
    [27] Carlson S E, Clandinin M T. Trans fatty acids: infant and fetal development [J]. The American Journal of Clinical Nutrition, 1997, 66:715-736.
    [28]穆同娜,张惠,景全荣.油脂的氧化机理及天然抗氧化物的简介[J].食品科学,2004,25:241-244.
    [29] Holownia K I, Erickson M C, Chinnan M S, et al. Tocopherol losses in peanut oil during pressure frying of marinated chicken strips coated with edible films [J]. Food Research International, 2001, 34:77-80.
    [30]李良,王鉴,祝宝东,等.生育酚的高效抗氧化性及其应用[J].四川化工,2006,9(4):16-19.
    [31] Ho C T, Smagula M S, Chang S S. The synthesis of 2-(1-pentenyl) furan and its relationship to the reversion flavor of soybean oil [J]. JAOCS, 1978, 55:233.
    [32] Frenkel E N. Volatile lipid oxidation products [J]. Progress in Lipid Research, 1982, 22:1-33.
    [33] Ho C T, Zhang Y, Shi H, et al. Flavor chemistry of Chinese foods [J]. Food Reviews International, 1989, 5(3):253-287.
    [34] Parliament T H, McGorrin R J, Ho C T. Thermal generation of aroma [M]. Washington D.C., USA: American Chemical Society, 1989.
    [35] Martens M, Dalen G A, Russwurm Jr. H. Flavor Science and Technology [M]. New York, USA: John Wiley & Sons, 1987.
    [36] Guth H, Grosch W. Deterioration of soy-bean oil: quantification of primary flavour compounds using a stable isotope dilution assay [J]. Lebensmittel-Wissenschaft and Technologie, 1990, 23:59-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700