水稻组蛋白去乙酰化酶基因的分离和功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表观遗传学是指在DNA序列不改变的情况下,碱基序列以外的各种修饰和与之相关的各种蛋白质或RNA协同作用下,调控基因的表达,以完成生命周期或适应环境变化,且可以在世代之间传递。表观遗传学涉及的机制包括DNA甲基化、组蛋白修饰和染色质变构等方面。组蛋白乙酰化是真核生物表观遗传调控的重要组成部分。水稻是世界上重要的粮食作物,有关水稻表观遗传学的研究报道目前很少。
     本研究主要以水稻中的组蛋白去乙酰化酶(HDAC)基因为对象,通过生物信息学、基因克隆和转化等方法研究了水稻HDAC基因的结构、表达及其生理功能,阐述了HDAC基因在植物的表观遗传调控及其环境适应中的重要意义。本研究主要有以下结果:
     1.通过同源序列法研究发现,水稻基因组数据库中存在着19个组蛋白去乙酰化酶的基因,其中RPD3/HDA1超家族的组蛋白去乙酰化酶基因14个,HD2家族3个,SIR2家族2个。
     2.对水稻HDAC的三个不同家族基因成员分别进行了序列分析比较和系统进化分析。
     3.共构建了10个基因的RNAi抑制表达载体,5个基因的超量表达载体,并获得转基因植株。
     4.以SIR2家族的OsSRT1基因为重点展开研究。通过Northern杂交对其表达模式研究发现,OsSRT1在快速分化的器官和组织中高水平表达。OsSRT1蛋白定位于细胞核内。
     5.Western杂交证据显示,OsSRT1抑制表达家系的组蛋白H3K9(lysine-9 of H3)的乙酰化程度增加,而H3K9的双甲基化程度降低。OsSRT1 RNAi转基因植株中发生H_2O_2的产生,DNA片段化和细胞死亡,产生假病斑表型变异,属于超敏反应类型的程序性细胞死亡。
     6.OsSRT1的超量表达不产生明显的形态变异,但能增强植株对于百草枯的耐受能力,提高超量表达转基因家系对氧化胁迫的抗性。
     7.为了进一步分析OsSRT1所调控的下游基因以及其调控方式,本研究采用Affymetrix水稻全基因组生物芯片对抑制表达植株中基因表达状况进行了分析。结果表明,抑制表达植株中转座子和反转座子以及超敏反应相关的基因和细胞程序性死亡有关的基因的转录被激活。
     8.对抑制表达植株芯片分析中所获得的差异表达基因进行了深入的分析。差异表达基因的Gene Ontology(GO)分类显示OsSRT1正调控防御反应、DNA修复和苯丙醇代谢过程,这些基因大都涉及胁迫相关细胞程序性死亡信号途径相关的基因。
     9.通过RT-PCR验证了RNAi植株中一些衰老相关基因、病程相关蛋白基因等标志基因的表达,进一步证实了其与PCD的关系。
     10.通过染色质免疫沉淀技术和Real-time PCR检测发现,这些上升表达的转座子和反转座子以及细胞程序性死亡相关基因的启动子区域组蛋白H3K9乙酰化程度明显上升,因此推测这些基因是OsSRT1的直接靶基因。
     11.DNA甲基化分析结果暗示,OsSRT1的下降表达很可能是以一种随机的方式作用于DNA甲基化。
     12.分别对HD2家族的OsHDT702基因和RPD3/HDA1超家族的OsHDA710基因的RNAi转基因家系进行了初步观察,发现它们可能分别与植株叶片形态和植株高度有关。
     通过对上述问题的研究,揭示了水稻组蛋白去乙酰化酶基因OsSRT1在保护基因组稳定和防止DNA损伤,维持植物细胞的正常生长方面具有重要的作用。加深了表观遗传调控网络对生物发育、疾病、植物抗逆等许多重要生命现象调控的理解和认识。
The term "epigenetics" defines heritable states of gene activity not encoded in the DNA sequence.Any given epigenetic state appears to be correlated with histone modifications,DNA methylation,and chromatin remodeling.Histone modification is an integral component of the epigenetic network in many eukaryotes.Research over the past few years has focused on yeast, animal,human and Arabidopsis.The study of epigentics in monocots,especially in rice lagged behind.
     The objective of this study is to isolate and characterize genes encoding histone modification enzyme,which are involved in the developmental regulation and epigenetic inheritance.The main results are as follows.
     1.A total of 19 HDAC genes were identified in rice genome.Of the 19 HDACs,14 belong to the RPD3/HDA1 superfamily,three belong to the HD2 family,and two belong to the SIR2 family.
     2.Sequence alignments and phylogenetic analysis were performed to elucidate the relationship of different members in the three HDAC families.
     3.A total of 10 genes were constructed for RNAi suppression,and 5 genes were constructed for over-expression.The constructs were used to transform an indica rice variety 'Minghui63'.
     4.This study focused on OsSRT1,a member of SIR2 family,which is NAD~+-dependent histone deacetylase.We studied the expression profile of OsSRT1.The results showed that OsSRT1 was a widely expressed nuclear protein with higher levels in rapidly dividing tissues.
     5.OsSRT1 RNA interference induced an increase of histone H3K9(lysine-9 of H3) acetylation and a decrease of H3K9 dimethylation,leading to H_2O_2 production,DNA fragmentation,cell death,and lesions mimicking plant hypersensitive responses during incompatible interactions with pathogens.
     6.No particular visible or morphological phenotypic changes were observed in OsSRT1 over-expression plants.But over-expression of OsSRT1 gene in transgenic rice resulted in enhanced tolerance to oxidative stress compared to the wild type.
     7.To determine more downstream OsSRT1-regulated genes and its regulation mechanism in OsSRT1 RNAi plants,we performed microarray analysis using the Affymetrix oligonucletide rice chip array.The results revealed that the transcription of many transposons and retrotransposons in addition to genes related to hypersensitive response and/or programmed cell death was activated.
     8.The results indicated that the analysis of GO classification in differential expressed genes showed that OsSRT1 actively regulated defense response,DNA repair,and phenylpropanoid metabolism,those of which always related to the stress-responsive and stress-related or PCD signaling pathways,respectively.
     9.To confirm the microarray data,we performed semiquantitative RT-PCR analysis of RNA isolated from OsSRT1 RNAi young leaves harvested at 7,11,and 21 days after germination to compare with wild-type and OsSRT1 overexpression plants.
     10.ChIP assays showed that OsSRT1 down-regulation induced histone H3K9 acetylation on the transposable elements and some of the hypersensitive response-related genes, suggesting that these genes may be among the primary targets of deacetylation regulated by OsSRT1.
     11.DNA methylation analysis suggested that down-regulation of OsSRT1 was likely to have a stochastic effect on DNA methylation.
     12.Narrow leaves were produced in OsHDT702 RNAi plants,and dwarf phenotype was observed in OsHDA710 RNAi plants,further analysis is needed.
     Our data together suggest that the rice SIR2-1ike gene is required for safeguard against genome instability and cell damage to ensure plant cell growth,but likely implicates different molecular mechanisms than yeast and animal homologs.
引文
1. Akashi H, M Miyagishi, K Taira. RNAi expression vectors in plant cells. Methods Mol Biol. 2004, 252:533-543
    2. Allfrey V G. Structural modifications of histones and their possible role in the regulation of ribonucleic acid synthesis. Proc Can Cancer Conf. 1966, 6:313-335
    3. Altschul S F, T L Madden, A A Schaffer, J Zhang, Z Zhang, W Miller, D J Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25:3389-3402
    4. Aparicio O, J V Geisberg, E Sekinger, A Yang, Z Moqtaderi, K Struhl. Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo. Curr Protoc Mol Biol. 2005, Chapter 21:Unit 21 23
    5. Apte S S, M G Mattei, M F Seldin, B R Olsen. The highly conserved defender against the death 1 (DAD1) gene maps to human chromosome 14q11-q12 and mouse chromosome 14 and has plant and nematode homologs. FEBS Lett. 1995, 363:304-306
    6. Aravind L, Koonin,E.V., Dangl,M., Lusser,A., Brosch,G, Loidl,A.,Haas,H. and Loidl.P. Second family of histone deacetylases. Science. 1998, 280. :1167a
    7. Ascenzi R, J S Gantt. Molecular genetic analysis of the drought-inducible linker histone variant in Arabidopsis thaliana. Plant Mol Biol. 1999,41:159-169
    8. Aufsatz W, M F Mette, J van der Winden, M Matzke, A J Matzke. HDA6, a putative histone deacetylase needed to enhance DNA methylation induced by double-stranded RNA. Embo J. 2002, 21:6832-6841
    9. Balasubramanian R, M G Pray-Grant, W Selleck, P A Grant, S Tan. Role of the Ada2 and Ada3 transcriptional coactivators in histone acetylation. J Biol Chem. 2002, 277:7989-7995
    10. Bannister A J, T Kouzarides. The CBP co-activator is a histone acetyltransferase. Nature. 1996, 384:641-643
    11. Baudouin E, M Charpenteau, D Roby, Y Marco, R Ranjeva, B Ranty. Functional expression of a tobacco gene related to the serine hydrolase family - esterase activity towards short-chain dinitrophenyl acylesters. Eur J Biochem. 1997, 248:700-706
    12. Baulcombe D. RNA silencing in plants. Nature. 2004,431:356-363
    13. Baxter J, M Merkenschlager, A G Fisher. Nuclear organisation and gene expression. Curr Opin Cell Biol. 2002, 14:372-376
    14. Bender J. DNA methylation and epigenetics. Annu Rev Plant Biol. 2004, 55:41-68
    15. Benhamed M, C Bertrand, C Servet, D X Zhou. Arabidopsis GCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression. Plant Cell. 2006, 18:2893-2903
    16. Bernstein B E, J K Tong, S L Schreiber. Genomewide studies of histone deacetylase function in yeast. Proc Natl Acad Sci U S A. 2000, 97:13708-13713
    17. Bertrand C, C Bergounioux, S Domenichini, M Delarue, D X Zhou. Arabidopsis histone acetyltransferase AtGCN5 regulates the floral meristem activity through the WUSCHEL/AGAMOUS pathway. J Biol Chem. 2003, 278:28246-28251
    18. Bethke P C, R L Jones. Cell death of barley aleurone protoplasts is mediated by reactive oxygen species. Plant J. 2001,25:19-29
    19. Blander G, L Guarente. The Sir2 family of protein deacetylases. Annu Rev Biochem. 2004,73:417-435
    20. Bordoli L, M Netsch, U Luthi, W Lutz, R Eckner. Plant orthologs of p300/CBP: conservation of a core domain in metazoan p300/CBP acetyltransferase-related proteins. Nucleic Acids Res. 2001, 29:589-597
    21. Bouchez O, C Huard, S Lorrain, D Roby, C Balague. Ethylene is one of the key elements for cell death and defense response control in the Arabidopsis lesion mimic mutant vadl. Plant Physiol. 2007,145:465-477
    22. Bourc'his D, T H Bestor. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature. 2004,431:96-99
    23. Brachmann C B, J M Sherman, S E Devine, E E Cameron, L Pillus, J D Boeke. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev. 1995,9:2888-2902
    24. Brodersen P, M Petersen, H M Pike, B Olszak, S Skov, N Odum, L B Jorgensen, R E Brown, J Mundy. Knockout of Arabidopsis accelerated-cell-death 11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes Dev. 2002,16:490-502
    25. Brosch G, E I Georgieva, G Lopez-Rodas, H Lindner, P Loidl. Specificity of Zea mays histone deacetylase is regulated by phosphorylation. J Biol Chem. 1992, 267:20561-20564
    26. Brosch G, A Lusser, M Goralik-Schramel, P Loidl. Purification and characterization of a high molecular weight histone deacetylase complex (HD2) of maize embryos. Biochemistry. 1996, 35:15907-15914
    27. Brownell J E, J Zhou, T Ranalli, R Kobayashi, D G Edmondson, S Y Roth, C D Allis. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell. 1996, 84:843-851
    28. Brunet A, L B Sweeney, J F Sturgill, K F Chua, P L Greer, Y Lin, H Tran, S E Ross, R Mostoslavsky, H Y Cohen, L S Hu, H L Cheng, M P Jedrychowski, S P Gygi, D A Sinclair, F W Alt, M E Greenberg. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 2004, 303:2011-2015
    29. Buchanan-Wollaston V, S Earl, E Harrison, E Mathas, S Navabpour, T Page, D Pink. The molecular analysis of leaf senescence-a genomics approach. Plant Biotechnol J. 2003, 1:3-22
    30. Busslinger M, J Hurst, R A Flavell. DNA methylation and the regulation of globin gene expression. Cell. 1983, 34:197-206
    31. Candau R, P A Moore, L Wang, N Barlev, C Y Ting, C A Rosen, S L Berger. Identification of human proteins functionally conserved with the yeast putative adaptors ADA2 and GCN5. Mol Cell Biol. 1996, 16:593-602
    32. Cao X, S E Jacobsen. Role of the arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol. 2002, 12:1138-1144
    33. Cao X, N M Springer, M G Muszynski, R L Phillips, S Kaeppler, S E Jacobsen. Conserved plant genes with similarity to mammalian de novo DNA methyltransferases. Proc Natl Acad Sci U S A. 2000, 97:4979-4984
    34. Capy P, G Gasperi, C Biemont, C Bazin. Stress and transposable elements: co-evolution or useful parasites? Heredity. 2000, 85 (Pt 2): 101-106
    35. Chan S W, I R Henderson, S E Jacobsen. Gardening the genome: DNA methylation in Arabidopsis thaliana Nat Rev Genet. 2005, 6:351-360
    36. Chen G, J Fernandez, S Mische, A J Courey. A functional interaction between the histone deacetylase Rpd3 and the corepressor groucho in Drosophila development. Genes Dev. 1999, 13:2218-2230
    37. Chowdhury I, B Tharakan, G K Bhat. Current concepts in apoptosis: the physiological suicide program revisited. Cell Mol Biol Lett. 2006, 11:506-525
    38. Chu Z, M Yuan, J Yao, X Ge, B Yuan, C Xu, X Li, B Fu, Z Li, J L Bennetzen, Q Zhang, S Wang. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev. 2006, 20:1250-1255
    39. Chua Y L, A P Brown, J C Gray. Targeted histone acetylation and altered nuclease accessibility over short regions of the pea plastocyanin gene. Plant Cell. 2001, 13:599-612
    40. Chuang C F, E M Meyerowitz. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana Proc Natl Acad Sci U S A. 2000, 97:4985-4990
    41. Clark D J, C H Shen. Mapping histone modifications by nucleosome immunoprecipitation. Methods Enzymol. 2006,410:416-430
    42. Conner J, Z Liu. LEUNIG, a putative transcriptional corepressor that regulates AGAMOUS expression during flower development. Proc Natl Acad Sci U S A. 2000, 97:12902-12907
    43. Courey A J, S Jia. Transcriptional repression: the long and the short of it Genes Dev. 2001, 15:2786-2796
    44. Cress W D, E Seto. Histone deacetylases, transcriptional control, and cancer. J Cell Physiol. 2000, 184:1-16
    45. Cui H, N V Fedoroff. Inducible DNA demethylation mediated by the maize Suppressor-mutator transposon-encoded TnpA protein. Plant Cell. 2002, 14:2883-2899
    46. Czernic P, H C Huang, Y Marco. Characterization of hsr201 and hsr515, two tobacco genes preferentially expressed during the hypersensitive reaction provoked by phytopathogenic bacteria Plant Mol Biol. 1996, 31:255-265
    47. Dangl J L, R A Dietrich, M H Richberg. Death Don't Have No Mercy: Cell Death Programs in Plant-Microbe Interactions. Plant Cell. 1996, 8:1793-1807
    48. del Pozo O, E Lam. Caspases and programmed cell death in the hypersensitive response of plants to pathogens. Curr Biol. 1998, 8:1129-1132
    49. Dietrich R A, M H Richberg, R Schmidt, C Dean, J L Dangl. A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell. 1997, 88:685-694
    50. Earley K, R J Lawrence, O Pontes, R Reuther, A J Enciso, M Silva, N Neves, M Gross, W Viegas, C S Pikaard. Erasure of histone acetylation by Arabidopsis HDA6 mediates large-scale gene silencing in nucleolar dominance. Genes Dev. 2006, 20:1283-1293
    51. Finnegan E J, K A Kovac. Plant DNA methyltransferases. Plant Mol Biol. 2000, 43:189-201
    52. Finnegan E J, W J Peacock, E S Dennis. DNA methylation, a key regulator of plant development and other processes. Curr Opin Genet Dev. 2000, 10:217-223
    53. Finnegan E J, W J Peacock, E S Dennis. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci U S A. 1996, 93:8449-8454
    54. Fischle W, Y Wang, C D Allis. Histone and chromatin cross-talk. Curr Opin Cell Biol. 2003, 15:172-183
    55. Ford E, R Voit, G Liszt, C Magin, I Grummt, L Guarente. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 2006, 20:1075-1080
    56. Frye R A. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun. 1999, 260:273-279
    57. Frye R A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun. 2000, 273:793-798
    58. Gavrieli Y, Y Sherman, S A Ben-Sasson. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992, 119:493-501
    59. Genger R K, K A Kovac, E S Dennis, W J Peacock, E J Finnegan. Multiple DNA methyltransferase genes in Arabidopsis thaliana. Plant Mol Biol. 1999,41:269-278
    60. Giles R H, D J Peters, M H Breuning. Conjunction dysfunction: CBP/p300 in human disease. Trends Genet. 1998,14:178-183
    61. Godiard L, L Sauviac, N Dalbin, L Liaubet, D Callard, P Czernic, Y Marco. CYP76C2, an Arabidopsis thaliana cytochrome P450 gene expressed during hypersensitive and developmental cell death. FEBS Lett. 1998, 438:245-249
    62. Gold R S M, Giegerich G, Breitschopf H, Hartung HP, Toyka KV, Lassmann H. Differentiation between cellular apoptosis and necrosis by the combined use of in situ tailing and nick translation techniques. Lab Invest. 1994,71:219-225
    63. Graessle S, P Loidl, G Brosch. Histone acetylation: plants and fungi as model systems for the investigation of histone deacetylases. Cell Mol Life Sci. 2001, 58:704-720
    64. Grant P A, L Duggan, J Cote, S M Roberts, J E Brownell, R Candau, R Ohba, T Owen-Hughes, C D Allis, F Winston, S L Berger, J L Workman. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev. 1997, 11:1640-1650
    65. Grant P A, A Eberharter, S John, R G Cook, B M Turner, J L Workman. Expanded lysine acetylation specificity of Gcn5 in native complexes. J Biol Chem. 1999, 274:5895-5900
    66. Greenberg J T. Programmed Cell Death in Plant-Pathogen Interactions. Annu Rev Plant Physiol Plant Mol Biol. 1997,48:525-545
    67. Greenberg J T. Programmed cell death: a way of life for plants. Proc Natl Acad Sci U S A. 1996,93:12094-12097
    68. Grozinger C M, S L Schreiber. Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. Proc Natl Acad Sci U S A. 2000,97:7835-7840
    69. Grunstein M. Histone acetylation in chromatin structure and transcription. Nature. 1997, 389:349-352
    70. Guarente L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev. 2000, 14:1021-1026
    71. Guarente L, C Kenyon. Genetic pathways that regulate ageing in model organisms. Nature. 2000, 408:255-262
    72. Hawkins R D, B Ren. Genome-wide location analysis: insights on transcriptional regulation. Hum Mol Genet. 2006, 15 Spec No l:Rl-7
    73. Heath M C. Hypersensitive response-related death. Plant Mol Biol. 2000,44:321-334
    74. Hebbes T R, A W Thorne, C Crane-Robinson. A direct link between core histone acetylation and transcriptionally active chromatin. Embo J. 1988, 7:1395-1402
    75. Hecht A, M Grunstein. Mapping DNA interaction sites of chromosomal proteins using immunoprecipitation and polymerase chain reaction. Methods Enzymol. 1999, 304:399-414
    76. Heinzel T, R M Lavinsky, T M Mullen, M Soderstrom, C D Laherty, J Torchia, W M Yang, G Brard, S D Ngo, J R Davie, E Seto, R N Eisenman, D W Rose, C K Glass, M G Rosenfeld. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature. 1997, 387:43-48
    77. Hiei Y, S Ohta, T Komari, T Kumashiro. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 1994, 6:271-282
    78. Hirochika H, H Okamoto, T Kakutani. Silencing of retrotransposons in arabidopsis and reactivation by the ddm1 mutation. Plant Cell. 2000, 12:357-369
    79. Hoeberichts F A, D Orzaez, L H van der Plas, E J Woltering. Changes in gene expression during programmed cell death in tomato cell suspensions. Plant Mol Biol. 2001,45:641-654
    80. Horn P J, C L Peterson. Molecular biology. Chromatin higher order folding-wrapping up transcription. Science. 2002, 297:1824-1827
    81. Huang E Y, J Zhang, E A Miska, M G Guenther, T Kouzarides, M A Lazar. Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway. Genes Dev. 2000,14:45-54
    82. Hughes T R, M J Marton, A R Jones, C J Roberts, R Stoughton, C D Armour, H A Bennett, E Coffey, H Dai, Y D He, M J Kidd, A M King, M R Meyer, D Slade, P Y Lum, S B Stepaniants, D D Shoemaker, D Gachotte, K Chakraburtty, J Simon, et al. Functional discovery via a compendium of expression profiles. Cell. 2000, 102:109-126
    83. Imai S, C M Armstrong, M Kaeberlein, L Guarente. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000, 403:795-800
    84. Itazaki H, K Nagashima, K Sugita, H Yoshida, Y Kawamura, Y Yasuda, K Matsumoto, K Ishii, N Uotani, H Nakai, et al. Isolation and structural elucidation of new cyclotetrapeptides, trapoxins A and B, having detransformation activities as antitumor agents. J Antibiot (Tokyo). 1990,43:1524-1532
    85. Ito K, P J Barnes, I M Adcock. Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1 beta-induced histone H4 acetylation on lysines 8 and 12. Mol Cell Biol. 2000,20:6891-6903
    86. Iyer V R, C E Horak, C S Scafe, D Botstein, M Snyder, P O Brown. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature. 2001, 409:533-538
    87. Jang I C, Y M Pahk, S I Song, H J Kwon, B H Nahm, J K Kim. Structure and expression of the rice class-I type histone deacetylase genes OsHDAC1-3: OsHDAC1 overexpression in transgenic plants leads to increased growth rate and altered architecture. Plant J. 2003, 33:531-541
    88. Janousek B, S Matsunaga, E Kejnovsky, J Ziuvova, B Vyskot. DNA methylation analysis of a male reproductive organ specific gene (MROS1) during pollen development Genome. 2002, 45:930-938
    89. Jaskelioff M, C L Peterson. Chromatin and transcription: histones continue to make their marks. Nat Cell Biol. 2003, 5:395-399
    90. Jenuwein T, C D Allis. Translating the histone code. Science. 2001,293:1074-1080
    91. Kao H Y, M Downes, P Ordentlich, R M Evans. Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression. Genes Dev. 2000, 14:55-66
    92. Karpen G H, R C Allshire. The case for epigenetic effects on centromere identity and function. Trends Genet. 1997,13:489-496
    93. Kato M, A Miura, J Bender, S E Jacobsen, T Kakutani. Role of CG and non-CG methylation in immobilization of transposons in Arabidopsis. Curr Biol. 2003, 13:421-426
    94. Kijima M, M Yoshida, K Sugita, S Horinouchi, T Beppu. Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J Biol Chem. 1993,268:22429-22435
    95. Kornberg R D. Chromatin structure: a repeating unit of histones and DNA. Science. 1974, 184:868-871
    96. Krebs J E, M H Kuo, C D Allis, C L Peterson. Cell cycle-regulated histone acetylation required for expression of the yeast HO gene. Genes Dev. 1999, 13:1412-1421
    97. Kumar S, K Tamura, M Nei. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment Brief Bioinform. 2004, 5:150-163
    98. Kuo M H, J Zhou, P Jambeck, M E Churchill, C D Allis. Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev. 1998, 12:627-639
    99. Kurdistani S K, D Robyr, S Tavazoie, M Grunstein. Genome-wide binding map of the histone deacetylase Rpd3 in yeast. Nat Genet. 2002, 31:248-254
    100. Lam E, N Kato, M Lawton. Programmed cell death, mitochondria and the plant hypersensitive response. Nature. 2001,411:848-853
    101. Langley E, M Pearson, M Faretta, U M Bauer, R A Frye, S Minucci, P G Pelicci, T Kouzarides. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. Embo J. 2002,21:2383-2396
    102. Lawrence R J, K Earley, O Pontes, M Silva, Z J Chen, N Neves, W Viegas, C S Pikaard. A concerted DNA methylation/histone methylation switch regulates rRNA gene dosage control and nucleolar dominance. Mol Cell. 2004, 13:599-609
    103. Lee H, L Xiong, Z Gong, M Ishitani, B Stevenson, J K Zhu. The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Genes Dev. 2001, 15:912-924
    104. Leo C, J D Chen. The SRC family of nuclear receptor coactivators. Gene. 2000, 245:1-11
    105. Li X, Z Darzynkiewicz. Labelling DNA strand breaks with BrdUTP. Detection of apoptosis and cell proliferation. Cell Prolif. 1995, 28:571-579
    106. Lin Y J, Q Zhang. Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep. 2005, 23:540-547
    107. Lippman Z, A V Gendrel, M Black, M W Vaughn, N Dedhia, W R McCombie, K Lavine, V Mittal, B May, K D Kasschau, J C Carrington, R W Doerge, V Colot, R Martienssen. Role of transposable elements in heterochromatin and epigenetic control. Nature. 2004, 430: 471-476
    108. Lippman Z, B May, C Yordan, T Singer, R Martienssen. Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification. PLoS Biol. 2003, 1:E67
    109. Liu Q, M Kasuga, Y Sakuma, H Abe, S Miura, K Yamaguchi-Shinozaki, K Shinozaki. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell. 1998, 10:1391-1406
    110. Loh Y H, Q Wu, J L Chew, V B Vega, W Zhang, X Chen, G Bourque, J George, B Leong, J Liu, K Y Wong, K W Sung, C W Lee, X D Zhao, K P Chiu, L Lipovich, V A Kuznetsov, P Robson, L W Stanton, C L Wei, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet. 2006, 38:431-440
    111. Loidl P. A plant dialect of the histone language. Trends Plant Sci. 2004, 9:84-90
    112. Lu Q, X H Li, D Guo, C G Xu, Q Zhang. Localization of pms3, a gene for photoperiod-sensitive genic male sterility, to a 28.4-kb DNA fragment. Mol Genet Genomics. 2005, 273:507-511
    113. Luger K, A W Mader, R K Richmond, D F Sargent, T J Richmond. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997, 389:251-260
    114. Lusser A, G Brosch, A Loidl, H Haas, P Loidl. Identification of maize histone deacetylase HD2 as an acidic nucleolar phosphoprotein. Science. 1997, 277:88-91
    115. Lusser A, D Kolle, P Loidl. Histone acetylation: lessons from the plant kingdom. Trends Plant Sci. 2001, 6:59-65
    116. Marillonnet S, S R Wessler. Retrotransposon insertion into the maize waxy gene results in tissue-specific RNA processing. Plant Cell. 1997,9:967-978
    117. Martienssen R A, V Colot. DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science. 2001,293:1070-1074
    118. Mc C B. Chromosome organization and genic expression. Cold Spring Harb Symp Quant Biol.1951,16:13-47
    119.Miller J D,R N Arteca,E J Pell.Senescence-associated gene expression during ozone-induced leaf senescence in Arabidopsis.Plant Physiol.1999,120:1015-1024
    120.Mizzen C A,X J Yang,T Kokubo,J E Brownell,A J Bannister,T Owen-Hughes,J Workman,L Wang,S L Berger,T Kouzarides,Y Nakatani,C D Allis.The TAF(Ⅱ)250subunit of TFIID has histone acetyltransferase activity.Cell.1996,87:1261-1270
    121.Montgomery M K.RNA interference:historical overview and significance.Methods Mol Biol.2004,265:3-21
    122.Mostoslavsky R,K F Chua,D B Lombard,W W Pang,M R Fischer,L Gellon,P Liu,G Mostoslavsky,S Franco,M M Murphy,K D Mills,P Patel,J T Hsu,A L Hong,E Ford,H L Cheng,C Kennedy,N Nunez,R Bronson,D Frendewey,et al.Genomic instability and aging-like phenotype in the absence of mammalian SIRT6.Cell.2006,124:315-329
    123.Motta M C,N Divecha,M Lemieux,C Kamel,D Chen,W Gu,Y Bultsma,M McBurney,L Guarente.Mammalian SIRT1 represses forkhead transcription factors.Cell.2004,116:551-563
    124.Murfett J,X J Wang,G Hagen,T J Guilfoyle.Identification of Arabidopsis histone deacetylase HDA6 mutants that affect transgene expression.Plant Cell.2001,13:1047-1061
    125.Murray M G.W F Thompson.Rapid isolation of high molecular weight plant DNA.Nucleic Acids Res.1980,8:4321-4325
    126.Narlikar G J,H Y Fan,R E Kingston.Cooperation between complexes that regulate chromatin structure and transcription.Cell.2002,108:475-487
    127.Nemoto S,M M Fergusson,T Finkel.Nutrient availability regulates SIRT1 through a forkhead-dependent pathway.Science.2004,306:2105-2108
    128.Neuwald A F,D Landsman.GCN5-related histone N-acetyltransferases belong to a diverse superfamily that includes the yeast SPT10 protein.Trends Biochem Sci.1997,22:154-155
    129.Ng H H,A Bird.Histone deacetylases:silencers for hire.Trends Biochem Sci.2000,25:121-126
    130.Okamoto H,H Hirochika.Silencing of transposable elements in plants.Trends Plant Sci.2001,6:527-534
    131.Oliveros J C,C Blaschke,J Herrero,J Dopazo,A Valencia.Expression profiles and biological function.Genome Inform Ser Workshop Genome Inform.2000,11:106-117
    132.Onodera Y,J R Haag,T Ream,P C Nunes,O Pontes,C S Pikaard.Plant nuclear RNA polymerase Ⅳ mediates siRNA and DNA methylation-dependent heterochromatin formation.Cell.2005,120:613-622
    133.Orlando V,H Strutt,R Paro.Analysis of chromatin structure by in vivo formaldehyde cross-linking.Methods.1997,11:205-214
    134.Pandey R,A Muller,C A Napoli,D A Selinger,C S Pikaard,E J Richards,J Bender,D W Mount,R A Jorgensen.Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes.Nucleic Acids Res.2002,30:5036-5055
    135. Pazin M J, J T Kadonaga. What's up and down with histone deacetylation and transcription? Cell. 1997, 89:325-328
    136. Pennell R I, C Lamb. Programmed Cell Death in Plants. Plant Cell. 1997, 9:1157-1168
    137. Perry C A, C A Dadd, C D Allis, A T Annunziato. Analysis of nucleosome assembly and histone exchange using antibodies specific for acetylated H4. Biochemistry. 1993, 32:13605-13614
    138. Pfeifer G P, S D Steigerwald, R S Hansen, S M Gartler, A D Riggs. Polymerase chain reaction-aided genomic sequencing of an X chromosome-linked CpG island: methylation patterns suggest clonal inheritance, CpG site autonomy, and an explanation of activity state stability. Proc Natl Acad Sci U S A. 1990,87:8252-8256
    139. Philpott A, G H Leno. Nucleoplasmin remodels sperm chromatin in Xenopus egg extracts. Cell. 1992, 69:759-767
    140. Picard F, M Kurtev, N Chung, A Topark-Ngarm, T Senawong, R Machado De Oliveira, M Leid, M W McBurney, L Guarente. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature. 2004, 429: 771-776
    141. Pontier D, S Gan, R M Amasino, D Roby, E Lam. Markers for hypersensitive response and senescence show distinct patterns of expression. Plant Mol Biol. 1999, 39:1243-1255
    142. Pontier D, L Godiard, Y Marco, D Roby. hsr203J, a tobacco gene whose activation is rapid, highly localized and specific for incompatible plant/pathogen interactions. Plant J. 1994,5:507-521
    143. Probst A V, M Fagard, F Proux, P Mourrain, S Boutet, K Earley, R J Lawrence, C S Pikaard, J Murfett, I Furner, H Vaucheret, O Mittelsten Scheid. Arabidopsis histone deacetylase HDA6 is required for maintenance of transcriptional gene silencing and determines nuclear organization of rDNA repeats. Plant Cell. 2004, 16:1021-1034
    144. Rabinowicz P D, L E Palmer, B P May, M T Hemann, S W Lowe, W R McCombie, R A Martienssen. Genes and transposons are differentially methylated in plants, but not in mammals. Genome Res. 2003, 13:2658-2664
    145. Ren B, F Robert, J J Wyrick, O Aparicio, E G Jennings, I Simon, J Zeitlinger, J Schreiber, N Hannett, E Kanin, T L Volkert, C J Wilson, S P Bell, R A Young. Genome-wide location and function of DNA binding proteins. Science. 2000, 290:2306-2309
    146. Reyes J C, L Hennig, W Gruissem. Chromatin-remodeling and memory factors. New regulators of plant development. Plant Physiol. 2002, 130:1090-1101
    147. Ros F, R Kunze. Regulation of activator/dissociation transposition by replication and DNA methylation. Genetics. 2001, 157:1723-1733
    148. Roth S Y, J M Denu, C D Allis. Histone acetyltransferases. Annu Rev Biochem. 2001, 70:81-120
    149. Rubinstein B. Regulation of cell death in flower petals. Plant Mol Biol. 2000, 44:303-318
    150. Rundlett S E, A A Carmen, R Kobayashi, S Bavykin, B M Turner, M Grunstein. HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc Natl Acad Sci U S A. 1996, 93:14503-14508
    151. Saitou N, M Nei. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987, 4:406-425
    152. Sakamoto T, N Kamiya, M Ueguchi-Tanaka, S Iwahori, M Matsuoka. KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev. 2001, 15:581-590
    153. Schena M, D Shalon, R W Davis, P O Brown. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995, 270:467-470
    154. Sendra R, C Tse, J C Hansen. The yeast histone acetyltransferase A2 complex, but not free Gcn5p, binds stably to nucleosomal arrays. J Biol Chem. 2000, 275:24928-24934
    155. Singer T, C Yordan, R A Martienssen. Robertson's Mutator transposons in A. thaliana are regulated by the chromatin-remodeling gene Decrease in DNA Methylation (DDM1). Genes Dev. 2001, 15:591-602
    156. Sridha S, K Wu. Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. Plant J. 2006, 46:124-133
    157. Steller H. Mechanisms and genes of cellular suicide. Science. 1995, 267:1445-1449
    158. Sterner D E, S L Berger. Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev. 2000, 64:435-459
    159. Stockinger E J, Y Mao, M K Regier, S J Triezenberg, M F Thomashow. Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression. Nucleic Acids Res. 2001, 29:1524-1533
    160. Strahl B D, C D Allis. The language of covalent histone modifications. Nature. 2000, 403:41-45
    161. Tanny J C, G J Dowd, J Huang, H Hilz, D Moazed. An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing. Cell. 1999, 99:735-745
    162. Tariq M, J Paszkowski. DNA and histone methylation in plants. Trends Genet. 2004, 20:244-251
    163. Tariq M, H Saze, A V Probst, J Lichota, Y Habu, J Paszkowski. Erasure of CpG methylation in Arabidopsis alters patterns of histone H3 methylation in heterochromatin. Proc Natl Acad Sci U S A. 2003,100:8823-8827
    164. Taunton J, C A Hassig, S L Schreiber. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science. 1996, 272:408-411
    165. Thomas H, H J Ougham, C Wagstaff, A D Stead. Defining senescence and death. J Exp Bot. 2003, 54:1127-1132
    166. Thordal-Christensen H, Z Zhang, Y Wei, D B Collinge. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barleypowdery mildew interaction. The Plant Journal. 1997, 11:1187-1194
    167. Tian L, Z J Chen. Blocking histone deacetylation in Arabidopsis induces pleiotropic effects on plant gene regulation and development. Proc Natl Acad Sci U S A. 2001, 98:200-205
    168. Trapp J, M Jung. The role of NAD+ dependent histone deacetylases (sirtuins) in ageing. Curr Drug Targets. 2006, 7:1553-1560
    169. Tse C, T Sera, A P Wolffe, J C Hansen. Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase Ⅲ.Mol Cell Biol.1998,18:4629-4638
    170.Turner B M.Histone acetylation and an epigenetic code.Bioessays.2000,22:836-845
    171.Tusher V G,R Tibshirani,G Chu.Significance analysis of microarrays applied to the ionizing radiation response.Proc Natl Acad Sci U S A.2001,98:5116-5121
    172.Vanyushin B F.DNA methylation in plants.Curr Top Microbiol Immunol.2006,301:67-122
    173.Varotto S,S Locatelli,S Canova,A Pipal,M Motto,V Rossi.Expression profile and cellular localization of maize Rpd3-type histone deacetylases during plant development.Plant Physiol.2003,133:606-617
    174.Vaux D L,S J Korsmeyer.Cell death in development.Cell.1999,96:245-254
    175.Vaziri H,S K Dessain,E Ng Eaton,S I Imai,R A Frye,T K Pandita,L Guarente,R A Weinberg.hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase.Cell.2001,107:149-159
    176.Wagner D.Chromatin regulation of plant development.Curr Opin Plant Biol.2003,6:20-28
    177.Wang A H,M J Kruhlak,J Wu,N R Bertos,M Vezmar,B I Posner,D P Bazett-Jones,X J Yang.Regulation of histone deacetylase 4 by binding of 14-3-3 proteins.Mol Cell Biol.2000,20:6904-6912
    178.Wang H,Z Q Huang,L Xia,Q Feng,H Erdjument-Bromage,B D Strahl,S D Briggs,C D Allis,J Wong,P Tempst,Y Zhang.Methylation of histone H4 at arginine 3facilitating transcriptional activation by nuclear hormone receptor.Science.2001,293:853-857
    179.Waterborg J H.Identification of five sites of acetylation in alfalfa histone H4.Biochemistry.1992,31:6211-6219
    180.Waterborg J H.Sequence analysis of acetylation and methylation in two histone H3variants of alfalfa.J Biol Chem.1990,265:17157-17161
    181.Waterhouse P M,M B Wang,T Lough.Gene silencing as an adaptive defence against viruses.Nature.2001,411:834-842
    182.White E.Life,death,and the pursuit of apoptosis.Genes Dev.1996,10:1-15
    183.Williams S A,D Blache,G B Martin,R Foot,M A Blackberry,R J Scaramuzzi.Effect of nutritional supplementation on quantities of glucose transporters 1 and 4 in sheep granulosa and theca cells.Reproduction.2001,122:947-956
    184.Wolffe A P,J J Hayes.Chromatin disruption and modification.Nucleic Acids Res.1999,27:711-720
    185.Wolffe A P,M A Matzke.Epigenetics:regulation through repression.Science.1999,286:481-486
    186.Wu C,X Li,W Yuan,G Chen,A Kilian,J Li,C Xu,X Li,D X Zhou,S Wang,Q Zhang.Development of enhancer trap lines for functional analysis of the rice genome.Plant J.2003,35:418-427
    187.Wu J,N Suka,M Carlson,M Grunstein.TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast.Mol Cell.2001,7:117-126
    188.Wu K,K Malik,L Tian,D Brown,B Miki.Functional analysis of a RPD3 histone deacetylase homologue in Arabidopsis thaliana.Plant Mol Biol.2000a,44:167-176
    189. Wu K, L Tian, K Malik, D Brown, B Miki. Functional analysis of HD2 histone deacetylase homologues in Arabidopsis thaliana. Plant J. 2000b, 22:19-27
    190. Wyllie A H. The genetic regulation of apoptosis. Curr Opin Genet Dev. 1995, 5:97-104
    191. Xiong L Z, C G Xu, M A Saghai Maroof, Q Zhang. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol Gen Genet. 1999, 261:439-446
    192. Yamauchi T, J Yamauchi, T Kuwata, T Tamura, T Yamashita, N Bae, H Westphal, K Ozato, Y Nakatani. Distinct but overlapping roles of histone acetylase PCAF and of the closely related PCAF-B/GCN5 in mouse embryogenesis. Proc Natl Acad Sci U S A. 2000,97:11303-11306
    193. Yang W M, C Inouye, Y Zeng, D Bearss, E Seto. Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc Natl Acad Sci U S A. 1996, 93:12845-12850
    194. Yanofsky M F, H Ma, J L Bowman, G N Drews, K A Feldmann, E M Meyerowitz. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature. 1990, 346:35-39
    195. Yao Y L, W M Yang, E Seto. Regulation of transcription factor YY1 by acetylation and deacetylation. Mol Cell Biol. 2001,21:5979-5991
    196. Yuan Q, S Ouyang, A Wang, W Zhu, R Maiti, H Lin, J Hamilton, B Haas, R Sultana, F Cheung, J Wortman, C R Buell. The institute for genomic research Osal rice genome annotation database. Plant Physiol. 2005, 138:18-26
    197. Zeeberg B R, W Feng, G Wang, M D Wang, A T Fojo, M Sunshine, S Narasimhan, D W Kane, W C Reinhold, S Lababidi, K J Bussey, J Riss, J C Barrett, J N Weinstein. GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol. 2003,4:R28
    198. Zhang J, Q Feng, C Jin, D Qiu, L Zhang, K Xie, D Yuan, B Han, Q Zhang, S Wang. Features of the expressed sequences revealed by a large-scale analysis of ESTs from a normalized cDNA library of the elite indica rice cultivar Minghui 63. Plant J. 2005, 42:772-780
    199. Zhang Y, H H Ng, H Erdjument-Bromage, P Tempst, A Bird, D Reinberg. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev. 1999, 13:1924-1935
    200. Zhang Y, D Reinberg. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 2001, 15:2343-2360
    201. Zhou C, H Labbe, S Sridha, L Wang, L Tian, M Latoszek-Green, Z Yang, D Brown, B Miki, K Wu. Expression and function of HD2-type histone deacetylases in Arabidopsis development Plant J. 2004, 38:715-724
    202. Zhou H J, S Y Tsai, M J Tsai. RNAi technology and its use in studying the function of nuclear receptors and coregulators. Nucl Recept Signal. 2003, 1:e008
    203. Zuckerkandl E. A possible role of "inert" heterochromatin in cell differentiation. Action of and competition for "locking" molecules. Biochimie. 1974, 56:937-954

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700