高温(100~120℃)处理对鱼糜及其复合凝胶热稳定性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为获得常温流通即食鱼糜制品,本文以狭鳕鱼糜凝胶作为研究对象,研究了高温(100~120°C)处理对其质构特性、水分状态、凝胶微观结构、蛋白分子聚集态、蛋白质空间结构以及分子间化学作用力等的影响,来阐释凝胶在高温热处理条件下的变化机制。在此基础上,通过调节水分及添加食品大分子化合物来保持或改善鱼糜凝胶的高温处理热稳定性,进一步了解水分及食品大分子化合物对鱼糜凝胶高温处理热稳定性的影响机制,为即食鱼糜制品的研究和生产提供一定的理论依据和技术支持。主要研究内容和结论分述如下:
     1.采用反压杀菌设备对阿拉斯加鳕鱼糜进行高温处理使其中心温度分别达到100±1°C、105±1°C、110±1°C、115±1°C和120±1°C,并保持10min,测定其质构特性、水分状态、凝胶微观结构以及蛋白质空间结构的变化情况,从而了解鱼糜凝胶在高温处理过程中的变化机制。结果表明,随着高温处理(≥100°C)温度的升高,鱼糜凝胶中最主要的蛋白质二级结构——无规则卷曲发生破坏,导致肌球蛋白重链完全消失,肌动蛋白含量显著下降,蛋白质分子发生聚集,从而使分子间的化学作用力发生变化——离子键和疏水相互作用下降剧烈,而氢键和二硫键整体上呈现上升趋势,另外,鱼糜凝胶的网状结构骨架变得脆弱,孔隙变大,进而降低了鱼糜凝胶的持水性能,导致鱼糜凝胶质构特性的破坏。
     2.向鱼糜中添加不同保水剂制成溶胶或经加热制成凝胶,经冷风干燥不同时间,测量水分含量、水分活度和水分状态的变化,然后进行高温处理,通过5分法评分标准评定鱼糜溶胶高温处理后的凝胶特性。结果表明,冷风干燥可显著降低鱼糜溶胶及凝胶的水分含量有效提高鱼糜溶胶及凝胶高温处理后的凝胶特性。另外,添加保水剂可改变鱼糜溶胶及凝胶中的水分状态及分布,使其在水分含量大致相同的情况下水分活度显著降低,从而进一步提高鱼糜溶胶的高温处理热稳定性。
     3.有研究报道,小麦蛋白可显著提高肉糜制品的高温处理热稳定性。本研究将可溶性小麦蛋白(HWG)添加到狭鳕鱼糜中制成凝胶,测定复合凝胶经高温处理后质构特性、水分状态及微观结构等的变化情况,从而了解HWG对鱼糜凝胶高温处理热稳定性的作用机制。结果表明,鱼糜经低温凝胶化过程后加入HWG,可使得肌原纤维蛋白充分交联形成网状结构之后,HWG均匀地分散于其网络结构空隙中,并与周围的肌原纤维蛋白相互作用,形成均匀的凝胶体系,阻碍了肌原纤维蛋白分子在高温条件下的聚集,从而抑制了高温处理对凝胶网状结构的破坏,使得凝胶的持水性及质构特性得到保持或提高,进而使凝胶的高温处理热稳定性得到了很大程度的提高。
     4.褐藻胶与Ca~(2+)可发生反应形成褐藻酸钙凝胶。本研究对其质构特性、持水性及水分状态等进行研究,通过与不同食品胶进行复配之后将质构特性最好的复合胶应用于提高鱼糜凝胶的高温处理热稳定性。结果表明,褐藻胶浓度为4%的褐藻酸钙凝胶的质构特性、持水性等性质都比较好。不同的食品胶对褐藻酸钙凝胶的性质具有一定的影响。其中,魔芋胶对褐藻酸钙凝胶质构特性、微观结构等性质的增强效果最好。褐藻酸钙-魔芋胶复合胶可显著提高鱼糜凝胶的高温处理热稳定性。其对复合凝胶质构特性的增强效果主要是通过增强其破断强度引起的,高温对复合凝胶的凹陷度具有显著的降低作用,因此,高温处理后的复合凝胶脆性比较强。
In order to obtain ready-to-eat surimi products circulated at room temperature, AlaskaPollock surimi gels were selected to study the effects of high-temperature (100~120°C)treatment on their textural characteristics, moisture status, microstructure, aggregation ofprotein molecules, protein spatial structure and intermolecular chemical interactions, etc.so as to explain the changing mechanism of the surimi gels with high-temperaturetreatment. On this basis, the thermal stability of the surimi gels with high-temperaturetreatment were maintained or improved by adjusting water or adding macromolecularfood compounds, and further the mechanism how water and macromolecular foodcompounds affected the thermal stability of the surimi gels with high-temperaturetreatment were understood, providing some theoretical basis and technical support for theresearch and production of ready-to-eat surimi products. The main contents andconclusions are as follows,
     1. Alaska Pollock Surimi gels were obtained by sterilization in counter pressure retortand maintaining their central temperature at100±1°C,105±1°C,110±1°C,115±1°Cand120±1°C for10min respectively. The changes of the textural characteristics,moisture status, microstructure and protein spatial structure were studied to explain thechanging mechanism of surimi gels with high-temperature treatment. With treatingtemperature (≥100°C) increasing, the main protein secondary structure of the surimi gels,random coil damaged, resulting in the disappearance of myosin heavy chain andsignificant decrease of actin content. Protein molecules aggregated and the chemicalinteractions between the molecules changed, ionic bonds and hydrophobic interactionsdecreasing severely, while hydrogen bonds and disulfide bonds taking up an overallupward trend. Moreover, the frames of the network structure became much more fragile and the holes became larger, reducing the water holding capacity of the surimi gels andfurther leading to the destruction of the textural properties of the surimi gels.
     2. Different water retaining agents were added into surimi sols, some of which weremade into gels by heating. Both of the sols and gels were treated with different period ofcold-drying and the changes of moisture content, water activity and moisture state weremeasured. Then the sols and gels were treated with different high temperatures and the gelproperties were explored by a five-point grading system. Cold-drying significantlyreduced the moisture content of the surimi sols and gels, effectively improving theirtextural characteristics with high-temperature treatment. Moreover, adding water retainingagents changed the status and distribution of the moisture in the surimi sols and gels. Thewater activity was significantly reduced while the moisture content was almost the same,so the thermal stability of the surimi sols and gels with high-temperature treatment wasfurther improved.
     3. It was reported that wheat protein could significantly improve the thermal stability ofminced meat products. In this study, hydrolysed wheat gluten (HWG) was added andsurimi-HWG plural gels were made. The changes of the textural characteristics, moisturestatus and microstructure of the plural gels were measured to explain the mechanism howHWG affected the thermal stability of the surimi gels with high-temperature treatment.Before the addition of HWG, there was a low-temperature gelation process of surimi, inwhich the myofibrillar proteins sufficiently cross-linked to form a network structure, thenHWG uniformly dispersed in the holes of the network structure and interacted with thesurrounding myofibrillar protein, forming a uniform gel system which inhibited theaggregation of the myofibrillar protein molecule under high temperature conditions,thereby suppressed the destruction of the network structure of the gels withhigh-temperature treatment. So the water holding capacity and textural properties of thegels were maintained, and the thermal stability of the gels with high-temperaturetreatment were further improved.
     4. Alginate can react with Ca2+to form calcium alginate gel. In this study,the textural characteristics, water holding capacity and moisture status of the gel were studied. Inorder to improve its gel properties, other food gums were added. Then the plural gum withthe best gel properties was applied to improve the thermal stability of surimi gels withhigh-temperature treatment. The results showed that the calcium alginate gel with alginateconcentration4%showed the best gel properties and water holding capacity. Differentfood gums had certain effects on the properties of the calcium alginate gel, among whichkonjac gum had the best enhancement effect on the texture and microstructure of thecalcium alginate gel. Calcium alginate-konjac plural gum significantly improved thethermal stability of the surimi gels with high-temperature treatment. How the plural gumenhanced the gel properties of the gels with high-temperature treatment was mainly byincreasing the breaking strength. High temperature significantly reduced the deformationof the gels. Therefore, the plural gels with high-temperature treatment were brittle.
引文
[1]富农网.水产品深加工发展三个方向.(2009-04-06)http://shuichan.d288.com/scyzjd/284656694.html.
    [2]2008年全国水产品进出口贸易情况. http://www.agri.gov.cn/index.htm.
    [3]发展水产品深加工,把效益做大[J].渔业致富指南,2008,4.
    [4]徐永宝.彰显特色做强“虾”产业[J].江苏农村经济,2008,8:56-57.
    [5] Lianier T C, Lee C M. Surimi Technology[M]. NewYork: Marcel Dekker INC,1992:3-21,79-163,357-388,273-302.
    [6] Soottawat B, Chakkawat C&Wonnop V. Effect of medium temperature setting on gellingcharacteristics of surimi from some tropical fish[J]. Food Chemistry,2003,82:567-574.
    [7]姜英杰.冷冻鱼糜及鱼糜制品生产工艺技术[J].肉类工业,2011,10:12-14.
    [8]刘艺杰,薛长湖,李兆杰.鳙鱼鱼糜在冻藏过程中理化性质变化的研究[J].食品工业科技,2006,6:70-72.
    [9]数字中国.鱼糜国际市场统计报告:市场开发潜力巨大[EB/OL].(2006-12-14)http://www.china001.com/show_hdr.php?xname=PPDDMV0&dname=23ATB41&xpos=3.
    [10] Park J W. Surimi and surimi seafood (Second Edition)[M]. USA: Taylor&Francis Group,2005.
    [11]富农网.日本鱼糜生产商扩大全球销售市场[EB/OL].(2010-06-18)http://shuichan.d288.com/scyzjd/28618176492.html.
    [12]农业部渔业局,中国渔业年鉴[M].北京:中国农业出版社,2011:23-52,89-98.
    [13]中国鱼糜制品开拓国外市场渐成气候[J].内陆水产,2004,4.
    [14]杨玲芝,陈舜胜,赵善贞等.膳食纤维对淡水鱼糜凝胶弹性的影响[J].现代食品科技,2006,22(2):89-91.
    [15] Lanier T C, Lin T S, Liu Y M&Hamann D D. Heat Gelation Properties of Actomyosin andSurimi Prepared from Atlantic Croaker[J]. Journal of Food Science,1982,47(6):1921-1925.
    [16] Nicolini C, Adami M, Antolini F, Beltram F, Sartore M&Vakula S. Physics World,1992,5:30-34.
    [17]刘树立,王春艳,王华.我国方便食品的现状及发展趋势[J].中国食品添加剂,2007,2:131-135.
    [18]王萍.方便食品学[M].哈尔滨:东北林业大学出版社,2008.
    [19]农博网.2012中国淮北食品工业博览会圆满成功.(2012-04-19)http://news.aweb.com.cn/20120419/493941968.shtml.
    [20]企业诚信网.我国水产品加工存在五大问题及破解招数(2009-2-8)http://wenku.baidu.com/view/933d00fbc8d376eeaeaa310a.html.
    [21]励建荣.我国水产品加工业现状与发展战略[J].保鲜与加工,2005(3):1-3.
    [22]邹玉萍.即食鱼制品的防腐保藏研究[D].[硕士学位论文].无锡:江南大学,2008.
    [23]王哲恩.软包装即食醉鱼制品细菌学品质安全分析[J].海洋渔业,2007,29(4):349-354.
    [24]液化食用鱼蛋白加工技术[J].科技致富向导.2005,4.
    [25]滕瑜,王彩理.水产品加工的发展趋势与研究方向[J].食品与加工,2005(2):69-70.
    [26]郭全友,许钟,王哲恩,杨宪时.即食淡腌草鱼制品品质特征和细菌菌群组成研究[J].食品科学.2007,12:475-479.
    [27] Lanier T C. Measurement of surimi composition and functional properties[M]. Surimi Technology,1992:123-166. New York: Marcel Dekker, Inc.
    [28]刘海梅,刘茹,熊善柏,谢笔钧.变性淀粉对鱼糜制品凝胶特性的影响[J].华中农业大学学报,2007,1(26):116-119.
    [29] Ziegier G R, Acton J C. Mechanisms of Gel Formation By Proteins of Muscle Tissue[J]. FoodTechnology,1984:77-82.
    [30]鸿巢章二,桥本周久.水产利用化学[M].北京:中国农业出版社,1994.
    [31] Xiong L Y, Brekke C J. Protein extractability and thermally induced gelation properties ofmyofibrils isolated from Pro-and Post-rigor chicken muscles[J]. Journal of Food Science,1991,56:210-215.
    [32] Xiong Y L. Structure-function relationships of muscle proteins[M]. In S. Damodaran&A. Paraf(Eds.), Food proteins and their applications (pp.341-392). New York, USA: Marcel Dekker.1997.
    [33] Park J W.Surimi and surimi seafood (Second Edition)[M]. USA: Taylor&Francis Group,2005.
    [34] Damodaran S. Amino acids, peptides, and proteins. In O. R. Fennema (Ed.)[M], Food chemistry(3rd ed.),1996,321-429. New York:Marcel Dekker, Inc.
    [35] Ferry J D. Protein gels[J]. Advances in Protein Chemistry,1948,4:1-78.
    [36] Ogawa M, Kanamaru J and Miyashita H, et al. Alpha-helical structure of fish actomyosin:changes during setting[J]. Journal of Food Science.1995,60:297-299.
    [37] Wu M C, Lanier T C and Akhane T, et al. Thermal transitions of actomyosin and surimi preparedfrom Atlantic croaker as studied by differiential scaning calorimetry[J]. Journal of Food Science.1985,50:10-13.
    [38] Samejima K, Ishioroshi M, Yasui T. Relative roles of the head and tail portions of the molecule inheat-induced gelation of myosin[J]. Journal of Food Science,1981,46:1412-1418.
    [39] Sano T, Noguchi S F and Marsumoto J J, et al. Thermal gelation characteristics of myosinsubfragments[J]. Journal of Food Science.,1990,55:55-58.
    [40] Samejima K, Ishioroshi M, Yasui T. Relative roles of the head and tail portions of the molecule inheat-induced gelation of myosin[J]. Journal of Food Science,1981,46:1412-1418.
    [41] Ziegler G R, Foegeding. The gelation of proteins[J]. Adv. Food Nutr. Res,1993,34:203-297.
    [42] Haejung An, Margo Y peters, Thomas A, et al. Roles of endogenous enzymes in surimi gelation[J].Trendsin Food Science&Technology,1996,7:321-326.
    [43] Park J W. Surimi and surimi seafood (Second Edition)[M]. USA: Taylor&Francis Group,2005.
    [44]董秋颖.鸡肉肌原纤维蛋白与食品胶混合凝胶特性及其形成作用力研究[D].[硕士学位论文].南京:南京财经大学,2010.
    [45] Ronald W. Visschers, Harmen H J. De Jongh. Disulphide bond formation in food proteinaggregation and gelation[J]. Biotechnology Advances,2005,23:75-80.
    [46] Niwa E, Matsubara Y, Nakayama T, et al. Participatio of-S-S-bonding in the appearance ofsetting[J]. Bull Jap Soc Sci Fish,1991,48(5):727-732.
    [47] Makoto I, Kunihike S, Yasukilo A. Effect of blocking the myosin-actin Interaction inHeat-induced gelation of myosin in the presence of actin[J]. Agril. Biol. Chem,1980,44(9):2185-2194.
    [48] Jiang S T, Lan C C, Tsao C Y. New approach to improve the quality of minced fish products fromfreezing-thawed cod and mackerel[J]. Journal of Food Science,1986,51(2):310-312.
    [49] Smyth A B, Smith D M, O’Neill. Disulfide bonds influence the heat-induced gel properties ofchicken breast muscle myosin[J]. Journal of Food Science,1998,63(4):584-587.
    [50]孙静静.转谷氨酰胺酶对草鱼糜凝胶性的影响[D].[硕士学位论文].杭州:浙江大学,2012.
    [51] Wen-Ching Ko, Chi-Cheng Yu, Kuo-Chiang Hsu. Changes in conformation and sulfhydryl groupsof tilapia actomyosin by thermal treatment[J]. Food Science and Technology,2007(10):1-5.
    [52] Ko W C, Yu C C, Hsu K C. Changes in conformation and sulfhydryl groups of tilapia actomyosinby thermal treatment[J]. Lwt-Food Science and Technology,2007,40(8):1316-1320.
    [53] Takeshi T, Hiroshi I, Munehiko T, et al. Protein-protein interaction of fish myosin fragments[J].Journal of Food Science,1987(52),4:1103-1104.
    [54] Hossain M, Itoh Y, Morioka K, et al. Contribution of the polymerization of protein by disulfidebonding to increased gel strength of walleye Pollack surimi gel with preheating time[J]. FisheriesScience,200167(4):710-717.
    [55] Niwa E, Matsubara Y, Hamada I. Pariticipation of disulfide bonding in the appearance of settingbull[J]. Jap. soc. sci Fish,1982,48:727.
    [56] Sano T, Ohno T, Otsuka-Fuchino H, et al. Carp natural actomyosin: Thermal denaturationmechanism[J]. Journal of Food Science,1994,59(5):1002-1008.
    [57]王璋,许时婴,汤坚.食品化学[M].北京,中国轻工业出版社,2006:136-139.
    [58] Sano T, Ohno T, Otsuka-Fuchino H, et al. Carp natural actomyosin: Thermal denaturationmechanism[J]. Journal of Food Science,1994,59(5):1002-1008.
    [59] Satoshi K, Miyako W, Eiji N. The effect of urea on α-helical structure of Requiem Sharkmyosin[J]. Nippon Suisan Gakkaishi,2000,66(5):882-887.
    [60] Shue Fung Wang, Denise M. Smith. Dynamic rheological properties and secondary structure ofchicken breast myosin as influenced by isothermal heating[J]. J. Agric. Food Chem.,1994,42:1434-1439.
    [61] Gill T A, Conway J T. Thermal aggregation of cod muscle proteins using1-ethyl-3-(3-simethylaminopropyl) carbodimiimide as a zero length cross-linker[J]. Agric. Boil.chem.,1989,53:23-33.
    [62]张春岭.大豆疏水分离蛋白的结构表征及新型胶粘剂的研究[D].[硕士学位论文].武汉:华中农业大学,2009.
    [63] Riebroya S, Benjakula S, Visessanguanb W, et al. Comparative study on acid-induced gelation ofmyosin from Atlantic cod (Gardus morhua) and burbot (Lota lota)[J]. Food Hydrocolloids,2008,109(1):42-53.
    [64] Hamnda S, Nakai S. Contribution of hydrophobicity, net charge and sulphydryl groups to thermalpropertied of ovalbumin[J]. Can. Inst. Food. Sci. Technol,1985,18:290-295.
    [65]董秋颖,杨玉玲,许婷.从质构学角度研究肌原纤维蛋白凝胶形成的作用力[J].食品与发酵工业,2009,35(5):45-49.
    [66] Jim-Ichiro M, Tsutomu Y. Involvement of hydrophobic residues in heat-induced gelation ofmyosin tail subfragments from rabbit skeletal muscle[J]. Agric. Biol. Chem.,1991,55(2):597-599.
    [67] Phillips L G, Whitehead D M, Kinsella J. Structure-function properties of food proteins[M]. Pp.179-204. San Diego: Academic Press.1994.
    [68] Xiong Y L, Blandehard S P. Myofibrillar protein gelation: viscoelastic changes related to heatingProcedures[J]. Journal of Food Science,1994(59):734-738.
    [69]董秋颖,杨玉玲,许婷.从质构学角度研究肌原纤维蛋白凝胶形成的作用力[J].食品与发酵工业,2009,5:45-49.
    [70] Riebroy S, Benjakul S, Visessanguan W, et al. Comparative study on acid-induced gelation ofmyosin from Atlantic cod (Gardus morhua) and burbot (Lota lota)[J]. Food Chemistry,2008,109:42-53.
    [71]生物谷.蛋白质的结构及其功能.(2004-7-21)http://www.bioon.com/biology/biochem/57282.shtml.
    [72]生物谷.蛋白质的空间结构.(2004-3-1) http://www.bioon.com/Article/Class425/6270.shtml.
    [73]蛋白质数据库.蛋白质空间结构. http://hpdb.hbu.edu.cn/structure/proteinstructure6.asp.
    [74]张宏康.超高压对生物大分子的影响研究[D].[博士学位论文].北京:中国农业大学,2001.
    [75]周文,陈新,邵正中.红外和拉曼光谱用于对丝蛋白构象的研究[J].化学进展,2006,11(18).
    [76]钟朝辉,李春美,顾海峰,窦宏亮,周丽明.温度对鱼鳞胶原蛋白二级结构的影响[J].光谱学与光谱分析,2007,10(27):1970-1976.
    [77]宫衍香,吕刚,马传涛.拉曼光谱及其在现代科技中的应用[J].现代物理知识,2006,1:24-28.
    [78]何少贵,苏国成,周常义.苏文金漂洗工艺和加工辅料对鱼糜制品品质影响的研究进展[J].食品工业科技,2012,14(33):399-407.
    [79]刘海梅.鲢鱼糜凝胶及形成机理的研究[D]:[博士学位论文].武汉:华中农业大学食品科学技术学院,2007.
    [80] Panpipat W, Chaijan M, Benjakul S. Gel properties of croaker-mackerel surimi blend[J]. FoodChemistry,2010,122(4):1122-1128.
    [81] Chen H H. Decolouration and gel-forming ability of horse mackerel mince by air-flotationwashing[J]. Journal of Food Science,2002,(67):2970-2975.
    [82]焦道龙.鲢鱼鱼糜的加工工艺以及相关特性的研究[D]:[硕士学位论文].合肥:合肥工业大学生物与食品工程学院,2010.
    [83] Benjakul S, Visessanguan W, Thongkaew C, etc. Effect of frozen storage on chemical andgel-forming properties of fish commonly used for surimi production in Thailand[J]. FoodHydrocolloids,2005,19(2):197-207.
    [84] Lanier T C, Lin T S, Liu Y M, et al. Heat gelation properties of actomyosin and surimi preparedfromAtlantic croaker[J]. Journal of Food Science.,1982,47:1921-1925.
    [85] Kimura I, Sugimoto M and Toyoda K,et al. A study on the crosslinking reaction of myosin inkamaboko suwari gels. Nippon Suisan Gakk.1991,57:1389-1396.
    [86] Lanier T C, Lee C M. Surimi and Surimi Technology[M]. NewYork: Marcel Dekker INC,1992.
    [87] Lannier T C. Functional properties of surimi[J]. Food Technol,1986,40(3):1050-1054.
    [88] Suzuki T. Fish and Krill protein processing technology[M]. Applied Science Publ.London,1981.
    [89] Kim B Y, Hamann D D, Lanier T C and Wu M C. Effect of cyclic freezing-thawing on theviscosity and gel forming properties of surimi[J]. Abstr, Ann. Meet, Inst. Food Tchnol.1985,45.
    [90] Wu M C, Lanier T C and Akhane T, et al. Thermal transitions of actomyosin and surimi preparedfrom Atlantic croaker as studied by differiential scaning calorimetry[J]. Journal of Food Science.1985,50:10-13.
    [91] Morales O G, Ramirez J A, Vivanco D I, et al. Surimi fish species from the gulf of Mexico:evaluation of the seting phenomenon[J]. Food Chemistry,2001,75:43-48.
    [92][日]新井健一,山本常治(著),万建荣,洪玉菁(译).冷冻鱼糜[M].上海:上海科学技术出版社,1991.
    [93] Tsukamasa Y, Shimizu Y. Setting property of Sardine and Pacific Mackerel meat[J]. NipponSuisan Gakkaishi,1990,56:1105-1102.
    [94] Benjakul S, Visessanguan W, Chantarasuwan C. Effect of high-temperature setting on gellingcharacteristic of surimi from some tropical fish[J]. International Journal of Food Science andTechnology,2004,39:671-680.
    [95]汪之和,范秀娟,顾红梅等.加热条件对几种西非鱼种鱼糜凝胶特性的影响[J].食品与生物技术,2002,21(1):33-37.
    [96] Xiangjin Fu, Khizar Hayat, Zhonghai Li, et al. Effect of microwave heating on the low-salt gelfrom silver carp (Hypophthalmichthys molitrix) surimi[J]. Food Hydrocolloids,2012,27:301-308.
    [97]陈海华,薛长湖.不同添加物对鲤鱼鱼糜蛋白凝胶品质改良的研究[J].食品与发酵工业,2008,10(34):79-84.
    [98]付湘晋.白鲢鱼脱腥及其低盐鱼糜制备的研究[D]:[博士学位论文].无锡:江南大学食品学院,2009.
    [99] Tabilo-Munizaga G, Barbosa-Canovas G V. Color and textural parameters of pressurized andheat-treated surimi gels as affected by potato starch and egg white[J]. Food Research International,2004,37(8):767-775.
    [100] Campo L, Tovar C. Influence of the starch content in the viscoelastic properties of surimigels[J]. Journal of Food Engineering,2008,84(1):140-147.
    [101] Benjakul S,Visessanguan W,Pecharat S.Suwari gel properties as affected by transglutaminaseactivator and inhibitors[J]. Food Chemistry,2004,85(1):91-99.
    [102]李雨露,刘丽萍.提高肉制品保水性方法的研究进展[J].食品工业科技,2012,20:398-400.
    [103]周光宏,张兰威,李洪军等.畜产食品加工学[M].北京:中国农业大学出版社,2002:130-149.
    [104]杨芳,潘思轶.大豆蛋白凝胶复合体系水分状态的研究进展[J].食品科学,2008,29(10):680-683.
    [105]王飞镝,严霞波,奚红霞,柯晴谨,王凌伟,崔英德.凝胶态改性大豆蛋白分子与水的作用[J].高分子材料科学与工程,2010,1(26):43-46.
    [106] Manat C, Worawan P, Soottawat B. Physicochemical properties and gel-forming ability ofsurimi from three species of mackerel caught in Southern Thailand[J]. Food Chemistry,2010,121(1):85-92.
    [107] Liu W, Yao K. What causes the unfrozen water in polymers: hydrogen bonds between waterand polymer chains[J]. Polymer,2001,42:3943-3947.
    [108] Wilding P, Hedges N, Lillford P J. Salt-induced swelling of meat: The effect of storage time,pH, ion-type and concentration[J]. Meat Science,1986,18(1):55-75.
    [109]韩敏义,费英,徐幸莲,周光宏.低场NMR研究pH对肌原纤维蛋白热诱导凝胶的影响[J].中国农业科学,2009,42(6):2098-2104.
    [110] Chandy M C, Pillar V N R. Water sorption and water binding properties of crosslinkedpolyacrylamides: effect of macromolecular structure and crosslinking[J]. Polymer International,1995,37:39-45.
    [111] Choi S G, Kerr W L.1H NMR studies of molecular mobility in wheat starch[J]. FoodResearch International,2003,36(4):341-348.
    [112] Chen P L, Long Z, Ruan R, et al. Nuclear magnetic resonance studies of water mobility inbread during storage[J]. LWT-Food Science and Technology,1997,30(2):178-183.
    [113] Hazlewood C F, Nichols B L, Chamberlain N F. Evidence for the existence of a minimum oftwo phases of ordered water in skeletal muscle[J]. Nature,1969,222(5195):747-750.
    [114] Hanne C B, Margit D A, Henrik J A. Elucidation of the relation-ship between cookingtemperature water distribution and sensory at-tributes of pork: a combined NMR and sensorystudy[J]. Meat Science,2005,70(1):75-81.
    [115] Anja H, Hanne C B. Relationships between sensory perception and water distributiondetermined by low-field NMR T2relaxation in processed pork-impact of tumbling andRN-allele[J]. Meat Science,2005,69(4):709-720.
    [116] Laurent W, Bonny J M, Renou J P. Muscle characterisation by NMR imaging andspectroscopic techniques[J]. Food Chemistry,2000,69(4):419-426.
    [117] Renou J P, Foucat L, Bonny J M. Magnetic resonance imaging studies of water interactionsin meat[J]. Food Chemistry,2003,82(1):35-39.
    [118] Ziegler G R, Foegeding E A. The gelation of proteins[M]. In Advances in Food and NutritionResearch, New York: Academic Press,1990,34:203-298.
    [119]杨龙江,南庆贤.肌肉蛋白质的热诱导凝胶特性及其影响因素[J].肉类工业,2001,(10):39-42.
    [120]陈海华,薛长湖.3种非肌肉蛋白对竹荚鱼鱼糜凝胶特性的影响[J].食品科学,2010,13(31):31-35.
    [121] Weerasingbe V C, Morrissey M T, Chung Y C. Whey protein concentrate as a proteaseinhibitor in pacific whiting surimi[J]. Journal of Food Science,1996,61(2):367-371.
    [122] Benjakul S, Visessanguan W, Tueksuban J. Effect of some protein additives on proteolysisand gel-forming ability of Lizardfish (Sarurida tumbil)[J]. Food Hydrocolloids,2004,18(2):395-401.
    [123] Tabilo-Munizaga G, Barbosa-C-anovas G V. Pressurized and heat-treated surimi gels asaffected by potato starch and egg white: microstructure and water-holding capacity[J].Lebensm-Wissu-Technol,2005,38:47-57.
    [124] Lanier T C. Interactions of muscle and non-muscle proteins affecting heat-set gel rheology.In Parris N and Barford R, Eds. Interactions of Food Proteins[M]. USA: ACS Symposium,1991.
    [125]周爱梅,曾庆孝,刘欣等.两种蛋白类添加剂对鳙鱼鱼糜凝胶特性的改良[J].华南理工大学学报(自然科学版),2005,33(4):87-91.
    [126] Gómez-Guillén M C, Borderas A J, Montero P. Chemical interactions of nonmuscle proteinsin the network of Sardine (Sardina pilchardus) muscle gels[J]. Lebensm-Wiss u.-Technol,1997,(29):602-608.
    [127] Siegel D G, Church K E, Schmidt G R.Gel structure of nonmeat proteins as related to theirability to bind meat pieces[J]. Journal of Food Science,1979,(44):1276-1279.
    [128]王卫芳.鱼肉猪肉复合凝胶制品的开发及其影响因素的研究[D].华中农业大学,2006.
    [129] Magnuson K M. Use and functionality of vital wheat gluten[J]. Cereal Food World,1985,(30):179-181.
    [130]李清丽.谷朊粉活性肽的酶解制取工艺研究[D].[硕士学位论文].河南:河南工业大学,2007.
    [131]钟耕,陈宗道.小麦面筋蛋白及其化学改性研究[J].粮食与饲料工业,2001,(5):41-43.
    [132]李金荣.浅谈小麦的深加工[J].科技资讯,2010,9:137-139.
    [133]余莉莉.谷朊粉在面粉生产及食品中的应用与研究[J].食品工业.1996,(3):14-15.
    [134]孔祥珍.食品蛋白质改性研究[J].粮食与油脂,2004,(2):22-24.
    [135]胡国华.功能性食品胶[M].北京:化学工业出版社.2004.
    [136]孙静静.转谷氨酰胺酶对草鱼糜凝胶性的影响.[D].[硕士学位论文].杭州:浙江大学,2012.
    [137] Park J W. Surimi and surimi seafood (Second Edition)[M]. USA: Taylor&Francis Group,2005.
    [138] Pietrasik Z. Binding and textural properties of beef gels processed withκ-carrageenan, eggalbumin and microbial transglutaminase[J]. Meat Science,2003,63:317-324.
    [139] Filipi I, Lee C M. Preactivated Iota-carrageenan and its rheological effects in compositesurimi gel[J]. Lebensm-Wissu-Technol,1998,31:129-137.
    [140]康曼曼,包海蓉,张如意.谷朊粉对白鲢鱼鱼糜制品凝胶特性的影响[J].湖南农业科学,2009,8:150-153.
    [141] Donatus E N Amakp, Youling X. Effects of carrageenan on thermal stability of proteins fromchicken thigh and breast muscles[J]. Food Research Interational,2001,(34):247-253.
    [142]扶庆权,周辉,徐宝才.卡拉胶、黄原胶和琼脂的复配特性及其在玉米脆皮肠中的应用[J].中国食品工业,2008,7.
    [143] Rees D A. Polysaceharide shapes and their interactions some recent advances[J]. Pure App1.Chem,1981,53:1-14.
    [144] Myslabodski D E, Stancioff D. Effect of acid hydrolysis on the molecular weight ofk-carrageenan by GPC-LS[J]. Carbohydr Polym,1996,31:83-92.
    [145] Grant G T, Morris E R, Rees D A, et al. FEBS letters[J],1973,32(1):195-198.
    [146] Grete L, Elinor Y, Ragnar L O&Taran S. Thermal inactivation and growth potential ofListeriainnocua in rehydrated salt-cured cod prepared for ready-to-eat products[J]. Food Control,2010,21(8),1121-1126.
    [147] Lanier T C, Lin T S, Liu Y M&Hamann D D. Heat Gelation Properties of Actomyosin andSurimi Prepared from Atlantic Croaker[J]. Journal of Food Science,1982,47(6):1921-1925.
    [148] Nicolini C, Adami M, Antolini F, Beltram F, Sartore M&Vakula S. Physics World,1992,5,30-34.
    [149] Ogawa M, Kanamaru J, Miyashita H, et al. Alpha-helical structure of fish actomyosin:changes during setting[J]. J Food Sci,1995,60(2):297-298.
    [150] Careche M, Garca M L, Herrero A, et al. Structural properties o f aggregates from frozenstored hake muscle proteins[J]. J Food Sci,2002,67(8):2827-2832.
    [151]刘峥,夏之宁.光谱法在分子之间相互作用研究中的应用[J].激光杂志,2001,22(6):9-11.
    [152] Hiroko S, Yoshiyuki K, Kumazawa S, et al. Gel strength enhancement by addition ofmicrobial transglutaminase during onshore surimi manufacture[J]. Journal of Food Science,1995,60(2):300-304.
    [153]王兆琦,薛长湖,丛海花,孙兆敏,贾敏,张文杰.皱纹盘鲍足肌热处理过程中品质变化的动力学初探[J].食品工业科技.2012,33:85-90.
    [154] Ru L, Siming Z, Shanbai X, Bijun X&Lihong Q. Role of secondary structures in thegelation of porcine myosin at different pH values[J]. Meat Science,2008,80:632-639.
    [155] SanoT, Noguchi S F, Marsumoto J J. Thermal gelation characteristics of myosinsubfragments[J]. Journal of Food Science,1990,55(1):55-58.
    [156] Meko S, Foegeding E A. pH induced aggregation and weak gel formation of whey proteinpolymers[J]. Journal of Food Science,2000,65(1):139-143.
    [157] Lanier T C. Measurement of surimi composition and functional properties[M]. SurimiTechnology,1992:123-166. New York: Marcel Dekker, Inc.
    [158] Sano T, Noguchi S F, Tsuchiya T&Matsumoto J J. Dynamic Viscoelastic Behavior ofNatural Actomyosin and Myosin During Thermal Celation[J]. Food Sci.,1988,53:924-928.
    [159] Ogawa M, Ehara T, Tamiya T&Tsuchiya T. Thermal stability of fish myosin[J]. Biochem.Physiol,1993,1068,517-521.
    [160][日]清水潮,横山理雄(著),陈葆新等(译).软罐头食品生产的理论与实际[M].北京:中国轻工业出版社,1986.
    [161] Shie J S, Park J W. Physical characteristics of surimi seafood as affected by thermalprocessing conditions[J]. Journal of Food Science,1999,64:287-290.
    [162] Runglerdkriangkrai J, Banlue K, Raksakthai N. High temperature tolerant fish protein gelusing transglutaminase and sodium ascorbate[J]. Kasetsart university fisheries research bulletin,2006,40(1):84-90.
    [163] Hofmann K, Hoyem T, Kvale O. Physical chemical and biological changes in food caused bythermal processing[M]. London: Applied Science Pub,1977.
    [164] Belibagli K B, Speers R A, Paulson A T. Thermophysical properties of silver hake andmackerel surimi at cooking temperatures[J]. Journal of Food Engineering,2003,(60):439-448.
    [165] Runglerd kriangkrai J, Banlue K, Raksakthai N. Quality of Fish Ball from surimi as affectedby starch and sterilizing conditions[J]. Kasetsart university fisheries research bulletin,2008,32(1):39-47.
    [166] Yamazawa M, Murase M, Ichizo S. Improvement of the quality of retorted kamaboko[J].Bull Jap Soc Sci Fish,1979,45:187-192.
    [167] Nakai S, Chan E L. Hydrophobic Interactions in Food Systems[M]. USA: CRC Press,Florida.1988,192.
    [168] Hamm R, Hofmann K. Changes in the sulphydryl and disulphide groups in beef muscleproteins during heating[J]. Nature,1965,207:1269-1271.
    [169] Ahmad M, Tashiro Y, Matsukawa S, et al. Comparison of geIation mechanism of surimibetween heat and pressure treatment by using rheological and NMR relaxation measurements[J].Journal of Food science,2004,69(9): E497-E501.
    [170] Sanchez-Gonzalez I, Carmona P, Moreno P, et al. Protein and water structural changes in fishsurimi during gelation as revealed by isotopic H/D exchange and Raman spectroscopy[J]. Foodchemistry,2008,106:56-64.
    [171] Kauzmann W. Some factors in the interpretation of protein denaturation[J]. Advances inProtein Chemistry, Academic Press: New York,1959,14:1-64.
    [172] Gómez-Guillén M C, Borderías A J&Montero P. Chemical interactions of nonmuscleproteins in the network of sardine (Sardina pilchardus) muscle gels[J]. Lebensmittei-Wissenschaft&Technologie,1997,29:602-608.
    [173] Lowry O H, Rosebrough N J, Farr A L&Randall R J. Protein measurement with the Folinphenol reagent[J]. J. Biol. Chem.1951,193:265.
    [174] Carr H Y, Purcell E M. Effects of diffusion on free precession in nuclear magnetic resonanceexperiments[J]. American Journal of Physiology,1954,94(3):630-638.
    [175] Laemmli U K. Cleavage of structural proteins during the assembly of the head ofbacteriophage T4[J]. Nature,1970,227,680-685.
    [176] Ignacio S G, Pedro C, Pilar M, Javier B, Isabel S A, Arantxa R C&Mercedes C. Protein andwater structural changes in fish surimi during gelation as revealed by isotopic H/D exchange andRaman spectroscopy[J], Food Chemistry,2008,106:56-64.
    [177] Tornberg E&Nerbrink O. Swelling of whole meat and myofibrils as measured bypulse-NMR[J]. In Proceedings from the30th European Meeting of meat Research Workers.Bristol,1984:112-113.
    [178] Hanne C B, Mette K&Henrik J A. Functionality of myofibrillar proteins as affected by pH,ionic strength and heat treatment-a low-field NMR study[J]. Meat Science,2004,68:249-256.
    [179] Bertram H C, Purslow P P&Andersen H J. Relationship between meat structure, watermobility, and distribution: A low-field nuclear magnetic resonance study[J]. Journal ofAgricultural and Food Chemistry,2002,50,824-829.
    [180] Park J W. Surimi and surimi Seafood[M]. New York: Marcel Dekker Inc,2000.
    [181] Barrera A M, Ramirez J A, Gonzalez-Cabriales J J&Vazquez M. Effect of pectins on thegelling properties of surimi from silver carp[J]. Food Hydrocolloids2002,16,441-447.
    [182] Ishioroshi M, Samejima K&Yasui T. Further Studies on the Roles of the Head and TailRegions of the Myosin Molecule in Heat-induced Gelation[J]. Food Science,1982,47,114-120,124.
    [183] Bouraoui M, Nakai S, Li-Chan E. In situ investigation of protein structure in pacific whitingsurimi and gels using Raman spectroseopy[J]. Food Research International,1997,30(1):65-72.
    [184] Larsson K, Rand R P. Detection of changes in the environment of hydrocarbon chains byraman spectroscopy and its application to lipid-protein systems[J]. Biochimica et Biophysica Acta(BBA)-Lipids and Lipid Metabolism,1973,326(2):245-255.
    [185] Bouraoui M, Nakai S, Li-Chan E. In situ investigation of protein structure in Pacific whitingsurimi and gels using Raman spectroscopy[J]. Food Research International,1997,30(1):65-72.
    [186] Krimms and Bandekar J. Vibrational spectroscopy and conformation of peptides,polypeptides and proteins[J]. Advances in Protein Chemistry,1986,38:181-364.
    [187] Tu A T. Proteins. Raman spectroscopy in biology: Principles and applications[M]. NewYork: Wiley,1986:65-116.
    [188] Tornberg E, Andersson A, Goransson A, et al. Water and fat distribution in pork in relation tosensory properties[M]. Puolanne. E, Demeyer D I, Ruusunen. M,et al.Pork Quality, Genetic andMetabolic Factors. Oxon: CAB International,1993:239-258.
    [189] Brown R J S, Capozzi F, Cavani C, et al. Relationships between1H NMR relaxation data andsome technological parameters of meat: A chemometric approach[J]. Journal of MagneticResonance,2000,147(1):89-94.
    [190] Li-Chan E, Nakai S, Hirotsuka M. Raman spectroscopy as a probe of protein structure infood systems[M]. Yada R Y, Jackman R L, Smith J L. Protein structure-function relationships infoods. London: Blackie Academics&Professional.1994:163-197.
    [191] Bouraoui M, Nakai S, Li-Chan E. In situ investigation of protein structure in Pacific whitingsurimi and gels using Raman spectroscopy[J]. Food Research International,1997,30(1):65-72.
    [192] Tornberg E, Andersson A, Goransson A, et al. Water and fat distribution in pork in relation tosensory properties[M]. Puolanne E, Demeyer D I, Ruusunen M, et al. Pork quality, genetic andmetabolic factors. Oxon: CAB International,1993:239-258.
    [193] Bertram H C, Karlsson A H, Andersen H J. The significance of cooling rate on waterdynamics in porcine muscle from heterozygote carriers and non-carriers of the halothane gene-alow-field NMR relaxation study[J]. Meat Science,2003,65(4):1281-1291.
    [194] Bertram H C, Karlsson A H, Rasmusen M, et al. Origin of multiexponential T2relaxation inmuscle myowater[J]. Journal of Agricultural and Food Chemistry,2001,49(6):3092-3100.
    [195]许时婴,李博,王璋.复配胶在低脂肉糜制品中的作用机理[J].无锡工大学学报,1996,15(2):102-108.
    [196]汪学荣,彭顺清.复合磷酸盐对鱼糜制品的保水效果研究[J].食品工业,2002(4):41-42.
    [197]李毓杰,王继伟.对磷酸盐增强肉保水性机理探讨[J].肉类工业,1993,(10):29-34.
    [198] Guilbert S, Clement O and Cheftel J C. Texture and storage stability of processed beefsticksas affected by glycerol and moisture levels[J]. Food Science,1981,63:84-87.
    [199] Hamilton R.G. Semi-moisture foods[A]. Proceedings of the34th International Congress ofMeat Science and Technology[C]. Brisbane,1988:291-294.
    [200] Xiong Y L. Structure-function relationships of muscle protein[M]. Damodaran S, Paraf A. ed.Food Protein and Their Application. New York: Marcel Dekker, Inc.,1997:341-392.
    [201] Bertram H C, Kristensen M, stdal H, et al. Does oxidation affect the water functionality ofmyofibrillar proteins?[J]. Journal of Agricultural and Food Chemistry,2007,55(6):2342-2348.
    [202] Meiboom S, Gill D. Modified spin-echo method for measuring nuclear relaxation times[J].The Review of Scientific Instruments,1958,29(8):688-691.
    [203] Ramírez-Suárez J C, Addo K&Xiong Y L. Gelation of mixed myofibrillar wheat glutenproteins treated with microbial transglutaminase[J]. Food Research International,2005,38:1143-1149.
    [204] Feng J, Xiong Y L&Mikel W B. Effects of thermally/enzymatically modified soy proteinson textural properties of pork frankfurters[J]. Journal of Food Science,2003,68:1220-1224.
    [205] Ahmedna M, Prinyawiwatkul W&Rao R M. Solubilized wheat protein isolate: functionalproperties and potential food applications[J]. Journal of Agricultural and Food Chemistry,1999,47(4):1340-1345.
    [206] Sarah Comfort&Nazlin K Howell. Gelation properties of salt soluble meat protein andsoluble wheat protein mixtures[J]. Food Hydrocolloids,2003,17:149-159.
    [207] Maningat C C, Bassi S&Hesser J M. Wheat gluten in food and non-food systems[J].Technical Bulletin-American Institute of Baking Research,1994,16:1-8.
    [208] Attenburrow G, Barnes D J, Davies A P&Ingman S J. Rheological properties of wheatgluten[J]. Journal of Cereal Science,1990,12:1-14.
    [209] Chen Haihua, Xu Shiying, Wang Zhang. Interaction between flaxseed gum and meatprotein[J]. Journal of Food Engineering,2007,80(4):1051-1059.
    [210] Sarah Comfort, Nazlin K. Howell. Gelation properties of salt soluble meat protein andsoluble wheat protein mixtures[J]. Food Hydrocolloids.2003,17:149-159.
    [211] Ziegler G R, Foegeding E A. The gelation of proteins[M]. In Advances in Food and NutritionResearch, New York: Academic Press,1990,34:203-298.
    [212]杨龙江,南庆贤.肌肉蛋白质的热诱导凝胶特性及其影响因素[J].肉类工业,2001,(10):39-42.
    [213] Sarah Comfort, Nazlin K. Howell. Gelation properties of salt soluble meat protein andsoluble wheat protein mixtures[J]. Food Hydrocolloids.2003,17:149-159.
    [214] Fennema I G, Donhowe J J&Keste. Lipid type and location of the relative humiditygradient influence on the barrier properties of lipids to water vapor[J]. Journal of FoodEngineering,1994,22(1-4):225-239.
    [215] Fu J T&Rao M A. The influence of sucrose and sorbitol on gel–sol transition oflow-methoxyl pectin+Ca2+gels[J]. Food Hydrocolloids,1999,13(5):371-380.
    [216] Marco M, Mauro M, Roberto R. Mechanical properties of alginate gels: empiricalcharacterization[J]. Journal of Food Engineering,1999,39:369-378.
    [217]汪东风.食品化学[M].北京:化学工业出版社.2007.
    [218] Ana Blandino, Manuel Macías, Domingo Cantero. Formation of calcium alginate gelcapsules: Influence of sodium alginate and CaCl2concentration on gelation kinetics[J]. Journal ofBioscience and Bioengineering,1999,88(6):686-689.
    [219] Parisa Aslani, Ross A. Kennedy. Studies on diffusion in alginate gels. I. Effect ofcross-linking with calcium or zinc ions on diffusion of acetaminophen[J]. Journal of ControlledRelease,1996,42(1):75-82.
    [220]卢伟丽.卡拉胶和褐藻胶流变学特性及凝胶特性的研究[D]:[硕士学位论文].青岛:中国海洋大学,2008.
    [221] Takayuki B, Ryosaku S, Masami S, Koichi O. Solute retention and the states of water inpolyethylene glycol and poly (vinyl alcohol) gels[J]. Journal of Chromatography A,2004,1040(1):45-51.
    [222] Maquet J, Théveneau H, Djabourov M, Leblond J, Papon P. State of water in gelatinsolutions and gels: An1H n.m.r. investigation[J]. Polymer,1986,27(7):1103-1110.
    [223] Fernández P P, Martino M N, Zaritzky N E, Guignon B, Sanz P D. Effects of locust bean,xanthan and guar gums on the ice crystals of a sucrose solution frozen at high pressure[J]. FoodHydrocolloids,2007,21(4):507-515.
    [224] Borchard W, Kenning A, Kapp A, Mayer C. Phase diagram of the system sodiumalginate/water: A model for biofilms[J]. International Journal of Biological Macromolecules,2005,35(5):247-256.
    [225] Renaud T, Briery P, Andrieu J, Laurent M. Thermal properties of model foods in the frozenstate[J]. Journal of Food Engineering,1992,15(2):83-97.
    [226] Shingjiang Jessie Lue, Song-Jiang Shieh. Modeling water states in polyvinyl alcohol-fumedsilica nano-composites[J]. Polymer,2009,50(2):654-661.
    [227] Matija T, Florian P, Otto G. A thermoreversible double gel: Characterization of amethylcellulose and κ-carrageenan mixed system in water by SAXS, DSC and rheology[J].Journal of Colloid and Interface Science,2008,322(1):41-50.
    [228] Barrera A M, Ramírez J A, González-Cabriales J J, Vázquez M. Effect of pectins on thegelling properties of surimi from silver carp[J]. Food Hydrocolloids,2002,16,(5):441-447.
    [229]胡国华,甘果.新型食品胶在冷食中的应用[J].冷饮与速冻食品工业,2004,10(4):22-25.
    [230]王若峰,赵谋明,王妙,陈兆锋.琼脂与电解质、食品胶三者之间相互作用的研究[J].食品科学,1994,8:7-11.
    [231]林炜,宁正祥.多糖类食品胶间的相互作用研究[J].华南理工大学学报(自然科学版).1997,25(9):10-12.
    [232]王志辉,李春海.卡拉胶凝胶特性及其在巧克力牛奶中的应用[J].中国食品添加剂,2009,4:160-163.
    [233] Srinivas J&Rengaswami C. Three-dimensional structure of the sodium salt ofiota-carrageenan[J]. Carbohydrate Research,2001,335(3):181-194.
    [234]陈林,王志贤,马妮.魔芋葡甘露聚糖的纯化及羧甲基化改性研究[J].云南民族大学学报(自然科学版),2005,14(2):133-135.
    [235] Yihong Huang, Huiqun Yu, Chaobo Xiao. Effects of Ca2+crosslinking on structure andproperties of waterborne polyurethane-carboxymethylated guar gum films[J]. CarbohydratePolymers,2006,66(4):500-513.
    [236] Nickerson M T, Paulson A T, Speers R A. Rheological properties of gellan solutions: effectof calcium ions and temperature on pre-gel formation[J]. Food Hydrocolloids,2003,17(5):577-583.
    [237] Casas J A, Santos V E&García-Ochoa F. Xanthan gum production under several operationalconditions: molecular structure and rheological properties[J]. Enzyme and Microbial Technology,2000,26(2-4):282-291.
    [238] William J Leo, Aiden J McLoughlin, Dermot M Malone. Effects of sterilization treatmentson some properties of alginate solutions and gels[J]. Biotechnol. Prog.,1990,6(1),51-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700