改性Pd/C、Ru/C贵金属催化剂在丙二烯磷酸选择加氢中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷霉素是一种新型的广谱抗菌药,在我国的医药行业中占有重要地位。工业上以化学合成法进行生产,其中由丙二烯磷酸选择加氢生成丙烯磷酸是关键一步,多以Pd/C作为加氢催化剂。
     本论文对不同来源的三种活性炭进行预处理,并以其为载体制备了Ru/C催化剂;制备了Ru、Fe、Co、Ni改性的Pd/C催化剂,以期改善催化剂的性能;制备了Ru负载量不同的Ru/C催化剂和部分s区、d区和f区组分改性的Ru/C催化剂。制备的催化剂通过两个反应来评价其性能,一是用于磷霉素合成中的丙二烯磷酸选择加氢生成丙烯磷酸反应;二是用于丙酮常压加氢反应重,通过反应初活性来评价催化剂活化氢能力,该反应可以作为一个将催化剂用于其它加氢反应的参考。
     所制备的催化剂经过H_2-TPR表征,考察了活性组分的还原行为;H_2-TPD实验表征了催化剂表面吸附氢中心及数量,进行了XRD、XPS和BET比表面孔结构测定,以期得到催化剂表面结构和性能之间的关系。
     硝酸处理使活性炭表面含氧基团数量增加,增加了溢流氢的数量,提高了催化剂用于丙二烯磷酸选择加氢反应的转化率。
     Ru组分改性Pd/C催化剂,当Pd/Ru=3/1时,Pd晶粒适中,α活性中心数量多,催化剂用于丙二烯磷酸反应转化率最高,。
     Fe、Co组分改性Pd/C催化剂α活性中心数量减少,增加了一个中等强度的β活性中心,Pd基催化剂的H_2-TPD结果表明:α活性中心主要由Pd和Ru两者共同作用,β活性中心主要是Ru金属;α活性中心数量越多,用于丙二烯磷酸选择加氢反应转化率越高,活性组分分散度越高,用于丙酮常压加氢反应的初活性越高。
     改性Ru/C催化剂研究表明,s区和f区组分改性Ru/C催化剂用于丙二烯磷酸选择加氢反应转化率大部分高于Ru/C催化剂;d区组分改性Ru/C催化剂的转化率均低于Ru/C催化剂。Ba组分改性显著提高了Ru/C催化剂的α活性中心数量,用于丙二烯磷酸选择加氢反应转化率显著高于Ru/C催化剂。
Phosphonomycin is a new broad antibacterial whose antimicrobial spectrum is much broad. In the industry manufacture, phosphonomycin is obtained through chemical synthesis. One step is preparing from 1, 2-proprnyl-phosphonic acid with palladium supported on activated carbon to cis-1-propenyl acid.
    Thermal or chemical pretreatments were prepared before the Ru metal impregnation to introduce oxygen groups. Pd/C catalysts promoted by Ru, Fe, Co, Ni catalysts were prepared to improve the catalytic activity. Ru/C catalysts with different loading amount were prepared. Ru/C catalysts promoted by several metal components were prepared. The catalytic activity of the catalysts were appraised by the selective hydrogenation of 1,2-proprnyl-phosphonic acid to cis-1-propenyl acid and the acetone hydrogenation respectively.
    The catalysts have been characterized by H_2-TPR, H_2-TPD, XRD, XPS and BET in order to obtain the relation between the surface characterization and the catalytic activity.
    The H2-TPR and H2-TPD results showed that the surface oxygen groups and the spillover hydrogen increased after nitric acid treatment. This facilitated the conversion from 1,2-proprnyl-phosphonic acid to cis-1-propenyl acid.
    When Pd/Ru=3/1, Pd-Ru/C catalyst had the maximal hydrogenation activity. The results showed that the Pd crystal is moderate and there is a big amount of hydrogen in a adsorption center.
    Pd/C catalysts promoted by Fe, Co had two low-temperature peaks (first peak:α active center, second peak :β active center) .The hydrogen adsorbed on the a active center decreased. The results showed that the first peak was assigned to the hydrogen adsorbed on the Ru and Pd. The second peak was attributed to the hydrogen adsorbed on the Ru metal. As the hydrogen adsorbed on a active center increased, the conversion from 1, 2-proprnyl-phosphonic acid to cis-1-propenyl acid increased, so did the the acetone hydrogenation.
    The results showed that Ru/C promoted by components in s section and f section improved the conversion of the selective hydrogenation reaction, while Ru/C promoted by the components in d section had the lower conversion. Ru/C promoted by Ba markedly improved the hydrogen adsorbed on a active center and the
引文
[1] 张晓梅,杨一昆,卢军,闭光育,朱鹰.石油化学工业中的贵金属催化剂[J].贵金属,1998,19(2):54-58
    [2] 毛麒瑞.神通广大的铂族金属[J].中国资源综合利用,1999,4:35
    [3] 孙连霞,何庆瑜,胡延秀.选择性加氢催化剂评价方法的建立[J].石油炼制与化工,1999,30(6):44
    [4] Ukisu Y., Iimura S., Uchida R.. Catalytic dechlofination of polychlorinated biphenyls with carbon-supported noble metal catalysts under mild conditions[J]. Chemosphere, 1996, 33(8):1523-1530
    [5] 钱东强,余建民,刘时杰,杨正芬.贵金属的存在状态与溶解技术[J].贵金属,1997,1:40
    [6] 许成,黄智龙,刘丛强,翟世奎,李文博,管涛.铂族元素地球化学研究评述[J].地学边缘,2003(4):520
    [7] Ryashentseva M. A..Dehydrogenative properties of low percentage supported palladium-containing catalysts [J]. Org. Chem, 1995, 64(10), 1032-1050
    [8] 赵荣朝.Ru/C助剂在苯甲酸加氢过程中的特殊作用[J].石油与天然气化,2005,34(4):241-244
    [9] 李学礼,柳云骐,刘春英,崔敏,刘晨光.甲苯在Pd-Ir/USY-Al_2O_3催化剂上的加氢转化反应[J].催化学报,2005,26(2):96-100
    [10] 李浙齐,丁云杰,姜文凤.Pd-Ni/Al_2O_3催化剂上α-呋喃甲酸加氢反应研究[J].分子催化,2005,19(2):131-135
    [11] 阎克平.C_(2-4)烯烃选择加氢精制催化剂进展[J].现代化工.1999,19(3):11-13
    [12] 高荫本,章斌,关春梅,陈诵英.超细Pd/Al_2O_3催化剂及其对乙炔选择加氢催化性能研究[J].天然气化工,1996.21(5):14-18
    [13] 陈宏博,赵晓波,张淑芬,鲁薇薇.熊芳.碘化钾对Pd/C催化加氢制备4,4'-二氨基二苯乙烯??-2,2'-二磺酸反应的影响[J].精细石油化工,2004,4:13-15
    [14] 高建峰,徐春彦,王久芬,庄源益.用Pd-Cu-Pt/y-Al_2O_3催化剂还原水中的硝酸盐[J].催化学报,2004,25(11):869-872
    [15] 吴鹤麟,朱新宝。张金龙,陆长峰.钯系催化剂加氢反应及应用开发[J].化学工业与工程技术,2000.21(5):8-11
    [16] 吴跃东,郭海兵,万颖,王明辉,李和兴.Ru-B/SiO_2非晶态催化剂应用于液相葡萄糖加氢制山梨醇[J].催化学报,2004,25(7):533-536
    [17] 李万刚,石秋杰,谌伟庆.负载型Ru基催化剂用于丙酮常压气相加氢[J].分子催化,2004,18(6):404-408
    [18] 李福祥,孟鑫,吕志平,薛建伟,袁晓芳.Pd/C催化选择性加氢脱氯制备氯乙酸的研究[J].煤炭转化,2003,26(1):94-96
    [19] 徐平,徐云鹏,腾滕飞,胡胜,谭明伟,徐竹生,田志坚.固体强酸催化剂Pd/WO_3ZrO_2的制备及其对正庚烷异构化反应的催化性能[J].催化学报,2005,26(9):750-754
    [20] 储伟,张涛,魏强,孙孝英.载体预处理对贵金属铂系催化剂性质的影响[J].合成化学,2000(5):429
    [21] 祁彩霞,白庭芳,安立敦.双浸渍制备负载型钯催化剂[J].分子催化,1994(8):278-284
    [22] Seker E., Cavataio J., Gulari E., Lorpongpaiboon P., Osuwan S..Nitric oxide reduction by propene over silver/alumina and silver-gold/alumina catalysts: effect of preparation methods [J]. Applied Catalysis A, 1999, 183(1), 121-134
    [23] Wang Z., Liu Q.,Yu J., Wu T., Wang. G.. Surface structure and catalytic behavior of silica-supported copper catalysts prepared by impregnation and sol-gel methods [J]. Appl. Catal. A, 2003, 239:87
    [24] Nava R., Halachev T., Rodriguez R., Castano V. M.. Catalytic behavior of an aluminametal acetate nanohydrid [J]. Materials Research Innovations, 2006, 10(1):28-44
    [25] Feng S., Qinghua Z., Dongmei L., Youquan D..Silica- gel -confined ionic liquids: A new attempt for the development of supported nanoliquid catalysis [J]. Chemistry—A European Journal, 2005, 11 (18), 5279-5288
    [26] Rodolfo Z., Suzanne G., Claude R.H., Catherine L..Alternative Methods for the Preparation of Gold Nanoparticles Supported on TiO_2 [J]. Journal of Physical Chemistry B, 2002, 106 (31), 7634-7642
    [27] Hopkins P. D., Marshall C. L., Miller J. T., Raska L. B..Hexane cracking on clean zeolite surfaces [J]. Studies in Surface Science and Catalysis, 1988, 38:281-93
    [28] Hermans L. A. M., Geus J. W..Interaction of nickel ions with silica supports during deposition-precipitation [J]. Studies in Surface Science and Catalysis, 1979, 3:113-30[29] 刘金香,徐龙伢,陈巍,王清遐,李明.见:钟炳,孙予罕,郑小明,王建国编.第十届全国催化学术会议论文集.太原.2000年.山西科学技术出版社,2000
    [30] 安旭焕,张爱黎,孟庆民.Pd(O)/离子交换树脂催化下有机锡试剂与有机卤化物的偶联反应[J].沈阳化工.1999,28(2):19-20
    [31] 刘月英,傅锦坤,周朝晖,林种玉,李仁忠.微生物还原制备高分散度负载型钯催化剂[J].化学通报,2000.4:17
    [32] Bianchi C. L., Gotti E., Toscano L.. Preparation of Pd/C catalysts via ultrasound:a study of the metal distribution[J]. Ultrason. Sonochem., 1997, 4(4):317-320
    [33] 石军,王亚明.糠醛制呋喃用Pd/C催化剂的制备研究[J].郑州工业大学学报,1998,19(3):13-15
    [34] 曾宪春,孟家明.Pd/C催化剂SEM、EDS研究[J].电子显微学报,2000,19(1):60-63
    [35] Yuan Y. Zh., Asakura K., Wan H. L., Tsai K. R., Iwasawa Y.. Supported gold catalysts derived from gold complexes and as-precipitated metal hydroxides, highly active for low-temperature CO oxidation [J]. Chemistry Letters, 1996, 9:755-756
    [36] Okumura M., Haruta M..Preparation of supported gold catalysts by liquid-phase grafting of gold acethylacetonate for low-temperature oxidation of CO and of H_2 [J]. Chemistry Letters, 2000, 4:396-397
    [37] 吴世华,黄唯平,张守民,魏伟,张淑红,郑修成.溶剂化金属原子浸渍法制备高分散Au/TiO_2低温CO氧化催化剂,催化学报,2000,21(5):419-422
    [38] Mizukoshi Y., Fujimoto T., Nagata Y., Oshima R., Maeda Y..Characterization and Catalytic Activity of Core-Shell Structured Gold/Palladium Bimetallic Nanoparticles Synthesized by the Sonochemical Method[J]. Journal of Physical Chemistry B, 2000, 104(25): 6028-6032
    [39] Mizukoshi Y., Oshima R., Maeda Y., Nagata Y.. Preparation of Platinum Nanoparticles by Sonochemical Reduction of the Pt(Ⅱ) lon[J]. Langmuir, 1999, 15(8):2733-2737
    [40] Hart M. Y., Quek C. H..Photochemical Synthesis in Formamide and Room-Temperature Coulomb Staircase Behavior of Size-Controlled Gold Nanoparticles [J]. Langmuir, 2000, 16(2): 362-367
    [41] Jana N. R., Gearheart L., Murphy C. J.. Seeding growth for size control of 5-40 nm diameter gold nanoparticles [J]. Langmuir, 2001, 17(22):6782-6786
    [42] Liu S. Y., Weaver J. V. M., Save M., Armes S. P.. Synthesis of pH-Responsive Shell Cross-Linked Micelles and Their Use as Nanoreactors for the Preparation of Gold Nanoparticles[J]. Langrnuir, 2002, 18(22): 8350-8357
    [43] 赵宏宾,李安武,谷景华,盛世善,熊国兴.贵金属/陶瓷催化膜制备溶胶粒子表面修饰技术??[J].科学通报,1997,42(8):817-830
    [44] 易丽丽,国海光,唐浩东.贵金属纳米簇的独特性能及其制备方法[J].工业催化,2003.11(12):44-48
    [45] Hendlin D.. Phosphonomycin, a new antibiotic produced by strains of streptomyces[J]. Science (Washington, DC, United States). (1969), 166(3901): 122-123
    [46] Perales A., Martinez-Ripoll M., Fayos J., Von Carstenn-Lichterfelde C., Fernandez M..The absolute configuration of active and inactive fosfomycin [J]. Acta Crystallographica, Section B: Structural Crystallography and Crystal Chemistry, 1982, 38(10), 2763-2764
    [47] Inouye S., Niizato T., Komiya I., Yuda Y., Yamada Y..Mode of protective action of fosfomycin against dibekacin-induced nephrotoxicity in the dehydrated rats [J]. Journal of Pharmacobio-Dynamics, 1982, 5(12): 941-50
    [48] Smeyers Y. G., Hernandez-Laguna A., Carstenn-Lichteffelde V. C.. Quantum mechanical calculations useful for determining the mechanism of action of fosfomycin [J]. Journal of pharmaceutical sciences, 1983, 72 (9), :1011-1014
    [49] 陈筱津,包宇.磷霉素治疗儿童细菌性痢疾疗效评价[J].中国社区医师,2005,13(21):25
    [50] 张宇,磷霉素应用研究的新进展[J].中国抗生素杂志,1999,24(5):321-328
    [51] 石家骥,崔祸绵,葛猛.青霉菌立体选择性环氧化顺丙烯磷酸产生磷霉素[J].微生物学报,2001,(3):41
    [52] Edward J. G., George G., Robert P., Alan J. D., Meyer S.. A New Synthesis of the Antibiotic Phosphonomycin [J]. J. Org. Chem, 1970, 35 (10): 3510~3512
    [53] Glamkowski E J, Gal G, Purick R, Davidson A J, Sletzinger M.. A new synthesis of the antibiotic phosphonomycin [J]. The Journal of organic chemistry (1970), 35(10), 3510-3512
    [54] Skarzynski T., Mistry A., Wonacott A., Hutchinson S. E., Kelly Valerie A., Duncan K.. Structure of UDP-N-acetylglucosamine enolpyruvyl transferase, and enzyme essential for the synthesis of bacterial peptidoglycan, complexed with substrate UDP-N-acetylglucosamine and the drug fosfomycin [J]. Structure, 1996, 4 (12): 1465-1474
    [55] Itoh N., Kusaka M., Hirota T., Nomura A.. Microbial production of antibiotic fosfomycin by a stereoselective epoxidation and its formation mechanism [J]. Applied Microbiology and Biotechnology (1995), 43(3), 394-401
    [56] Sumida N., Watanabe M., Aoyanagi K., Murakami T.. Epoxidase of Penicillium decumbens, gene cloning, and use for conversion of phosphomycin [P]. JP, A2, 08322560, 1996:10
    [57] 卢法章,冯丽艳,刘辉.磷霉素的生物合成[J].辽宁医药,2000,15(4):1-3[58] 闫浩林,马莉,徐威.利用微生物转化法生产磷霉素的研究[J].沈阳药科大学学报,1995,12(1):32-40
    [59] Zhonghua Y., Shuangxi R., Yunping B., Shengrong T., Shiliang Y., Yunqian L., Weiliang S., Jinwei W., Lingfeng L., Piyan ZH., Zhen Q..The recombinant expression of Penicillium marneffei antifungal squalene epoxidase gene and its applications [P]. CN, A, 1676608, 2005:25
    [60] 闫浩林,马莉,张秋霞.固定化小棘青霉菌生产磷霉素的研究[J].沈阳药学院学报,1994,11(4):282-288[1] 裴素朋.负载型贵金属催化荆制备及在磷霉素中间体合成中的应用:[硕士论文],2003
    [2] 李瑛.以氧化物为载体的钌基氨合成催化剂研究:[硕士论文],2001
    [3] 苏运来,裴素朋,王向宇,王晓红.负载型贵金属催化剂制备及在磷霉素中间体合成中的应用[J].分析测试学报,2004,23(5):67-69
    [4] 井立强,蔡伟民,孙晓君,侯海鸽,徐自力,杜尧国.Pd/ZnO和Ag/ZnO复合纳米粒子的制备、表征及光催化活性[J].催化化学,2002,23(4):336-340
    [5] 王红,黄小英.催化剂表面积的表征及其在催化剂研究中的应用[J].广州化工,1999,27(2):46-48[1] Rodriguez R. F..The role of carbon materials in heterogeneous catalysis [J]. Carbon, 1998, 36(3):159-175
    [2] Figueiredo J. L., Pereira M. F. R., Freitas M. M. A., Orfao J. J..Modification of the surface chemistry of activated carbons [J]. Carbon,1999, 37 (9): 1379-1389
    [3] Ozaki A., Aika K..Catalytic activation of dinitrogen. Catalysis Science and Technology, 1981, 1:87-158
    [4] 林励吾,黄止而.碳一化学中的催化作用[M].北京:化学工业出版社.1995:304
    [5] Jiayun L., Lei M., Xiaonian L., Chunshan L., Huazhang L..Effect of Nitric Acid Pretreatment on the Properties of Activated Carbon and Supported Palladium Catalysts [J]. Industrial & Engineering Chemistry Research, 2005, 44(15): 5478-5482
    [6] WonChun. O.. Effect of acid pretreatment on the metal loading of activated carbon [J]. Journal of Industrial and Engineering Chemistry, 2005, 11 (1):137-144
    [7] Auer E., Freund A., Pietsch J., Tacke T..Carbons as supports for industrial precious metal catalysts [J]. Applied Catalysis, 1998, 173 (2): 259-271
    [8] Molodozhenyuk T. B., Namazbaev Sh. N., Yunusov M. P., Yunusov B. M..Effect of an alkaline treatment process on surface functional groups and the sorption activity of carbons from apricot kernels [J]. O'zbekiston Kimyo Jurnali, 2005, 4: 49-52
    [9] Prado B. C..Effect of carbon surface groups on the dispersion of Pt [J]. New carbon material. 1996, 1: 44-45
    [10] 陈仁辉.活性炭在催化中的应用[J].活性炭,1986,1:10-14
    [11] 韩文锋,赵波,霍超,刘化章.活性炭及表面性质对Ru基氨合成催化剂性能的影响[J].催化学报,2004,25(3):194-198[1] 吴越.催化化学[M].(第一版).北京.科学出版社.1998年:955
    [2] 韩文锋,赵波,霍超,刘化章.活性炭及表面性质对Ru基氮合成催化剂性能的影响[J].催化学报.2004.25(3):194-198
    [3] HsinYu L., YuWen C..The Kinetics of H_2 adsorption on supported ruthenium catalysts[J]. Thermochimica Acta. 2004, 419:283-290
    [4] Figueiredo J. L., Pereira M. F. R., Freitas M. M. A., Orfao J. J. M.. Modification of the surface chemistry of activated carbons[J]. Carbon, 1999, 37(9): 1379-1389.[5] 刘寿长,苏运来,何占航,于小丰,王文祥.制备高碳醇Cu-Fe系催化剂的TPR研究[J].分子催化,1998,12(2):119-124
    [6] 陈镜泓,李传儒 编著.热分析及其应用.北京:科学出版社,1985,128~132
    [7] Stara K. A., Biberbach P., Ruth K..A nobel metal containing supported catalyst and a process for its preparation [P]: 1254712, 2002-11-06
    [8] 陈仁辉.活性炭在催化中的应用[J].活性炭,1986,1:10-14.
    [9] 杨正芬,宁远涛,赵怀志.高钯合金捕集网中钯的状态[J].中国有色金属学报,1995,5(4):40-42[1] 刘寿长.罗鸽,韩民乐,李中军.没溃法制备的苯部分加氢制环己烯催化剂的表征[J].催化学报,2001,22(6):559-562
    [2] 李瑛.以氧化物为载体的钉基氨合成催化剂研究:[硕士论文],2001年
    [3] 罗来涛,李松军,黄冰峰,李风仪.稀土对Ru基加氢催化剂的改性研究[J].稀土,2003,24(2):24-29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700