纳米零价铁及铁(氢)氧化物去除水中Cr(Ⅵ)和Cu~(2+)的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业活动加剧了环境问题的产生,如由于重金属的积累导致生态系统恶化问题。重金属在工业生产上的重要性使其应用非常广泛,但未经处理或处理不完全的重金属污染物排入环境后,就会对土壤和水体等造成相当严重的后果,而且,重金属的量超过某一数值后,就会对有机体造成危害。如Cr(Ⅵ)、Cd~(2+)、Cu~(2+)及Ni~(2+)等离子已经证实能够引起人的肝、肾损伤及威尔士(Wilson)综合症。因此重金属污染治理正日益引起人们的重视。
     铁基材料,包括铁(氢)氧化物和零价铁均可对多种环境污染物起到修复作用。铁(氢)氧化物,尤其是赤铁矿和针铁矿在土壤和沉积物中广泛存在,对环境中重金属具有良好的吸附性能,多年来一直作为治理重金属污染物的重要材料之一。而零价铁尤其是纳米零价铁由于具有高的反应活性,能够有效治理水体及土壤中多种重金属,成为目前重金属污染修复技术中一个非常活跃的研究领域。纳米零价铁是指粒子的三维尺度中至少有一维处于1-100nm之间的零价铁。由于其颗粒粒径小,比表面积大,表面原子占原子总数比例高,展现出量子化效应,由此表现出独特的优越性能,远非宏观体相材料所媲美。但由于粒径极小,粒子具备较高的化学反应活性,为保持稳定状态通常表现出相互聚集的倾向,为此需要对新合成的纳米铁材料进行表面改性以钝化或稳定化纳米铁颗粒,满足他们在实际应用中的需要。
     本文以纳米零价铁、赤铁矿(α-Fe_2O_3)、针铁矿(α-FeOOH)为供实材料,对比研究了溶液中Cr(Ⅵ)的去除效果,考察不同铁基材料对重金属Cr(Ⅵ)的去除能力;在此基础上,以效果显著的纳米零价铁为基础,对其进行表面改性以解决其在空气中容易发生团聚和氧化问题,并将改性前后纳米铁材料应用于Cr(Ⅵ)和Cu~(2+)污染物的治理上,考察稳定前后零价纳米铁对重金属污染物去除效果的影响。实验对水体中Cr(Ⅵ)和Cu~(2+)的去除考察了多种影响因素,探讨了反应动力学,揭示了反应机理;以期为纳米零价铁或铁(氢)氧化物治理重金属污染物提供理论依据。主要研究结果如下:
     以均匀沉淀法和碱性条件水解高氯化铁方法制备赤铁矿(α-Fe_2O_3)和针铁矿(α-FeOOH);以NaBH4液相还原FeCl_3·6H_2O制备普通纳米零价铁(N-Fe~0),并通过三系列、多种分散剂的筛选,制备出以2-膦酸丁烷-1,2,4-三羧酸(PBTCA)改性的纳米零价铁P-Fe~0、工业用水处理剂TH-904改性的纳米零价铁T-Fe~0。运用XRD、SEM、TEM及FTIR等多手段对制备产品的表征表明,合成的α-Fe_2O_3、α-FeOOH结晶度好,性能优良;改性后纳米铁表面检测到PBTCA分子中-PO_3H_2基团,TH-904分子中的-COOH基团,证明改性实验成功,合成的P-Fe~0及T-Fe~0的平均粒径分别为73和64nm。
     以纳米零价铁系列产品N-Fe~0、P-Fe~0及T-Fe~0为一组,以铁(氢)氧化物产品α-Fe_2O_3和α-FeOOH为一组,分别对水溶液中Cr(Ⅵ)的去除效果进行对比考察,通过pH、初始浓度、温度等因素考察、吸附动力学分析,XPS手段机理揭示,得出纳米零价铁系列所有产品对溶液中Cr(Ⅵ)的去除效果均优于铁(氢)氧化物产品。其中,N-Fe~0、P-Fe~0及T-Fe~0产品中,改性后的P-Fe~0及T-Fe~0对溶液中Cr(Ⅵ)的去除率和反应动力学表观速率常数均高于改性前的N-Fe~0;α-Fe_2O_3和α-FeOOH相比较,α-FeOOH对溶液中Cr(Ⅵ)的去除率和吸附速率常数均较α-Fe_2O_3高。反应机理分析表明纳米零价铁对水溶液中Cr(Ⅵ)的去除机制主要为零价铁的氧化-还原反应,其次还有吸附及共沉淀等作用。而铁(氢)氧化物产品对Cr(Ⅵ)的去除则主要借助吸附作用。反应后铁以Fe(Ⅲ)形式存在,纳米零价铁表面的Cr(Ⅵ)被还原为Cr(Ⅲ)。
     以纳米零价铁系列产品N-Fe~0、P-Fe~0及T-Fe~0为水处理材料,对水溶液中Cu~(2+)的去除效果进行考察,通过pH、初始浓度等因素考察、吸附动力学分析,XPS手段机理揭示,得出N-Fe~0、P-Fe~0及T-Fe~0对Cu~(2+)的去除能力顺序为P-Fe~0>T-Fe~0>N-Fe~0,吸附动力学符合准二级速率方程,反应机理包括Fe(0)对Cu~(2+)的还原作用和吸附作用,反应后铁以Fe_2O_3和FeOOH形式存在,纳米零价铁表面的铜被还原为Cu0和Cu2O。
     以工业常用水处理剂PBTCA及TH-904作为稳定剂对纳米零价铁进行表面改性处理。PBTCA分子中含有1个-PO_3H_2及3个-COOH基团,TH-904分子含有多个-COOH基团,改性后纳米零价铁颗粒表面吸附-PO_3H_2及-COOH基团,空间位阻效应减弱了颗粒间相互聚集的倾向,增大了纳米颗粒间的距离;此外,PBTCA及TH-904分子在溶液中水解后改变了粒子的表面电荷分布,颗粒间增大的静电斥力也阻碍纳米颗粒间的相互团聚。空间位阻和静电稳定双重作用使纳米铁颗粒得到有效分散,对增加Cr(Ⅵ)和Cu~(2+)去除起到了重要作用。
The surge of industrial activities has intensified more environmental problems as seen forexample in the deterioration of several ecosystems due to the accumulation of dangerouspollutants,such as heavy metals. Heavy metals are still being used in various industries due totheir technological importance. Yet, untreated or imperfect treatment of waste products fromthese industries will carry other serious issues to human health and environment. Aside fromthe environmental damage, human health is likely to be affected as the presence of heavymetals beyond a certain limit brings serious hazards to living organisms. For instance, Cr (VI),Cd~(2+), Cu~(2+)and Ni~(2+)ions have been proven to cause kidney damage, liver damage or Wilsondisease and dermatitis or chronic asthma. Therefore, heavy metal pollution treatment isurgent.
     Iron based materials, including iron hydroxides and zero-valent iron are usedsuccessfully for remediation of a variety of environmental pollutants. Goethite and hematiteare always considered to be important environmental materials which can be functioned asadsorbents for heavy metals. They widely exist in soil particles and rock, aquatic sediment.Due to large specific surface area and more active sites, the use of zero-valent iron (Fe~0),especially nanoscale zero-valent iron (N-Fe~0), as reactive media for treatment of heavymetals and for remediation of contaminated soil and groundwater has been extensivelyinvestigated. Nanoparticles are defined as particles with size in the range of1to100nm atleast in one of the three dimensions. Because of this very small size scale, they possess animmense surface area per unit volume, a high proportion of atoms in the surface and nearsurface layers, and the ability to exhibit quantum effects. The resulting unique properties ofnanoparticles can not be anticipated from a simple extrapolation of the properties of bulkmaterials. The synthesized nanoparticles have to be surface modified in most cases, in orderto passivate and stabilize them since their nanoscale renders them chemically very reactiveand/or physically aggregative. The nanoparticles are also surface functionalized in order tomeet the needs of specific applications.
     In this research work, the wastewater containing Cr (VI) was treated through contrastresearch by N-Fe~0, α-Fe_2O_3and α-FeOOH synthesized in the lab. On the bases of theexperimental results, the intensive efforts have been made to coat and protect Fe~0nanoparticles from agglomeration and air oxidation. The influences of pH, initialconcentrations of heavy metal ions, temperature and the dosages of iron bases materials onthe Cr (VI) and Cu~(2+)ions removal were investigated. The kinetics and mechanisms of Cr (VI)and Cu~(2+)ions removal were also discussed in this research work. The main details and results were presented:
     Microcrystalline precipitates of hematiteα-Fe_2O_3and goethite α-FeOOH were preparedfrom ferric ions. The N-Fe~0nanoparticles were prepared with FeCl_3·6H_2O and NaBH4byliquid reduction, and the P-Fe~0and T-Fe~0nanoparticles were modified by2-phosphonobutane-1,2,4-tricarboxylic acid (PBTCA) and TH-904respectively with thesame method. The X-ray diffraction (XRD), scanning electron microscope (SEM),transmission electron microscope (TEM) and Fourier transform infrared spectroscopy (FTIR)were conducted to characterize the structure of these products. The results show that hematiteα-Fe_2O_3and goethite α-FeOOH had good crystallinity and excellent performance. The-PO_3H_2group on the P-Fe~0nanoparticle surface and the-COOH group on the T-Fe~0nanoparticle surface were detected by FTIR spectroscopy, which demonstrated themodification for N-Fe~0nanoparticles were successful. TEM images illustrated that theaverage diameters of produced P-Fe~0and T-Fe~0nanoparticles were about73and64nmrespectively.
     The experiment results on Cr (VI) removal by N-Fe~0, P-Fe~0and T-Fe~0nanoparticlesshowed that the removal efficiencies by P-Fe~0and T-Fe~0nanoparticles were higher than thoseby N-Fe~0nanoparticles, as well as the reaction kinetics apparent rate constants. The findingsby hematite α-Fe_2O_3and goethite α-FeOOH demonstrated that the goethite α-FeOOH wasbetter than hematite α-Fe_2O_3on Cr (VI) removal. Furthermore, all the iron nanoparticles(N-Fe~0, P-Fe~0and T-Fe~0) were greatly superior to α-Fe_2O_3and α-FeOOH on Cr (VI) removal.Mechanism analysis indicated that the Cr (VI) uptake by the iron nanoparticles (N-Fe~0, P-Fe~0and T-Fe~0) was mainly via a redox by Fe (0) particles, but the one by hematite α-Fe_2O_3andgoethite α-FeOOH was primarily of adsorption.
     The experiment results on Cu~(2+)ions removal by N-Fe~0, P-Fe~0and T-Fe~0nanoparticlesshowed that the Cu~(2+)ions removal efficiencies by P-Fe~0and T-Fe~0nanoparticles were higherthan those by N-Fe~0nanoparticles, as well as the adsorption rate constants. The efficiencies ofCu~(2+)ions removal for different iron nanoparticles were P-Fe~0>T-Fe~0>N-Fe~0, which obtainedthrough investigating the influencing factors, such as pH, Cu~(2+)ions initial concentration,temperature, as well as analyzing the kinetics and mechanisms. The rate of Cu~(2+)ionsadsorption kinetics on the iron nanoparticles followed the pseudo-second order equation. Themechanism was mainly of redox by Fe(0) nanoparticles. XPS results showed that Fe(0)particles was oxided to Fe_2O_3和FeOOH and the Cu~(2+)ions was reduced to Cu0和Cu2O afterreaction.
     The nanoscale zero-valent iron was modified by PBTCA and TH-904. There is a-PO_3H_2group and three–COOH groups in a PBTCA molecule, and many–COOH groups in aTH-904molecule. On one hand, the-PO_3H_2and–COOH groups on the P-Fe~0and T-Fe~0 nanoparticle surfaces increased the distances and, therefore, weaken the aggregation forcesbetween the iron nanoparticles, on the other hand, the hydrolysis of PBTCA and TH-904molecules in the solution changed the charge distribution on the iron nanoparticle surfaces,which increased the electrostatic repulsion hence hindering the interaction between ironnanoparticles. The modified iron nanoparticles can achieve good dispersibility when theelectrostatic stabilize effect and space steric hindrance stabilize effect act simultaneously. Thegood dispersibility of iron nanoparticles played an important role in increasing theefficiencies of Cr (VI) and Cu~(2+)ions removal.
引文
1.曹瑞军,林晨光,孙兰,赵诣林,刘总,贾成厂.2006.超细粉末的团聚及其消除方法.粉末冶金技术,24(6):460-466.
    2.常学秀,施晓东.2001.土壤重金属污染与食品安全.云南环境科学,20(S1):21-24.
    3.陈冰,王晨,王西奎.2009.超声波-零价铁协同降解废水中活性深蓝M-2GE的研究.环境工程学报,3(9):1589-1591.
    4.陈程,陈明.2010.环境重金属污染的危害与修复,环境保护,(3):55-57.
    5.陈洪,徐祖雄,翟少岩,等.1995.球磨法制备超细纳米铁粉.金属学报,31(2):73.
    6.陈怀满,郑春荣,涂从,朱永官,1999.中国土壤重金属污染现状与防治对策.人类环境杂志,28(2):130-131.
    7.陈敬中,刘剑洪,孙学良,陈瀛.2010(第二版).纳米材料科学导论.北京:高等教育出版社.
    8.陈静.2001.氧化铁矿物作为环境材料在土壤和水体中的应用.贵州地质,1(3):205-209.
    9.陈郁,全燮.2000.零价铁处理污水的机理及应用.环境科学研究,13(5):24-26.
    10.成新.2002.太湖流域重金属污染亟待重视.水资源保护,(4):39-41.
    11.程能林.1994.溶剂手册.北京:化学工业出版社.
    12.崔德杰,张玉龙.2004.土壤重金属污染现状与修复技术研究进展.土壤通报,35(3):366-370.
    13.丁建旭,廖其龙,杨定明,周天亮,乔光明.2007.微乳液体系制备Fe2B包覆纳米α-Fe及其性能研究.化工新型材料,35(2):25-29.
    14.丁振华,冯俊明.2000.氧化铁矿物对重金属离子的吸附及其表面特征.矿物学报,20(4):349-351.
    15.丁振华,王明仕,冯俊明.2003.天然铁(氢)氧化矿物对铜离子的吸附特征.矿物学,23(1):70-74.
    16.范潇梦,关小红,马军.零价铁还原水中硝酸盐的机理及影响因素.2008.中国给水排水,20(14):5-9.
    17.方继敏,李山虎,龚文琪,孙振亚,杨红刚.2009.五氯苯酚在赤铁矿表面吸附的红外光谱研究.光谱学与光谱分析,29(2):318-321.
    18.方继敏.2008.铁(氢)氧化物的制备、负载及对HIOCs类污染物的吸附研究.[博士学位论文].湖北:武汉理工大学.
    19.冯易君,陈文浚,李首健.等.1995.水合氧化铁对废水中某些放射性核素的吸附研究.环境污染与防治,17(2):19-23.
    20.付丰连.2010.物理化学法处理重金属废水的研究进展.广东化工,37(4):115-117.
    21.付建华,2008.我国土壤修复的研究现状.中国环境科学学会学术年会优秀论文集,
    22.付莉婷,王森.2010.重金属污染的生物修复研究进展.贵州化工,35(1):35-37.
    23.高廷耀,陈洪斌,夏四清,周增炎.2006.我国水污染控制的思考.给水排水,32(5):9-13.
    24.耿兵.2009.壳聚糖稳定纳米铁的制备与修复地表水中六价铬污染的研究.南开大学博士论文
    25.顾征帆,吴蔚.2005.太湖底泥中重金属污染现状调查与评价.甘肃科技,21(12):21-22.
    26.郭琇,王宝娥.2009.零价铁在环境污染治理应用中的研究进展.仲恺农业工程学院学报,22(4):61-66.
    27.国伟林.2002.有序介孔材料的合成及其在环境科学中的应用.济南大学学报(自然科学版),16(1):101.
    28.韩润平,陆雍森.2000.用植物消除土壤中的重金属.江苏环境科技,13(1):28-29.
    29.何宏平,郭九皋,谢先德,等.1999.蒙脱石等粘土矿物对重金属离子吸附选择性的实验研究.矿物学报,19(2):231-235.
    30.胡鸿飞,李大成,吉红兵.2001.纳米氧化铁的制备方法及进展.四川有色金属,(1):15-20.
    31.胡涛,吴洁,何其中,严群.2007.纳米TiO2光催化在废水治理中的研究与应用.水资源保护23(4):77-80.
    32.黄成群,徐彦芹,曹渊.2010.介孔材料负载光催化剂在废水处理中的应用.工业水处理,30(9):20-24.
    33.黄园英,刘菲,鲁雅梅.2003.零价铁去除Cr(Ⅵ)的批实验研究[J].岩石矿物学杂志,22(4):349-351.
    34.黄园英,刘丹丹,刘菲.2009.纳米铁用于饮用水中As(III)去除效果.生态环境学报,18(1):83-87.
    35.蒋小丽,李杰霞,杨志敏,陈玉成.2009.改性玉米秸秆吸附处理含Cu废水.西南大学学报,31(11):87-91.
    36.酒金婷,葛钥,张束戎,等.2001.无团聚纳米氧化锆的制备及应用.无机材料学报,16(5):867-871.
    37.李宝贵,杜霞.2001.污水资源化及其农业利用的对策.中国农村水利水电,11:9-12.
    33.李发伸,杨文平,薛德胜.1994.纳米铁微粒的制备及研究.兰州大学学报(自然科学版),30(1):144-146.
    39.李海莹,王薇,金朝晖,张环,宣晓梅,李铁龙.2006.纳米铁的制备及其对污染地下水的脱硝研究.南开大学学报(自然科学版),39(1):8-13.
    40.李素君,卫建军,余江,王恺莹,牛永超,于洋.2010.羧甲基纤维素包覆纳米铁的制备及其分散性研究环境科学与技术.33(9):15-18.
    41.梁震,王焰新.2002.纳米零价铁的制备及其用于污水处理的机理研究.环境保护,(4):14-16.
    42.廖水姣,王娟,朱端卫,等.2006.负载硼的针铁矿结构表征研究,43(5):742-748.
    43.林玉锁.1996.三种氧化铁样品吸持铜离子性能的研究.土壤学报,33(1):111-112.
    44.刘凤莲,刘兴荣.2009.零价铁脱除水中六价铬的实验研究.环境与健康杂志.26(2):139-141.
    45.刘守新.2004.金属离子的光催化去除研究进展.化学通报,12(15):898-903.
    46.刘永红,姜冠杰,杨海征,付庆灵,胡红青.2008.土壤重金属污染及其修复技术研究进展[C].中国土壤学会第十一届全国会员代表大会暨第七届海峡两岸土壤肥料学术交流研讨会论文集(下).
    47.刘永红,叶发兵,岳霞丽,董元彦.2006.铁氧化物的合成及其表征.化学与生物工程23(7):10-12.
    48.柳艳,陈军,宋磊,钱玉山.2008.纳米材料的表面修饰和表征技术.能源环境保护,22(5):14-17.
    49.卢堂俊,李剑超,孙洪霞,张晓伟,穆云.2010.改性铁基材料的制备及对酸性黑10B脱色研究.环境工程学报,36(2):52-56.
    50.孟祥和,胡国飞.2000.重金属废水处理.北京:化学工业出版社.
    51.倪星元,姚兰芳,沈军,周斌.2008.纳米材料制备技术.北京:化学工业出版社.
    52.牛少凤,李春晖,楼章华,许月萍.2009.纳米铁对水中Cr(Ⅵ)和p-NCB的同步修复机制.环境科学,30(1):146-150.
    53.欧延,邱晓滨,许宗祥等.2004.均匀沉淀法合成纳米氧化铁.厦门大学学报(自然科学版),43(6):882-885.
    54.潘成福,侯登录,张民.1999.纳米铁粉的制备与性质.磁记录材料,2(2):8.
    55.乔俊莲,郑广宏,闰丽,杨健.2009.零价铁修复硝酸盐污染水体的研究进展.水处理技术,35(6):6-10.
    56.饶品华,肖稳发,徐菁利,等.2009.天然有机物对零价铁去除水体中砷的影响研究.环境污染与防治,31(6):43-46.
    57.任高平.1986.化学法治理铜件酸洗废水并电解回收铜.工业水处理,6(6):46-47.
    58.邵刚.2000.膜法水处理技术.北京:冶金工业出版社.
    59.水信息网. http://www. hwcc. com. cn/new sdisplay/newsdisplay. asp? Id=63886#.2003.3.25
    60.宋晓岚,王海波,吴雪兰,曲鹏,邱冠周.2005.纳米颗粒分散技术的研究与发展.化工进展,24(1):47-52.
    61.苏丹丹,杨晓霞,贾庆明.2010.电化学处理废水研究进展.化工技术与开发,39(9):38-41.
    62.苏凌浩,张校刚.2004.酶诱发均匀沉淀法制备纳米Fe2O3.精细化工,21(5):331.
    63.孙剑辉,祁巧艳,王晓钰.2005.纳米TiO2光催化技术在工业废水处理中的应用,水资源保护,21(3):29-32.
    64.田宝珍,汤鸿霄.1990.聚合铁的红外光谱和电导特征.环境化学,9(6):70-76.
    65.汪信,刘孝恒主编.2010.纳米材料学简明教程.北京:化学工业出版社.
    66.王超,张振忠,段志伟.2007.直流电弧等离子体法制备纳米铁粉.铸造技术,28(3):417-420.
    67.王飞镝.1999.新型淀粉黄原酸盐从镍电解液中除铜的研究.有色金属(冶炼部分),2:11-14.
    68.王强a,屈亚非,肖广全,黄玉明,魏世强.2010.α-Fe2O3对Cr(Ⅲ)的等温吸附特征研究.土壤学报,47(1):159-162.
    69.王强b.2010.赤铁矿对Cr(Ⅲ)的吸附动力学研究.西南大学学报,32(3):50-53.
    70.王绍文,齐龙武.1992.铁氧体法处理重金属废水的实践与发展.城市环境与城市生态,5(2):21-25.
    71.王帅,李翠兰,王楠,张晋京,窦森.2011.介质离子强度对Cu2+在针铁矿和δ-MnO2表面吸附影响的红外光谱.吉林大学学报,49(2):353-357.
    72.王薇.2008.包覆型纳米铁的制备及用于地下水污染修复的实验研究.南开大学博士论文.
    73.王文俊,阮红权,叶张荣.2008.刚果红的零价铁还原脱色条件及机理研究.环境科学与管理,33(10):130-133.
    74.王小艳.2008.浅议含重金属废水处理技术.有色冶金设计与研究,29(6):41-42.
    75.王雪,丁庆伟,刘宏芳,钱天伟.2010.不同分散剂作用下制备纳米铁及表征.太原科技大学学报,31(5):432-435.
    76.王吟,赵建夫,王学江,张亚雷.2010.零价铁修复铬污染水体研究进展.安徽农业科学,38(6):3117-3119.
    77.文玉.2009.我国将全面治理重金属污染.中国减灾,9:58.
    78.吴大清,刁桂仪.2003.含铁矿物的表面催化氧化作用及其环境意义.矿物岩石,23(4):11-14.
    79.吴栋,韦建军,唐永建,吴卫东,罗江山,孙卫国.2008.纳米铁粉制备方法的研究.四川大学学报(自然科学版),45(2):352-356.
    80.吴瑞娟,金卫根,邱峰芳.2008.土壤重金属污染的生物修复.安徽农业科学,36(7):2916-2918.
    81.吴瀛.2010.含重金属离子废水治理技术的研究进展.科技资讯,24:153.
    82.熊慧欣,周立祥.2008.不同晶型羟基氧化铁(FeOOH)的形成及其在吸附去除Cr(Ⅵ)上的作用.岩石矿物学杂志,27(6):559-566.
    83.徐志军,初瑞清主编.2010.纳米材料与纳米技术.北京:化学工业出版社.
    84.许友泽,成应向,向仁军.2010.铬污染土壤修复技术研究进展.化学工程与装备,(5):127-129.
    85.杨春光,乔爱平,侯金飚,赵永红.2003.纳米粉体团聚的原因及解决方法.山西工,23(1):56-58.
    86.杨凤林,全燮,高桂英.1988.铁屑过滤法处理染料废水的研究.化工环保,8(6):330-333.
    87.杨苏才,南忠仁,曾静静.2006.土壤重金属污染现状与治理途径.安徽农业科学,34(3):549-552.
    88.易正戟,曹新星,谢叶归.2009.零价铁固定U(VI)的反应动力学及反应机理研究.采矿技术,9(2):58-61.
    89.于天仁,陈志诚.1990.土壤发生中的化学过程.北京:科学出版社.
    90.张朝平,邓伟,胡宗超,等.2000.微乳液法制备超细包裹型铁粉.应用化学,17(3):248-251.
    91.张从,夏立江.2000.污染土壤生物修复技术.北京:中国环境科学出版社.
    92.张立德,牟季美.2001.纳米材料和纳米结构.北京:科学出版社.
    93.张瑞华,孙红文.2004.零价铁修复铬污染水体的实验室研究.农业环境科学学报,23(6):1192-1195.
    94.张万忠,乔学亮,陈建国,王洪水.2004.纳米材料的表面修饰与应用.化工进展,23(10):1067-1071.
    95.赵永才,孙又山,王玉树.1994.微电解法脱除水溶性染料废水色度的研究.环境污染与防治,16(1):18-21.
    96.郑珊,高濂,郭景坤.2002.光沉积法合成纳米金属Pd负载的MCM-TiO2及其光催化性质研究.高等学校化学学报,23(6):1126-1130.
    97.中华人民共和国环境保护部,中国环境状况公报(2010).2011.
    98.周代华,李学垣,徐风琳.1997.重金属在氧化物表面的吸附形态.土壤学报,34(3):348-351.
    99.周代华,李学垣,徐凤琳.1996.Cu2+在针铁矿表面吸附的红外光谱研究.华中农业大学学报,15(2):153-156.
    100.周东美,郝秀珍,薛艳,仓龙,王玉军,陈怀满.2004.污染土壤的修复技术研究进展.生态环境,13(2):234-242.
    101.周怀东,彭文启.2005.水环境与水环境修复.北京:化学工业出版社.
    102.周立群,王弛伟,杨念华,梁永光,袁良杰,李明,程锦国,孙聚堂.2005. Cr2O3纳米粉体的合成及性能研究.武汉大学学报,51(4):407-410.
    103.周泉宇,谭凯旋,曾晟,刘栋.2009.硫酸盐还原茵和零价铁协同处理含铀废水.原子能科学技术,43(9):808-812.
    104.周细应,李卫红,何亮.2006.纳米颗粒的分散稳定性及其评估方法.材料保护,39(6):51-54.
    105.周艺,何小川,王炎根.2002.Tween-80和SDBS对纳米TiO2在水溶液中分散稳定性的影响.长沙电力学院学报(自然科学版),17(4):72-75.
    106.周祖康,顾惕人,马季铭.1996.胶体化学基础.北京:北京大学出版社.
    107.朱遐.2006.生物修复的研究和应用现状及发展前景.生物技术通报,5:31-33.
    108.朱燕超,赵敬哲,周兵,赵旭,王子忱,2008.单质铁纳米颗粒的液相还原制备.高等学校化学学报,29(10):2020-2024.
    109.朱永法.2006.纳米材料的表征与测实方法.北京:化学工业出版社.
    110.祝春水,孙振亚,龚文琪,陈和生.2003.生物矿化针铁矿吸附废水中铬的实验研究.环境科学研究,16(6):57-59.
    112.邹卫华,刘晨湘,江利,等.2005.二氧化锰对铜、铅离子的吸附研究.郑州大学学报(工学版),26(3):15-19.
    113.邹照华,何素芳,韩彩芸,张六一,罗永明.2010.吸附法处理重金属废水研究进展.环境保护科学,36(3):22-24.
    114.Ai Z H, Cheng Y, Zhang L Z, Qiu J R.2008. Efficient Removal of Cr(Ⅵ) from aqueous solution withFe@Fe2O3core shell nanowires. Environ. Sci. Technol.,42:6955-6960.
    115.Alowitz M J, Scherer M M.2002. Kinetics of nitrate, nitrite, and Cr(Ⅵ) reduction by iron metal.Environ. Sci. Technol.,36(3):299-306.
    116.Altundogan H S.2005. Cr (VI) removal from aqueous solution by iron (III) hydroxide-loaded sugarbeet pulp, Process Biochem.,40:1443-1452.
    117.An Y, Li T L, Jin Z H, Dong M Y, Li Q Q, Wang S M.2009. Decreasing ammonium generation usinghydrogenotrophic bacteria in the process of nitrate reduction by nanoscale zero-valent iron. Science ofthe Total Environment,407:5465-5470.
    118.António F, Aurora S, Goreti C, António V, Fuente D, Cristina D M.2010. Heterogeneous kinetics ofthe reduction of chromium (VI) by elemental iron. Journal of Hazardous Materials,175:1042-1047.
    119.Argun M E, Dursun S, Ozdemir C, Karatas M.2007. Heavy metal adsorption by modified oaksawdust:Thermodynamics and kinetics. J Haz. Mater.,141(1):77-85.
    120.Arnold W A, Roberts A L.1998. Pathways of chlorinated ethylene and chlorinated acetylene reactionwith Zn(0). Environ. Sci. Technol.,32(19):3017-3025.
    121.Benjamin M M, Hayes K F, Leckie J O.1982. Removal of toxic metals from power generation wastestreams by adsorption and coprecipitation. Water Pollution Control Federation,54(11):1472.
    122.Bhattacharyal A, Naiya T, Mondal S.2008. Adsorption, kinetics and equilibrium studies on removal ofCr (VI) from aqueous solutions using different low-cost adsorbents. Chem. Eng. J.,137(3):529-541.
    123.Birringer R, Gleiter H, Klein H P, Marquardt P.1984. Nanocrystalline materials: an approach to anovel solid structure with gas-like disorder? Phys. Lett. A.,102(8):365-369.
    124.Blesa M A, Morando P J, Regazzoni A E.1994. Chemical dissolution of metal oxides. CRC. Press. Inc.,269-308.
    125.Boursiquot S, Mullet M, Enrhardt J J.2002. XPS study of the reaction of chromium (VI) withmackinawite (FeS). Surf. Interface. Anal.,34:293-297.
    126.Cagnasso M,Boero V,Franchini M A, Chorover J.2010. ATR-FTIR studies of phospholipid vesicleinteractions with α-FeOOH and α-Fe2O3Surface. Colloids and Surfaces B: Biointerfaces,76(2):456-
    467.
    127.Chang L Y.2005. Chromate reduction in wastewaters at different pH levels using thin iron wires-alaboratory study. Environ. Prog.,24:305-316.
    128.Chen S S, Hsu H D, Li C W.2004. A new method to produce nanoscale iron for nitrate removal.Journal of Nanoparticle Research,6:639-647.
    129.Chen S, Chen W, Shih C.2008. Heavy metal removal from waste water using zero-valent ironnanoparticles. Water Science and Technology,58(10):1947-1954.
    130.Choe S, Chang Y Y, Hwang K Y, Khim J.2000. Kinetics of reductive denitrification by nanoscalezero-valent iron. Chemosphere,41:1307-1311.
    131.Choi J H, Kim S D, Noh S H.2006. Adsorption behaviors of nano-sized ETS-10and Al-substituted-ETAS-10in removing heavy metal ions, Pb2+and Cd2+. Microporous and Mesoporous Materials,87(3):163-169.
    132.Cissokoa N M, Zhang Z, Zhang J H, Xu X H.2009. Removal of Cr(Ⅵ) from simulative contaminatedgroundwater by iron metal. Process Safety and Environmental Protection,87:395-400.
    133.Daus B, Wennrich R, Weiss H.2004. Sorption materials for arsenic removal from water: Acomparative study. Water Research,38(12):2948-2954.
    134.Davis T, Volesky B, Vieira R H S F.2000. Sargassum sea weed as biosorbent for heavy metals. WaterResearch,34(17):4270-4278
    135.DéboraV F, Leonardo M D S, Jardim W F.2009.Reduction of hexavalent chromium in soil and groundwater using zero-valent iron under batch and semi-batch conditions. Water, Air,&Soil Pollution,197(1-4):49-60.
    136.DengY W, Malin S, Steven B.1996. Accumulation and remobilization of aqueous chromium(Ⅵ) atiron oxide surfaces: application of a thin-film continuous flow-through reactor. Journal ofContaminant Hydrology,21:141-151.
    137.Doong R A, Chen K T, Tsai H C.2003. Reductive dechlorination of carbon tetrachloride andtetrachloroethylene by zero-valent silicon-iron reductants. Environ. Sci. Technol.,37(11):2575-2581.
    138.Elsner M, Chartrand M, Vanstone N, Couloume G L, Lollar B S.2008. Identifying abiotic chlorinatedethane degradation: characteristic isotope patterns in reaction products with nanoscale zero-valentiron. Environ. Sci. Technol.,42(16):5963-5970.
    139.Elva C,Sullivan R,Anthony J I W.1991. The use of associated surfactant media for the synthesis offine particles: preparation of iron oxides. J. Colloid.&Interface. Sci.,146(2):582-585.
    140.Erdem M, Altundogan H S, Turan M D, Tumen F.2005. Hexavalent chromium removal byferrochromium slag. J. Hazard. Mater. B.,126:176-182.
    141.Erdem M, Tumen F.2004. Chromium removal from aqueous solution by the ferrite process. J. Hazard.Mater. B.,109:71-77.
    142.Farrell J, Wang J P, O’Day P, Conklin M.2001. Electrochemical and spectroscopic study of arsenateremoval from water using zero-valent iron media. Environ. Sci. Technol.,35(10):2026-2032.
    143.Febrianto J, Kosasih A N, Sunarso J, Ju Y H, Indraswati N, Ismadji S.2009. Equilibrium and kineticstudies in adsorption of heavy metals using biosorbent: A summary of recent studies. J. Hazard.Mater.,162(2-3):616-645.
    144.Fiúza A, Sliva A, Carvalho G, Fuente A V, Cristina D M.2010. Heterogeneous kinetics of thereduction of chromium (VI) by elemental iron.J. Hazard. Mater.,175(1-3):1042-1047.
    145.Fortin D, Langley S.2005. Format ion and occurrence of biogenic iron-rich minerals. Earth-ScienceReviews,72(1-2):1-19.
    146.Gardea-Torresdey J L, Tiemann K J, Armen-dariz V, Bess-Oberto L R R, Chianelli J R, Parsons J G.and Gamez G.2000. Characterization of Cr (VI) binding and reduction to Cr(III) by the agriculturalbyproducts of Avenamonida (oat) biomass, J. Haz.Mater.,80:175-188.
    147.Garg V K, Gupta R, Kumar R, Gupta R K.2004. Adsorption of chromium from aqueous solution ontreated sawdust. Biores. Tech.,92:79-81.
    148.Gheju M, Iovi A, Balcu I.2008. Hexavalent chromium reduction with scrap iron in continuous-flowsystem, Part1: Effect of feed solution pH. Journal of Hazardous Materials,153:655-662.
    149.Gheju M, Lovi A.2006. Kinetics of hexavalent chromium reduction by scrap iron, J. Hazard. Mater. B,13:66-73.
    150.Ghosh M, Singh S P.2005. A review on phytoremediation of heavy metals and utilization of itsbyproducts. Applied Ecology and Environmental Research,3(1):1-18.
    151.Giasuddin A B M, Kanel S R, Choi H.2007.Adsorption of humic acid onto nanoscale zerovalent ironand its effect on arsenic removal. Environ. Sci. Technol.,41(6):2022-2027.
    152.Gillham R W, Orth W S.1996. Dechlorination of trichloroethene in aqueous solution using Fe0.Environ. Sci. Technol.,30:66-71.
    153.Gleiter H.1981. Materials with ultra-fine grain sizes. Symposium on metallurgy and materials science,14/18(9):15-21.
    154.Guha S, Bhargava P.2005. Removal of chromium from synthetic plating waste by zero valent iron andsulfate-reducing bacteria. Water Environ. Res.,77(4):411-416.
    155.Hansel C M, Wielinga B W, Fendorf S.2003. Structural and compositional evolution of Cr/Fe solidsafter indirect chromate reduction by dissimilatory iron-reducing bacteria. Geochimica etCosmochimica Acta,67(3):401-412.
    156.Hardiljeet K B, Joseph M, O’Carroll D M.2011. Kinetics and thermodynamics of cadmium ionremoval by adsorption onto nano zerovalent iron particles. Journal of Hazardous Materials,186(1):458-465.
    157.He F, Zhao D Y.2007. Manipulating the size and dispersibility of zero valent iron nanoparticles by useof carboxymethyl cellulose stabilizers, Environ. Sci. Technol.,41(17):6216-6221.
    158.Hu J, Lo I M C, Chen G.2007. Comparative study of various magnetic nanoparticles for Cr (VI)removal. Sep. Purif. Technol.,56:249-256.
    159.Huang C P, Wang H W, Chiu P C.1998. Nitrate reduction by metallic iron. Water Res.,32:2257-2264.
    160.Huang Y H, Zhang T C.2004. Effects of low pH on nitrate reduction by iron powder. Water Res.,38:2631-2642.
    161.Huang Y H, Zhang T C.2005. Effects of dissolved oxygen on formation of corrosion products andconcomitant oxygen and nitrate reduction in zero-valent iron systems with or without aqueousFe~(2+).Water Research,39:175l-1760.
    162.Jae EY, Jong S K, Yong S O, Kim S J, Yoo K Y.2006. Capacity of Cr(VI) reduction in an aqueoussolution using different sources of zerovalent irons,Korean J. Chem. Eng.,23(6):935-939.
    163.Jung J, Cho Y-H, Hahn P.1998. Comparative study of Cu~(2+)adsorption on goethite, hematite andkaolinite: mechanistic modeling approach. Bulletin of the Korean Chemical Society,19:324-327.
    164.Kanel S R, Manning B, Charlet L, Choi H.2005. Removal of arsenic (III) from groundwater bynanoscale zero-vlaent iron. Environ. Sci. Technol.,39:1291-1298.
    165.Kanel S R. Greneche J M. Choi H.2006. Arsenic (V) removal from groundwater using nano scalezero-valent iron as a colloidal reactive barrier material. Environ. Sci. Technol.,40(6):2045-2050.
    166.Karabelli D üzüm C, Shahwan T, Eroɡ lu A E, Scott T B, Hallam K R, Lieberwirth I.2008. Batchremoval of aqueous Cu~(2+)ions using nanoparticles of zero-valent iron: A study of the capacity andmechanism of uptake. Ind. Eng. Chem. Res.,47(14):4758-4764.
    167.Katz S A, Salem H.1994. The biological and environmental chemistry of chromium. New York: VCHPublishers.
    168.Kielemoes J,De B P, Verstraete W.2000. Influence of denitrification on the corrosion of iron andstainless steel powder. Environ. Sci. Technol.,34(4):663-671.
    169.Kim G, Jeong W, Choe S.2008. Dechlorination of atrazine using zero-valent iron (Fe0) under neutralpH conditions. Journal of Hazardous Materials,155:502-506.
    170.Komnitsas K, Bartzas G, Fytas K, Paspaliaris I.2007. Long-term efficiency and kinetic evaluation ofZVI barriers during clean-up of copper containing solutions. Miner. Eng.,20:1200.
    171.Kwon S K, Shinoda K, Suzuki S, Waseda Y.2007. Influence of silicon on local structure andmorphology of γ-FeOOH and α-FeOOH particles. Corrosion Science,49(3):1513-1526.
    172.Li X Q, Cao J S, Zhang W X.2008. Stoichiometry of Cr(Ⅵ) immobilization using nanoscalezerovalent iron (nZVI):A study with high-resolution X-Ray photoelectron spectroscopy (HR-XPS).Ind. Eng. Chem. Res.,47:2131-2139.
    173.Li X Q, Zhang W X.2006. Iron nanoparticles: the core-shell structure and unique properties for Ni (II)sequestration. Langmuir,22:4638-4642.
    174.Li X Q, Zhang W X.2007. Sequestration of metal cations with zero valent iron nanoparticles: A studywith high resolution X-ray photoelectron spectroscopy (HR-XPS). J. Phys. Chem. C.,111(19):6939-6946.
    175.Lien H L, Zhang W X.2001. Nanoscale iron partieles for complete reduetion of ehlorinated ethenes.Colliods and SurfaceA: Physiochemieal and Engineering Aspects,191:97-105.
    176.Liu Q Y, Bei Y I, Zhou F.2009. Removal of lead~(2+)from aqueous solution with amino-functionalizednanoscale zero-valent iron. Cent Eur. J. Chem.,7(1):79-82.
    177.Liu S X, Chen X, Chen X Y, Liu Z F, Wang H L.2007.Activated carbon with excellent chromium (VI)adsorption performance prepared by acid–base surface modification. J. Haz. Mater.,141:315-319.
    178.Liu Y Q, Lowery G V.2006. Effect of particle age (Fe0content) and solution pH on NZVI reactivity:H2evolution and TCE dechlorination. Environ. Sci. Technol.,40:6085-6090.
    179.Lytle C M, Lytle F W, Yang N, Qian J H, Hansen D, Zayed A and Terry N.1998. Reduction of Cr(VI)to Cr(III) by wetland plants: potential for in situ heavy metal detoxification, Environ. Sci. Technol.,32:3087-3093.
    180.Malow T R, Koch C C, Miraglia P Q, Murty K L.1998. Compressive mechanical behavior ofnano-zero-valent iron as a colloidal reactive barrier material. Environ. Sci. Technol.,40(7):2045-2050.
    181.Matheson L J, Tratnyek P G.1994. Reductive dehalogenation of chlorinated methanes by iron metal.Environ. Sci. Technol.,28(12):2045-2053.
    182.Melitas O N, Chuffe M, Farrell J.2001.Kinetics of soluble chromium removal from contaminatedwater by zerovalent iron media: corrosion inhibition and passive oxides effects. Environ. Sci. Technol.,35:3948-3953.
    183.Mishra D, Farrell J.2005. Understanding nitrate reactions with zero-valent iron using Tafel analysisand electrochemical impedance spectroscopy. Environ. Sci. Technol.,39:645-650.
    184.Mohan D, Pittman J C U.2006. Activated carbons and low cost adsorbents for remediation of tri-andhexavalent chromium from water. J. Hazard. Mater.,137:762-811.
    185.Mostafa M G., Chen Y H, Jean J S, Liu C C, Lee Y C.2011. Kinetics and mechanism of arsenateremoval by nanosized iron oxide-coated perlite. Journal of Hazardous Materials,187:89-95.
    186.Mukhopadhyay B J, Sundquist R J, Schmitz.2007. Removal of Cr (VI) from Cr-contaminatedgroundwater through electrochemical addition of Fe~(2+). J Environ. Manage.,82:66-76.
    187.Mullet M, Boursiquot S, Ehrhardt J J.2004. Removal of hexavalent chromium from solutions bymackinawite tetragonal Fes. Colloids and Surface A: Physicochemical and Engineering Aspects,244(1-3):77-85.
    188.Nam S, Tratnyek P G.2000. Reduction of azo dyes with zero-valent iron. Water Research,34(6):1837-1845.
    189.Nguyen V T, Vigneswaran S, Ngo H H, Shon H K, Kandasamy J.2009. Arsenic removal by amembrane hybrid filtration system. Desalination,236:363-369.
    190.Nikolaidis N P, Dobbs G M, Lackovic J A.2003. Arsenic removal by zero-valent iron: field, laboratoryand modeling studies. Water Research,37(6):1417-1425.
    191.Nurmi J T, Tratnyek P G, Sarathy V, Baer D R, Amonette J E, Pecher K, Wang C, Linehan J C, MatsonD W, Penn R L, Driessen M D.2005. Characterization and properties of metallic iron nanoparticles:spectroscopy, electrochemistry, and kinetics. Environ. Sci. Technol.,39(5):1221-1230.
    192.Park D, Park J M.2006. Mechanisms of the removal of hexavalent chromium by biomaterials orbiomaterial-based activated carbons. J Haz. Mater. B,137:1254-1257.
    193.Park D, Yun Y S, Jo J H, Park J M.2005. Mechanism of hexavalent chromium removal by dead fungalbiomass of Aspergillus niger, Water Res.,39:533-540.
    194.Patterson R R,Fendorf S,Fendorf M.1997. Reduction of hexavalent chromium by amorphous ironsulfide. Environ. Sci. Technol.,31(7):2039-2044.
    195.Petrovic J,Stevula L,Pisarcik.1985. Interaction between,α-,β-or γ-FeOOH and water at60℃,80℃and100℃. Chem. Paper.,39(1):59-68.
    196.Pilling M J, Seakins P W.1995. Reaction kineties: Oxford University Press: NewYork, P:151.
    197.Ponder S M, Darab J G., Mallouk T E.2000. Remediation of Cr(Ⅵ) and Pb~(2+)aqueous solutions usingsupported, nanoscale zero-valent iron. Environ. Sci. Technol.,34(12):2564-2569.
    198.Pratt A R, McIntyre N S.1996. Comments on curve fitting of Cr2p photoelectron spectra of Cr2O3andCrF3. Surf. Interface. Anal.,24:529-530.
    199.Richard A N,Ronald O K,1971. Infrared Spectra of Inorganic Compounds. New York: Academicpress.
    200.Ruan H D, Frost R L, Kloprogge J T, Duong L.2002. Infrared spectroscopy of goethitedehydroxylation: III. FT-IR microscopy of in situ study of the thermal transformation of goethite tohematite. Spectrochimica Acta, Part A,58(5):967-981.
    201.Schindier P W, Hochella J M F, White A F.1990. Co-adsorption of metal ions and organic ligands:formation of ternary surface complexes. Mineral Water Interface GeochemiStry. Washington DC: Min.Society of Am,281.
    202.Senzaki T, Yosui K.1988. Removal of chlorinated organic compounds from wastewater by reductionprocess: treatment of1,1,2,2-tetrachloroethane with iron power. Kogyo Yosui,357(2):1-14.
    203.Shi L N, Zhang X, Chen Z L.2011. Removal of Chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Research,45:886-892.
    204.Shin K H, Cha D K.2008. Microbial reduction of nitrate in the presence of nanoscale zero-valent iron.Chemosphere,72:257-262.
    205.Singh DB,Gupta G S, Prasad G, Rupainwar D C.1993.The use of hematite for chromium(Ⅵ) removal.J Environ. Sci. Health.,28(8):1813-1826.
    206.Sohn K, Kang S W, Ahn S, Woo M, Yang S K.2006. Fe (0) nanoparticles for nitrate reduction:stability, reactivity, and transformation. Environ. Sci. Technol.,40(17):5514-5519.
    207.Srinivas R P, Shashikant R, Munjunatha G S.1992. Kinetic studies on adsorption of chromium bycoconut shell carbons from synthetic effluents. J. Environ. Sci. Health. A,27(8):2227-2241.
    208.Su C, Puls RW.2001. Arsenate and arsenite removal by zero-valent iron: kinetics, redox,transformation, and implications for in situ groundwater remediation. Environ. Sci. Technol.,35(7):1487-1492.
    209.Sud D, Mahajana G, Kaur M P.2008. Agricultural waste material as potential adsorbent forsequestering heavy metal ions from aqueous solutions–A review. Bioresource Technology,99(14):6017-6027.
    210.Tian X F, Gao X C, Yang F, Lan Y Q, Mao J D, Zhou L X.2010. Catalytic role of soils in thetransformtion of Cr (VI) to Cr (III) in the presence of organic acids containing α-OH groups.Geoderma,159(3-4):270-275.
    211.Till B A, Weathers L J, Alvarez P J J.1998. Fe(0)-supported autotrophic denitrification. Environ. Sci.Thchnol.,32(5):634-639.
    212.Tratnyek P G., Johnson R L.2006. Nanotechnologies for environmental cleanup. Nanotoday,1:44.
    213.Verdonck L, Hoste S, Roelandt F F, Van Der Kelen G P.1982. Normal coodinate analysis of α-FeOOH-a molecular approach. J. Molecular Structure,79:273-279.
    214.Vidali M.2001. Bioremediation: an overview. Pure and Applied Chemistry,73:1163-1172.
    215.Vijayaraghavan K, Palanivelu K, Velan M.2006.Biosorption of copper~(2+)and cobalt~(2+)from aqueoussolutions by crab shell particles. Bioresource Technology,97(12):1411-1419.
    216.Wan M W, Kan C C, Lin C H, Rogel B D, Wu C H.2007. Adsorption of copper (Ⅱ) by chitosanimmobilized on sand. Chia-Nan Annual Bulletin,33:96-106.
    217.Wang C B, Zhang W X.1997. Synthesizing nanoscale iron particles for rapid and completedechlorination of TCE and PCBs. Environ. Sci. Technol.,31(7):2154-2156.
    218.Wang W, Zhou M H, Jin Z H, Li T L.2010. Reactivity characteristics of poly (methyl methacrylate)coated nanoscale iron particles for trichloroethylene remediation. Journal of Hazardous Materials,173:724-730.
    219.Wang X L, Pehkonen S O, Ray A K.2004.Photocatalytic reduction of Hg (II) on two commercialTiO_2catalysis. Electrochimica Acta,49(9-10):1435-1444.
    220.Wang Y J,Zhou D M,Sun R J, et al.2008. Zinc adsorption on goethite as affected by glyphosate.Journal of Hazardous Materials,151(1):179-184.
    221.Wang Z Y, Peng P A, Huang W L.2009. Dechlorination of [gamma]-hexachlorocyclohexane byzero-valent metallic iron. Journal of Hazardous Materials,166:992-997.
    222.Wilkin R T, Su C, Ford R G, Paul C J.2005. Chromium-removal processes during groundwaterremediation by a zero valent iron permeable reactive barrier. Environ. Sci. Technol.,39(12):4599-4605.
    223.Wu Y J, Zhang J H, Tong Y F, Xu X H.2009. Chromium(VI) reduction in aqueous solutions byFe3O4-stabilized Fe0nanoparticle. Journal of Hazardous Materials,172:1640-1645.
    224.Xiong Z, Zhao D Y, Pan G.2009. Rapid and controlled transformation of nitrate in water and brine bystabilized iron nanoparticles. J. Nanopart. Res.,11:807-819.
    225.Xiu Z M, Jin Z H, Li T L, Mahendra S, Lowry G V, Alvarez P J J.2010. Effects of nano-scalezero-valent iron particles on a mixed culture dechlorinating trichloroethylene. BioresourceTechnology,101:1141-1146.
    226.Xu Y, Zhao D Y.2007. Reductive immobilization of chromate in water and soil using stabilized ironnanoparticles. Water Res.,41:2101-2108.
    227.Yang G C C,Lee H L.2005. Chemical reduction of nitrate by nanosized iron:kinetics andpathways.Water Research,39(5):884-894.
    228.Yang J E, Kim J S, Ok Y S, Kim S J, Yoo K Y.2006. Capacity of Cr (VI) reduction in an aqueoussolution using different sources of zero valent irons. Korean J Chem. Eng.,23(6):935-939.
    229.Yang J E, Kim J S, Ok Y S, Yoo K R.2007. Mechanistic evidence and efficiency of the Cr(VI)reduction in water by different sources of zero-valent irons. Water Sci. Technol.,55(1/2):197-202.
    230.Yoon I H, Bang S, Chang J S, Kim M G, Kim K W.2011. Effects of pH and dissolved oxygen onCr(VI) removal in Fe(0)/H2O systems. J. Hazard. Mater.,186:855-862.
    231.Zhang W X.2003. Nanoscale iron particles for environmental remediation: An overview. J. Nanopart.Res.,5(3/4):323-332.
    232.Zhang X, Lin Y M, Shan X Q, Chen Z L.2010. Degradation of2,4,6-trinitrotoluene (TNT) fromexplosive wastewater using nanoscale zero-valent iron. Chemical Engineering Journal,158:566-570.
    233.Zongo I, Leclerc J P, Ma ga H A, WéthéJ, Lapicque F.2009. Removal of hexavalent chromium fromindustrial wastewater by electrocoagulation: a comprehensive comparison of aluminium and ironelectrodes, Sep. Purif. Technol.66:159-166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700