黄土边坡稳定性数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的黄土分布之广,厚度之深,加上长期的水土流失,往往是沟壑纵横,形成了大量的黄土边坡。由于黄土结构疏松,孔隙较大,黄土边坡的稳定性较差。我国黄土地区分布在地震高发地区,随着我黄土地区的工程建设不断增多,黄土边坡在静力作用下和动力作用下稳定性关系到黄土地区人民的人身安全、生活和经济发展,此方面的研究目前尚不完善,因此研究黄土边坡的稳定性具有重要的意义。
     本文采用极限平衡法和强度折减法研究静力作用下,均匀和非均匀黄土边坡极限状态时边坡的破坏模式以及边坡在不同坡高、不同坡比和软弱层不同位置(仅在非均匀黄土边坡)下边坡稳定性规律。同时在动力作用下,采用完全动力法和拟静力法分别研究均匀和非均匀黄土边坡极限状态时边坡的破坏过程以及边坡在不同坡高、不同坡比和软弱层不同位置(仅在非均匀黄土边坡)下边坡稳定性规律。得到以下结论:
     (1)静力作用下,均匀黄土边坡在极限状态下,属于拉伸—剪切复合破坏,且圆弧滑面是通过坡脚。均匀黄土边坡安全系数随着坡高的增大不断减小,两种方法计算所得结果相对差值为2.8%-~4.5%;均匀黄土边坡安全系数随着坡比的减小不断增大,两种方法计算所得结果相对差值为2.6%-4.6%。且两种方法所得边坡潜在滑面几乎是重合的。
     (2)动力作用下,均匀黄土边坡在极限状态下,边坡的破坏过程是开始于坡脚,不断向坡顶发展,边坡的破坏属于拉伸—剪切复合破坏,且圆弧滑面是通过坡脚。均匀黄土边坡安全系数随着坡高的增大不断减小,两种方法计算所得结果相对差值为0.38%-2.1%;均匀黄土边坡安全系数随着坡比的减小不断增大,两种方法计算所得结果相对差值为1.32%-2.79%,两种方法计算所得潜在滑面区别不大。
     (3)静力作用下,非均匀黄土边坡极限状态,边坡的破坏属于拉伸—剪切复合破坏,强度折减法所得滑面比极限平衡法所得滑面要深。非均匀黄土边坡安全系数随着坡高的增大不断减小,两种方法计算所得结果相对差值为.0.69%~3%;非均匀黄土边坡安全系数随着坡比的减小不断增大,两种方法计算所得结果相对差值为0.95%-3.66%;非均匀黄土边坡安全系数随着软弱层的深度增加不断减小,两种方法计算所得结果相对差值为-1.54%~1.85%。采用强度折减法计算所得潜在滑面都比用极限平衡法计算所得结果要深。
     (4)动力作用下,非均匀黄土边坡极限状态,边坡的破坏过程是开始于坡脚,不断向坡顶发展,边坡的破坏属于拉伸—剪切复合破坏。非均匀黄土边坡安全系数随着坡高的增大不断减小,两种方法计算所得结果相对差值为2.22%~4.76%;非均匀黄土边坡安全系数随着坡比的减小不断增大,两种方法计算所得结果相对差值为2.65%~6.76%;非均匀黄土边坡安全系数随着软弱层的深度增加不断减小,两种方法计算所得结果相对差值为2.42%~5.45%。采用完全动力法计算所得潜在滑面都比用拟静力法计算所得结果要深。
Loess is widely and deep distributed in China. With the long-term soil erosion, it is shaped many ravines and a large number of loess slopes. The stability of the loess slope is poor for the loess structure is loose and large pores. The loess geographical distribution often is earthquake-prone areas in my country. With increasing construction in the loess area, under static and dynamic the stability of the loess slope concerns people's personal safety, lives and economic development in this area. And researches about this are imperfects, so the subject of this paper is of great significance.
     Using the limit equilibrium method and strength reduction method analyses uniform and non-uniform loess slope of failure mode in limit state and law of uniform and non-uniform loess slope stability in different slope height, slope ratio and weak layers in different locations (only in the non-uniform loess slope) under the static. Using the pseudo static method and completely dynamic method analyses uniform and non-uniform loess slope of destruction process in limit state and law of uniform and non-uniform loess slope stability in different slope height, slope ratio and weak layers in different locations (only in the non-uniform loess slope) under the dynamic. The following conclusions:
     1. Under the static, the uniform loess slope is tension-shear composite damage in the limit state and the arc slip surface threads slope angle. With increased the slope height, the uniform loess slope of safety factor is decreasing and the relative difference of the calculated results of the two methods is2.8%to4.5%; with decreasing the slope ratio, the uniform loess slope of safety factor is increased and the relative difference of the calculated results of the two methods is2.6%to4.6%. The potential slip surface of the two methods is almost coincident.
     2. Under the dynamic, the uniform loess slope is tension-shear composite damage in the limit state and the destruction process is from slope angle and develops to the top slope. With increased the slope height, the uniform loess slope of safety factor is decreasing and the relative difference of the calculated results of the two methods is0.38%to2.1%; with decreasing the slope ratio, the uniform loess slope of safety factor is increased and the relative difference of the calculated results of the two methods is1.32%to2.79%. The potential slip surface of the two methods is not larger difference.
     3. Under the static, the non-uniform loess slope is tension-shear composite damage in the limit state and the slip surface of strength reduction method is deeper the slip surface of limit equilibrium method. With increased the slope height, the non-uniform loess slope of safety factor is decreasing and the relative difference of the calculated results of the two methods is-0.69%to3%; with decreasing the slope ratio, the non-uniform loess slope of safety factor is increased and the relative difference of the calculated results of the two methods is0.95%to3.66%; With increased the weak layer depth, the non-uniform loess slope of safety factor is decreasing and the relative difference of the calculated results of the two methods is-1.54%to1.85%. The slip surface of strength reduction method is deeper the slip surface of limit equilibrium method.
     4. Under the dynamic, the non-uniform loess slope is tension-shear composite damage in the limit state and the destruction process is from slope angle and develops to the top slope. With increased the slope height, the non-uniform loess slope of safety factor is decreasing and the relative difference of the calculated results of the two methods is2.22%to4.76%; with decreasing the slope ratio, the non-uniform loess slope of safety factor is increased and the relative difference of the calculated results of the two methods is2.65%to6.76%; With increased the weak layer depth, the non-uniform loess slope of safety factor is decreasing and the relative difference of the calculated results of the two methods is2.42%to5.45%. The slip surface of completely dynamic is deeper the slip surface of pseudo static method.
引文
[1]王兰民.黄土动力学[M].北京:地震出版社,2003.
    [2]王念秦.黄土滑坡灾害研究[M].兰州:兰州大学出版社,2005.
    [3]王玉平,曾志强,潘树林.边坡稳定性分析方法综述[J].西华大学学报(自然科学版),2012,31(2):101-106.
    [4]周春梅,李先福.大冶铁矿高陡岩质边坡变形破坏机理分析[J].合肥工业大学学报(自然科学版),2009,32(10):1577-1580.
    [5]舒畅,段辉杰,周俊.某矿山边坡岩体结构及围岩质量评估[J].土工基础,2007,21(1):4143.
    [6]刘汉东,薛雷,祁萌.工程地质类比法程序化设计[J].华北水利水电学院学报,2007,28(2):62-64.
    [7]R. Baker, Y. Klein. Anintegrated limiting equilibrium approach for design of reinforced soil retaining structures:Part Ⅲ-optimal design[J]. Geotexitles and Geomembranes, 22(2004):455-479.
    [8]张均锋,丁桦.边坡稳定性分析的三维极限平衡法及应用[J].岩石力学与工程学报,2005,24(3):365-370.
    [9]康亚明,杨明成,胡艳香.极限平衡法和有限单元法混合分析土坡稳定[J].中国矿业,2006,15(3):74-77.
    [10]夏麾,刘金龙.库水位变化对库岸边坡稳定性的影响[J].岩土工程技术,2005,19(6):292-296.
    [11]赵祥,朱明,邓昀.露天采场边坡稳定性极限平衡法分析[J].采矿技术,2008,8(3):29-30.
    [12]唐湖北,蒋华春,黄伟.锚杆支护方式对边坡稳定性的影响研究[J].公路工程,2012,37(1):61-64.
    [13]侯世伟,杜修力,李立云.土坡稳定分析中的最危险滑裂面问题[J].地下空间与工程学报.2010,6(3):650-654.
    [14]Hovland H J. Three-dimensional slope stability of slope[J]. Geotech Eng Div, ASCE,1977, 103:971-986.
    [15]Hungr O, Salgado F M, Byme P M. Evaluation of a three dimensional method of slope stability analysis[J]. Can Geotech J,1989,26:679-686.
    [16]Hungr O. An extension of Bishop's simplified method of slope stability analysis to three-dimensions[J]. Geotechnique,1987,37:113-117.
    [17]Xing Z. Three-dimensional stability analysis of concave in plain view[J], J of Geotech Eng, ASCE,1988,114:658-671.
    [18]李同录,王艳霞,邓宏科.一种改进的三维边坡稳定性分析方法[J].岩土工程学报,2003,25(5):611-614.
    [19]张志勇,傅德明,杨国祥.干坞边坡稳定性计算及边坡变形规律研究[J].岩石力学与工程学报,2003,22(9):1505-1509.
    [20]彭振斌,李俊,彭文祥.基于Bishop条分法的边坡可靠度应用研究[J].中南大学学报(自然科学版),2010,44(2):668-672.
    [21]孟秦倩,王健,齐清孝.基于vb的毕肖普法土坡稳定的程序计算法[J].水利与建筑工程学报,2005,3(1):55-57.
    [22]曹阳,谭红霞.基于改进毕肖普法边坡稳定性影响因素研究[J].工程建设,2010,42(6):17-21.
    [23]徐正来.复合土钉墙稳定性分析[J].水文地质工程地质,2004(4):9-11.
    [24]董秀竹,阮文军.南水北调中线穿黄工程南岸竖井开挖对邙山边坡稳定性的影响分析[J].岩土工程界,2005(7):57-60.
    [25]陈建平.边坡稳定性分析方法综述[J].浙江建筑,2010,27(增9):19-21.
    [26]Clough R.W. and Woodward R.J. Analysis of embankment stresses and deformations[J]. Soil Mechanics and Foundation Div.,1967,4(1):529-549.
    [27]Griffiths D V, Lane P A. Slope stability analysis by finite elements[J]. Geotechnique,1999, 49(3):387-403.
    [28]Johnson C. Existence thermos for plasticity problems[J]. J. Math. Pures Appl.1976,55: 431-444.
    [29]Sienkiewicz O C, Humpheson C, lewis R. Associated and non-associated visco-plasticity and plasticity in soil mechanics [J]. Geotechnique.1975,25(4):671-689.
    [30]谭晓慧,王建国,王印.边坡稳定的非线性有限元分析[J].岩土力学,2008,29(8):2047-2081.
    [31]吴春秋,朱以文,蔡元奇.边坡稳定临界破坏状态的动力学评判方法[J].岩土力学,2005,26(5):784-789.
    [32]杨涛,周德培,苏金蓉.大变形有限元法分析边坡稳定性[J].山地学报,2006(1):101-105.
    [33]郑宏,刘德富,罗先启.基于变形分析的边坡潜在滑面的确定[J].岩石力学与工程学报,2004,23(5):709-716.
    [34]曹建建,邓安.离心加载有限元方法在边坡稳定分析中的应用[J].岩石力学与工程学报,2006,11(28)增:136-139.
    [35]李湛,栾茂田,刘古阁,等.渗流作用下边坡稳定性分析的强度折减弹塑性有限元法[J].水利学报,2006,37(5):554-560.
    [36]Cundall PA, Strack O D L. A discrete numerical model for granular assemblies[J]. Geotechnique,1979,29(1):47-65.
    [37]Bardet J P, Proubet J. A numerical investigation of structure of persistent shear bands in granular media[J]. Geotechnique,1991,41(4):599-613.
    [38]Bardet J P, Proubet J. Shear-band analysis in idealized granular material[J]. Engrg Mech, 1992,118(8):397-415.
    [39]Huang H, Detoumay E, Bellier B. Discrete element modeling of rock cutting[J]. Rock Mechanics for Industry,1999,1:123-130.
    [40]李海波,肖克强,刘亚群.地震荷载作用下顺层岩质边坡安全系数分析[J].岩石力学与工程学报,2007,26(12):2385-2394.
    [41]蒋景彩,能野一美,山上拓男.滚石离散元数值模拟的参数反演[J].岩石力学与工程学报.2008,27(12):2418-2430.
    [42]贺续文,刘忠,廖彪,等.基于离散元法的节理岩体边坡稳定性分析[J].岩石力学,2011,32(7):2199-2205.
    [43]詹志峰,谢强,赵文.龙塘山2号大桥岸坡破坏模式的离散元模拟[J].地质灾害与环境保护,2001,12(4):67-71.
    [44]周健,池永.砂土力学性质的细观模拟[J].岩土力学,2003,24(6):901-906.
    [45]刘凯欣,高凌天.离散元法研究的评述[J].力学进展,2003,33(4):483-490.
    [46]徐鼎平,陈玉民.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2008.
    [47]刘春玲,祁生文,童立强,等.利用FLAC3D分析某边坡地震稳定性[J].岩石力学与工程学报,2004,23(16):2730-2733.
    [48]何忠明,蔡中心,曹平,等.层状岩体边坡锚杆加固效应的数值分析[J].中南大学学报(自然科学版),2011,42(7):2115-2119.
    [49]阿布·里提甫.基于FLAC3D的黄土边坡稳定性分析[J].中国煤炭地质,2008,20(9):32-36.
    [50]蓝航,姚建国,张华兴,等.基于FLAC3D的节理岩体采动损伤本构模型的开发及应用[J].岩石力学与工程学报,2008,27(3):572-579.
    [51]乔国文,王运生,房冬恒.西南某电站右岸开挖边坡稳定性的FLAC3D分析[J].工程地质学报,2004,12(3):280-285.
    [52]朱玉生,曹守虎.伊敏一露天矿内排土对端帮稳定性的影响[J].岩土工程学报,2005,27(9):1026-1032.
    [53]Cruden, D. M. and Varnes, D. J. Landslide types and processes. In K. M. Turner and R. L. Schuster, eds. Landslides Investigation and Mitigation. Washington, DC:National Academy Press,1996,36-75.
    [54]曹平,张科,汪亦显,等.多层边坡破坏机制数值模拟研究[J].岩土力学,2011,32(3):872-879.
    [55]郑颖人,叶海林,黄润秋.地震边坡破坏机制及其破裂面的分析探讨[J].岩石力学与工程学报,2009,28(8):1714-1723.
    [56]张常亮,王阿丹,邢鲜丽,等.侵蚀作用诱发黄土滑坡的机制研究[J].岩土力学,2012,32(3):1585-1594.
    [57]宋焱勋,彭建兵,张骏.黄土填方高边坡变形破坏机制分析[J].工程地质学报,2008,16(5):620-625.
    [58]王文生.黄土公路堑坡稳定性态的理论研究与土工物理模拟[D].西安:长安大学,2006.
    [59]卢坤林,朱大勇,杨扬.边坡失稳过程模型试验研究[J].岩土力学,2012,33(3):778-783.
    [60]徐光明,王国利,顾行文,等.雨水入渗与膨胀性土边坡稳定性试验研究[J].岩土工程学报,2006,28(2):270-273.
    [61]Bishop A W. The use of the slip circle in the stability analysis of slopes[J]. Geo-technique, 1955,5(1):7-17.
    [62]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,1996.
    [63]Ugai K. A method of calculation of total factor of safety of slope by slasto-plastic FEM[J]. Soils and Foundations JGS,1989,29(2):190-195(in Japanese).
    [64]赵尚毅,郑颖人,张玉芳.有限元强度折减法中边坡失稳的判断探讨[J].岩土力学,2005,26(2):332-336.
    [65]Zienk IewiczO C, Humpheson C and Lewis R W. Associated and non-associated viscos-plasticity and plasticity in soil mechanics[J]. Geo technique,1975,25(4):671-689.
    [66]宋二祥.土工结构安全系数的有限元计算[J].岩土工程学报,1997,19(2):1-7.
    [67]栔茂田,武亚军,年廷凯.强度折减有限元法中边坡失稳的塑性区判据及其应用[J].防灾减灾工程学报,2003,23(3):1-8.
    [68]赵彪,陈洪凯.边坡地震稳定性完全动力分析法[J].重庆交通大学学报(自然科学版).2011,30(增1):580-583.
    [69]李俊.地震作用下边坡安全系数确定方法的研究及其应用[D].重庆:重庆交通大学,2011.
    [70]Kuhlemeyer, R.L., J. Lysmer. Finite element method accuracy for wave propagation problems[J]. J. Soil Mechanics and Foundations. Div. ASCE,1973,99 (SM5):421-427.
    [71]Lysmer, J. R. L. Kuhlemeyer. Finite dynamic model for infinite media[J]. Eng. Mechanics, 1969,95(EM4):859-877.
    [72]李加贵,陈正汉,黄雪峰,等.Q3黄土侧向卸荷时的细观结构演化及强度特性[J].岩土力学,2010,31(4):1084-1092.
    [73]姚志华,陈正汉,黄雪峰,等.非饱和Q3黄土渗气特性试验研究[J].岩石力学与工程学报,2013,31(6):1264-1273.
    [74]邵生俊,罗爱忠,于清高,等.加荷增湿作用下Q3粘黄土的结构损伤特性[J].岩土工程学报,2006,28(12):2077-2081.
    [75]《工程地质手册》编委会.工程地质手册[M].北京:中国建筑工业出版社,2007.
    [76]赵建军,黄润秋,巨能攀.下伏软弱层黄土边坡变形机制分析及治理对策研究[J].工程地质学报,2006,14(6):743-749.
    [77]唐明明,王芝银,马兰平,等.油气管道穿越黄土冲沟的管线设计参数研究[J].岩土力学,2010,31(4):1314-1319.
    [78]王根龙,张茂省,苏天明,等.黄土崩塌破坏模式及离散元数值模拟分析[J].工程地质学报,2011,19(4):541-550.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700