多层黄土边坡动力响应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国黄土分布广泛,特别是位于乌鞘岭与太行山之间的黄土高原地区,黄土堆积厚度大,天然地貌沟壑纵横,存在大量的天然黄土边坡,随着黄土高原地区的开发建设,伴随而来的是大量人工黄土边坡的产生;我国地震灾害严重,黄土高原地区为地震多发区。由于黄土颗粒成分多、结构疏松,历史上因地震诱发的黄土边坡滑坡数目庞大;黄土边坡动力响应研究已经成为工程建设中亟待解决的问题,该方面的研究目前尚不完善,因此,开展黄土边坡动力响应研究具有重要意义。
     本文利用FLAC3D有限差分软件对多层黄土边坡进行动力响应数值分析。主要研究了边坡土层组成对地震波的传播及对边坡自由面加速度峰值放大作用的影响;探讨了常见黄土边坡因土层参数变化,对边坡地震加速度响应及稳定性的影响,采用FLAC3D有限差分软件模拟计算了黄土常见的洞穴对黄土边坡动力响应的影响。
     (1)双层模型和三层模型计算结果表明:当坡体位于基岩之上时,其塑性区较单层均质边坡均会出现扩大现象,当材料参数较小时会产生一个贯通的滑移面,而当材料参数较高时,剪应变率较大值区域只出现在坡脚处,呈向坡内发展的半圆形,坡体的受拉-剪破坏区随坡体材料参数的降低而向坡内扩展。
     (2)不同层数黄土边坡动力响应研究结果表明:PGA放大系数在坡顶最大,在坡脚处较大,最小值则出现在坡高1/3至1/2处;多层边坡情况下,PGA放大系数下降段的下降幅度会发生减小现象,坡体内较小洞穴的存在使坡面水平向PGA放大系数发生增大现象,坡面竖向PGA放大系数在坡面中下部增大、在坡面中上部减小的现象
     (3)坡内下部存在洞穴时,使坡内受拉-剪破坏区向坡内转移,拉破坏区深度增大,从洞穴沿斜向上方向至坡面区域内发生拉破坏现象;坡内剪应变率较大值区域沿潜在滑移面向坡顶扩展。坡内中部存在洞穴时,致使坡内潜在滑移面上的剪应变率较大值区域通过洞穴与坡面贯通,使边坡发生局部破坏甚至失稳。坡内顶部存在洞穴时,对边坡整体应力分布及位移影响较小,只对局部产生影响。
Loess topography is widely distributed in China,especially in the area of loess plateau between Wushaoling and Taihang Mountains.In this area,the accumulation thickness of the loess is very large and the natural landscape is rugged.With the development of the exploitation of loess area,a large number of aritificial loess slopes come into being.Our country is a harder-hit earthquake area,and the loess plateau area is an earthquake-prone one.Since the composition of the loess grains arevery complex and the structure is loose,there were a large number of loess slopes induced by the earthquake in history.Analysis of multi-layer loess slope's dynamic response is now a very important problem which requires immediately solution.And researches about this are imperfect,so the subject of this paper is of great significance.
     This paper analyses the Dynamic response of multi-layer loess slope,using the FLAC3D finite difference software.It mainly analyses the composition of the slope's soil layer's effects on the transmission of seismic wave and the slope's free surface's effects on the amplification of acceleration.It also researches common loess slopes'effects on the response and stability of slope earthquake acceleration and calculates the effects of common loess cave on the stability of the loess slope via the finite difference numerical simulation.
     (1) Calculations of two-layer model and three-layer model indicate that:Compared to single inhomogeneous slope,it's plastic zones amplify when the slope is on the bedrock.When the material parameter is small, it will produce a interconnected glide plane.While material parameter is high,the plastic zone only appears at the point of the slope toe and it presents as a semicircular towards the inside of the slope.And the slope's tension-shear failure zone expands towards the inside of the slope with the reduction of the material parameters.
     (2) Dynamic response results of different layers of loess slopes show that:the PGA amplification factor comes to the maximum at the top of the slope,it gets to the median at the slope toe,and the minimum appears from1/3to1/2of the height of the slope.Under this circumstance of multi-layer loess slopes,the descending range will decrease during the descending branch of the PGA amplification factor.The smaller caves inside of the slope make the horizontal PGA amplification factor increase.And the PGA amplification factor increases at the lower part of the slope and decreases at the upper part.
     (3) When caves exist at the lower part of the inside of the Slope, the tensile shear failure zone shifts to the inside of the slope.The damage depth increases.Tensile failure appears in the area form the cave to the slope surface along the diagonal direction.The plastic zone inside of the slope expands towards to the top of the slope along the latent glide plane.When caves exist at the middle part of the inside of the Slope, the plastic zone on the latent glide plane is connected with the slope surface through the caves.It will damage the slope partially and even destroy the stability.And When caves exist at the top of the inside of the Slope,it has little effects on stress distribution of the whole slope and the displacement,it only affects partially.
引文
[1]刘东生,等.中国的黄土堆积[M].北京:科学出版社,1965.
    [2]张宗祜,等.中国黄土[M].北京:地质出版社,1989.
    [3]刘东生,等.黄土与环境[M].北京:科学出版社,1985.
    [4]罗宇生,汪国烈.湿陷性黄土研究与工程[M].北京:中国建筑工业出版社,2001.
    [5]A·C凯斯,等.论黄河中游黄土层结构[J].黄河建设,1958,5:10-14.
    [6]胡聿贤.地震工程学[M].北京:地震出版社,2006.
    [7]文宝萍,等.黄土地区典型滑坡预测预报及减灾对策研究[M].北京:地质出版社,1997.
    [8]国家地震局兰州地震研究所.一九二零海原大地震[M].北京:地震出版社,1980.
    [9]吴玮江,何琼,陈建祥,等.甘肃省东部滑坡发育规律[J].中国地质灾害与防治学报,1993,4(3):89-96.
    [10]袁仁爱.铜延一级公路黄土滑坡稳定性分析与评价[D].西安:西安科技大学,2006.
    [11]吉彬彬,许冲,李金玲.山西高速公路沿线黄土滑坡分类及分布规律研究[J].公路交通技术,2009,1:1-5.
    [12]王家鼎,中国黄土山城“依山造局”的几个灾害问题讨论[J].西北大学学报(自然科学版),1996,26(1):57-61.
    [13]黎志恒.兰州黄土滑坡与地表水入渗变形关系分析[J].甘肃科学学报,2003,18(专辑):131-134.
    [14]吴玮江,贺斌英.天水市的环境地质问题[J].甘肃科学学报,2003,15(专辑):200-205.
    [15]王善堂.天水市王家半坡滑坡应急治理方法初探[J].甘肃科学学报,2003,15(专辑):123-126.
    [16]马金辉,年雁云,蔡迪花.兰州地区滑坡风险因素及其与区域构造的关系[J].自然灾害学报,2006,15(3):14-17.
    [17]张春山.黄河上游地区地质灾害形成条件与风险评价研究[D].北京:中国地质科学院,2003.
    [18]吴玮江,等.甘肃滑坡灾害[M].兰州:兰州大学出版社,2006.
    [19]毕俊擘.灌溉渗透诱发黄土滑坡风险分析与控制[D].西安:长安大学,2011.
    [20]王家鼎,肖树芳,张倬元.灌溉诱发高速黄土滑坡的运动机理[J].工程地质学报,2001,9(3):241-246.
    [21]许领,戴福初,邝国麟.黑方台黄土滑坡类型与发育规律[J].山地学报,2008,26(3):364-371.
    [22]姜海波,吕远强.祝建水帘洞煤矿上业场地黄土高边坡变形分析[J].煤炭工程,2010,11:42-45.
    [23]赵岩,岳正喜.浅谈铜川矿区黄土滑坡地质灾害[J].西部探矿工程,2005,8:184.
    [24]何前红.层状黄土边坡稳定性分析及防护优选决策研究[D].西安:长安大学,2006.
    [25]罗伯特L·威格尔.地震工程学[M].北京:科学出版社,1978.
    [26]Leshctlinsky D,San K Ching.Pseudo-static stability of slopes design[J].Journal of Geotechnical Engineering, ASCE,1994,120(9):1514-1532.
    [27]Siyahi,Bilge,Gokmirza.Pseudo-static stability analysis in normally consolidated soil slope subjected to earthquak[J].Technical Journal of Turkish Chamber of Civil Engineers,1998,9(12):457-461.
    [28]Biondi G,Cascone E,Maugeri M,et al. Seismic response of saturated cohesionless slopes[J].Soil Dynamic and Earthquake Engineering,2000,20:209-215.
    [29]Biondi G,Cascone E,Maugeri M.Flow and deformation of sandy slopes[J]. Soil Dynamic and Earthquake Engineering,2002,22(10):1103-1114.
    [30]左秀泓.关于拟静力法分析土石坝地震稳定性的问题[J].水利发电,1991,8:11-16.
    [31]李守巨,刘迎曦,何翔.遗传算法在边坡地震稳定性分析中的应用[J].2003,24(增刊):95-98.
    [32]张林,林从谋.爆破震动对土质边坡动力稳定性影响研究[J].岩土力学,2005,26(9):1499-1501.
    [33]吕擎峰,殷宗泽,王叔华.拟静力法边坡稳定分析的改进[J].岩土力学,2005,26(增刊):35-38.
    [34]李忠生.地震危险区黄土滑坡稳定性研究[M].北京:科学出版社2004.
    [35]NewmarkN M.Effects of earthquakes on dams and embarkments[J].Geotechnique, 1965,15(2):139-160.
    [36]Wilson R C,Keefer D K. Dynamic analysis of a slope failure from the 6 August 1979 Coyote Lake-California Earthquake[J].Seismological Society of America Bulletin, 1983,73(3):863-877.
    [37]Taylor.larry.R,Pan.T.max,Dellingeras.Seismic stability analysis for geosynthetic clay liner landfill cover placement on steep slope [J].Geotechnical Special Publication 1995, 54:196-211.
    [38]CresPellani T,Madiai C,Vamtucehi G. Earthquake Destructiveness Potential Factor and Slope Stabiliy[J].Geotechnique,1998,48(3):411-419.
    [39]陈启国,葛华,周洪福.利用Newmark方法进行地震滑坡制图-以映秀研究区为例[J].中国煤炭地质,2011,23(11):44-49.
    [40]李红军,迟世春,钟红.考虑时程竖向加速度的Newmark滑块位移法[J].岩土力学,2007,28(11):2387-2392.
    [41]李红军,迟世春,林皋.平均屈服加速度的Newmark滑块位移法[J].哈尔滨工业大学学报,2009,41(10):100-104.
    [42]Clough R W,Chopra A K.Earthquake stress analysis in earth dams[J].Journal of Engeering Mechanics,ASCE,1966,92(EM2):197-211.
    [43]杨昌明.露天矿边坡岩体应力的有限元法分析[J].有色金属,1979,1:45-50.
    [44]万力,田开铭,陈明佑.层状结构边坡体中地下水运动特征及有限单元模拟方法[J].地质学报,1988,1:90-97.
    [45]崔自治,范景伟.含软弱结构面的岩质高边坡稳定分析研究[J].成都科技大学学报,1992,2:4349.
    [46]鄢贵权,杨成永.边坡稳定三维非线性有限元分析[J].贵州地质,1994,11(3):239-245.
    [47]周翠英,刘祚秋,董立国.边坡变形破坏过程的大变形有限元分析[J].岩土力学,24(4):644-648.
    [48]赵尚毅,郑颖人,时卫民.用有限元强度折减法求边坡稳定安全系数[J].岩土工程学 报,2002,24(3):343-346.
    [49]徐干成,郑颖人.岩土工程中屈服准则应用的研究[J].岩土工程学报,1990,12(2):93-99.
    [50]祝玉学.边坡可靠性分析[M].北京:冶金工业出版社,1993.
    [51]Cambou B.Application of first order uncertainty analysis in finite element method in linear elasticity[J].2nd Int.Conf.on Applications of Statistics and Probability in Soil and Structural Engineering, Aachen, Germany,E.Schlutze,ed,67-87.
    [52]Dendrou B A. Hcustis E N.An inference finite element model for field applications[J]. Applied Mathematical Modeling.1978,1:49-55.
    [53]Baecher G B.Ingra T S. Stochastic FEM in settlement predictions[J].Geotech. 1981.107(4):449-463.
    [54]刘宁,卓家寿.节理岩体的三维随机有限元及可靠度计算[J].岩石力学与工程学报1995,14(4):297-305.
    [55]徐建平,胡厚田.摄动随机有限元法在顺层岩质边坡可靠性分析中的应用[J].岩土工程学报,1999,21(1):71-76.
    [56]谭晓慧,王建国,刘新荣.边坡稳定的有限元可靠度计算及敏感性分析[J].岩石力学与工程学报,2007,26(1):115-122.
    [57]谭晓慧,王建国,吴礼年,等.边坡稳定的非线性随机有限元加速收敛算法的研[J].岩土工程学报,2007,29(7):1030-1034.
    [58]谭晓慧,王建国,胡晓军.边坡稳定的模糊随机有限元可靠度分析[J].岩土工程学报,2009,31(7):991-996.
    [59]崔文鉴.原状黄土动力特性的试验研究[J].铁道学报,1991,4:71-77.
    [60]骆亚生,谢定义,陈存礼.黄土不同湿度状态下破坏动强度的试验分析[J].西安理工大学学报,2001,17(4):403-407.
    [61]李焱,骆亚生,谭东岳.振动频率对压实黄土动强度特性的影响[J].水土保持通报,2009,29(4):130-133.
    [62]龚成明,刘争平,杨丹.黄土路堑边坡在振动作用下的动力响应分析[J].铁道工程学报,2008,7:1-5.
    [63]邓龙胜.强震作用下黄土边坡的动力响应机理和动力稳定性研究[D].西安:长安大学,2010.
    [64]何满潮,等.工程地质数值法[M].北京:科学出版社,2006.
    [65]刘波,韩彦辉,等.FLAC原理-实例与应用指南[M].北京:人民交通出版社,2005.
    [66]彭文斌.FLAC3D实用教程[M].北京:机械工业出版社,2009.
    [67]Itasca Consulting Group,Inc.FLAC3D User Manuals-Theory and Background, Version 4.0,Minneapolis,Minnesota,2009.
    [68]吴世明.土介质中的波[M].北京:科学出版社,1997.
    [69]高德彬.公路黄土路堑高边坡稳定性研究[D].西安:长安大学,2008.
    [70]张鲁渝,郑颖人,赵尚毅,等.有限元强度折减系数法计算土坡稳定安全系数的精度研究[J].水利学报,2003,(1):21-26.
    [71]Kuhlemeyer, R.L., J. Lysmer. Finite Element Methond Accuracy for Wave Propagation Problems[J].J.Soil Mechanics and Foundations.Div.ASCE,1973,99 (SM5):421-427.
    [72]Itasca Consulting Group,Inc.FLAC3D User Manuals-Dynamic Analysis,Version4.0, Minneapolis, Minnesota,2009.
    [73]Lysmer,J.,R.L.Kuhlemeyer.Finite Dynamic Model for Infinite Media,J.Eng. Mechanics, 1969,95(EM4):859-877.
    [74]Kunar,P.J.Beresford,P.A.Cundall.'A Tested Soil-Structure Model for Surface Structures'in Proceedings of the Symposium on Soil-Structure Interaction[J]. Roorkee University.1977,1:137-144.
    [75]Cundall,P.A.,H. Hansteen,S.Lacasse.NESSI-Soil Structure Interaction Program for Dynamic and Static Problems[R].Norwegian Geotechnical Institute,1980,Report: 51508-9.
    [76]南亚林.黄土地区土性参数的统计分析及在公路边坡中的应用[D].西安:长安大学,2006.
    [77]傅伯仁.黄土高原生态建设效率研究[M].兰州:甘肃人民出版社,2008.
    [78]彭建斌,李庆春,陈志新,等.黄土洞穴灾害[M].北京:科学出版社,2008.
    [79]罗来兴.划分晋西陕北陇东黄土区域沟谷的地貌类型[J].地理学报,1956,22(3):20-24.
    [80]杨怀仁,等.山西南部黄土地形发育和地形区划[J].地理学报,1957,23(1):31-35.
    [81]朱显谟,等.黄土区的洞穴侵蚀[J].黄河建设,1958,3:11-15.
    [82]陈传康.陇东南部黄土地形类型及其发育规律[J].地理学报,1956,22(3):8-12.
    [83]陈永宗.黄土陷穴的成因及其危害[J].地理学资料,1958,(3):1-4.
    [84]王景明,王君.冀中南黄土潜蚀地貌与黄土构造节理[J].地理研究,1994,13(1):90-93.
    [85]李喜安,彭建兵,郑书彦.黄土高原地区黄土洞穴的成因研究[J].公路,2005,11:142-146.
    [86]李昌贤.黄土洞穴成因机制研究[D].西安:长安大学,2004.
    [87]颜宇森,项伟,雷海英.黄土洞穴侵蚀速率的现场试验研究[J].水文地质工程地质2008,5:106-109.
    [88]彭建兵,李喜安,范文,等.黄土高原地区黄土洞穴的分类及发育规律[J].地学前沿2007,14(6):234-244.
    [89]王景明,卜臣.黄土喀斯特与水土流失灾害[J].中国水土保持,1990,1:18-23.
    [90]苏生瑞,彭建兵,宋彦辉.黄土洞穴对公路的危害研究[J].公路,2004,11:121-127.
    [91]李喜安,彭建兵,陈志新.黄土洞穴潜蚀地貌及其利弊综合分析[J].西安科技大学学报,2009,29:78-84.
    [92]李喜安.黄土洞穴的成因及其公路工程灾害效应研究[D].西安:长安大学,2004.
    [93]李滨.晋西黄土暗穴成因及对公路危害研究[D].西安:长安大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700