结构性吹填软土流变特性及其本构模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天津滨海新区正在进行着我国最大规模的吹填造陆工程,也是世界上瞩目的工程。其物质成分主要以细粒土为主,粘土矿物所占比例高达50%以上,并以伊利石、伊蒙混层为主,这是在我国东部沿海地区吹填造陆中比较特殊的吹填物源。目前对吹填场地的地基处理无不采用真空预压技术,这种地基处理方法短期内就会使土体具有一定的结构强度,但其整体工程性质还很差,流变变形不可低估。由于结构性和流变特性的存在,使得吹填场地工后沉降计算及控制显得更为复杂。现有的各种本构模型实际上都是针对饱和扰动土和砂土而发展起来的,考虑结构性的影响较少,其结果必然是计算值与实际情况有一定的差距。如何深入而有效的揭示这一内在规律,是土力学当前及今后长时间内一个复杂而又不能回避的核心问题。目前对吹填场地地基处理已积累了很多工程实践经验,但对于吹填软土工程特性尤其是结构特性、流变特性及其模型与机理的研究显得明显落后于工程实践。
     本文针对上述问题,紧紧围绕土结构性这一显著特征,在前人研究的基础上,对新近吹填软土结构性形成机制、变形时效性及其与结构性的关系进行了试验研究和理论分析,并以此为指导,建立了考虑结构性的吹填软土流变本构模型。并从微观上对吹填软土流变机理进行了探讨,以期在软土地基沉降计算及控制理论方面有所突破。具体研究成果如下:
     1、对典型吹填场地经过真空预压处理的吹填软土基本性质进行了系统的研究,天津滨海新区吹填软土主要以细粒土为主,粘粒含量高,经过真空预压处理后具有较强的结构性。由于结构性的存在,对其压缩特性、强度特性、应力应变关系、屈服特性的影响明显,吹填场地工程实践中要充分认识到土结构性存在的作用,合理而有效地利用土结构性。
     2、通过设计试验槽模拟天津滨海新区吹填土现场沉积情况,对吹填软土在K0固结条件下以及经过K0固结后的土体进行在等向固结条件下、蠕变条件下结构屈服应力的形成进行了系统的研究,提出吹填软土结构性形成机制理论。
     3、通过室内三轴流变试验,对天津滨海新区典型的两种状态吹填软土(原状土与重塑土)流变特性进行了系统的对比研究,结果表明结构性的存在,其流变特性具有明显的特殊性。
     4、建立了考虑结构性的两种流变模型,即考虑结构性的全经验流变模型以及半理论半经验流变模型。
     5、采用本文所建立的流变本构模型,利用Abaqus大型技术软件,对临港工业区一吹填场地工程实践进行了有限元分析。结果证明考虑结构性影响的模型计算值最为合理,即对于有结构性的软土,建立考虑结构性的流变模型才能更好地反映流变现象、预测变形发展趋势。
     6、通过对流变过程中微观结构的分析以及结构强度的变化试验,揭示了流变过程中微结构的变化,为从本质上研究流变特性奠定了基础。
The largest scale Land reclamation is now under way in Chinese Tianjin Binhai New Area, as well as in the world. Its main ingredients is fine grain, in which the proportion of clay mineral are up to 50, among them illite and illite mixed with montmorillonite layer is the most, which are the special source for the hydraulic fill project in the eastern coastal areas of china. Up to now vacuum preloading is the most commonly used method for soft dredger fill, this found treatment can form structural strength in the soil shortly, but its Engineering Property is poor and rheological deformation can not be ignore. As result, it is very complex and difficult to estimate and control the post-construction settlement. At present, all kinds of constitutive model are developing from saturated disturbance soil and sand, little considering the influences of soil structure, so that the calculated value different from the practical situation. Therefore, How to proclaim this inherent law is the complex key issue which cannot avoid in Soil Mechanics now and a long time in the future. Although we have accumulated much experience of foundation treatment for hydraulic fill, the research about engineering properties especially about soil structure, rheology and its model and also its mechanism is obviously behind the engineering practice.
     In view of the above questions, centering on characteristics of structural , experimental study and theoretical analysis on the formation mechanism of structure, time-dependence of deformation and the relationship between them are implemented based on the previous research in the paper, rheological constitutive model of soft dredger fill considering the structure is proposed. In order to make a progress in the theory of calculation and control of settlement, rheology mechanism is discussed through microstructure. The main work are as follows:
     1、Through systematically studied the basic characteristics of soft dredger fill of typical treated foundation by vaccum preload, It showed that the main ingredients of it is fine grain which has high clay content, obvious structure formed after vaccum preloading. Only have a full realization of the effect of soil structure on compressibility, strength, relationship of stress and strain and yield stress can we make rational use of the soil structure.
     2、Based on the designed testing tank to simulate the deposition process of dredger fill in Tianjin Binhai New area, the theory of structural yield stress formation on soft dredger fill in Ko consolidation and isotropic consolidation and creep test after Ko consolidation was proposed through comprehensive investigation.
     3、Through triaxial rheological test, rheological behaviors of two typical state of soft dredger fill(undisturbed and remold)are compared, the results indicated that the rheological behaviors is distinctly different between them due to the soil structure.
     4、Two type of rheologcal model considering the soil structure are proposed, which are semi empirical and empirical constitutive model.
     5、Based on the model established in the paper, the widely used soft Abaqus analysis program is adopted to study engineering project on the hydraulic fill site in Lin-gang Industrial zone. The results proved that considering the influence of structure is the most reasonable constitutive model. So forecasting the rheological behavior and deformation development through this constitutive model maybe the best way.
     6、The variation of microstructure was proclaimed through analysing the microstructure and the structural strength in the procession of the rheology, this lay the foundation for building the essential characteristics of rheology.
引文
[1]杜东菊,杨爱武,刘举等.天津滨海吹填土[M].北京:科学出版社,2010
    [2]Lambe T.W.,Whitman R.V. soil Mechanics[M].New York: John Wiley&Sons Inc,1969
    [3]New design procedure for stability of soft clays[J] .Engng. DIV, ASCE, 1975, 101(4):409-412
    [4]Kabbajm Tavenas, F,Leroueil. In Situ and laboratory stress-stain relationships[J] . Geotechnique, 1988, 38(1):83-100
    [5]沈珠江.土体结构性的数学模型-21世纪土力学的核心问题〔J〕.岩土工程学报,1996,18(1):95-97
    [6]谢定义,齐吉林.土结构性及其定量化参数研究的新途径[J] .岩土工程学报,1999,21(6)651-656
    [7]胡瑞林,王思敬,李向全等. 21世纪工程地质学生长点:土体微结构力学[J].水文地质工程地质, 1999,26(4):5-8.
    [8]太沙基(Terzaghi)理论土力学[M](中译本).北京:中国地质出版社,1960
    [9]Casagrande A. The structure of clay and its importance in foundation engineering[J]. J.Boston Soe.Civ.Engrs.,1932,19(4):168-209.
    [10]Mitchell J.K. Fundamentals of soil behavior[M].Series in soil engineering. New york: Wiley.xvi,1976.
    [11]张诚厚.两种结构性粘土的土工特性[J].水利水运科学研究,1983,(4):65-71.
    [12]Skempton A.W. Residual strength of clays in landslids,folded strata and the laboratory[J].Geotechnique,1985,35(l):1-18.
    [13]Burland J.B. On the compressibility and shear strength of natural clays[J] Geotechnique,1990, 40(3):329-378.
    [14]Leroueil S.,Vaughan P.R. The general and congruent effects of structure in natural soil and weak rocks[J].Geotechnique,1990, 40(3):467-488.
    [15]李作勤.有结构强度的欠压密土的力学特性[J].岩土工程学报, 1982, 4(1): 34-45.
    [16]拓勇飞,孔令伟,郭爱国,等.湛江地区结构性软土的赋存规律及其工程特性[J].岩土力学,2004,25(12): 1879-1884.
    [17]张诚厚.两种结构性粘土的土工特性[J].水利水运科学研究,1983(4):65-71.
    [18]龚晓南,熊传祥,项可祥,等.粘土结构性对其力学性质的影响及形成原因分析[J].水利学报,2000,22(10): 43-47.
    [19]王国欣.软土结构性及其扰动状态模型研究[D].长春:吉林大学,2003.
    [20]吕海波,汪稔,孔令伟,等.结构性对琼州海峡软土压缩特性的影响[J].岩土力学,2001,22(4): 467-473.
    [21]王立忠,丁利,陈云敏,等.结构性软土压缩特性研究[J].土木工程学报,2004,37(4): 46-53.
    [22]雷华阳,肖树芳.软土结构性的试验研究及其对工程特性的影响[J].吉林大学学报:地球科学版,2004,34(1):106-110
    [23]刘用海,朱向荣,吴健,等.宁波软土结构性成因及其对工程特性影响试验研究[J].工业建筑,2008(3): 68-71.
    [24]Mesri G,Roskhar A.,Bohor B.F. Composition and compressibility of typical samples of Mexico clay[J].Geotechnique,1975, 25(3):527-554.
    [25]Graham J.,Li E.C.C. Comparison of natural and remolded plastic clay[J].Journal of Geotechnical Engineering,ASCE,1985, 111(7):865-881.
    [26]丁利.软土结构性与砂墙地基固结性状研究[D].杭州:浙江大学,2003.
    [27]Sehmertmann J.H. The undisturbed consolidation behavior of clay[J].Transactions of ASCE,1955, 120(2):1201-1226.
    [28]NagarajT.S.,Murthy B.R.S.,Vatsala A.,et al. Analysis of compressibility of sensitive soils[J].Journal of Geotechnical Engineering,ASCE,1990, 116(l):105-118
    [29]Haan E.J.D. The formulation of virgin compression of soils[J].Geotechnique,1992, 42(3): 465-83.
    [30]Liu M.D.,Carter J.R,Desai C.S.,et al. Analysis of the compression of structured soils using the disturbed state concept[J].Intemational Journal for Numerical and Analytical Methods in Geomechanies,2000, 24(8):723-735.
    [31]Liu M.D. , Carter J. , Desai C.S. Modelling compression behaviour of geo-materials[J」.Int .J.Geomech.ASCE,2003, 3(2):191-04.
    [32]王立忠,赵志远,李玲玲.考虑土体结构性的修正邓肯-张模型[J].水利学报,2004 (l):83-89.
    [33]刘恩龙,沈珠江.结构性土压缩曲线的数学模拟[J].岩土力学,2006,27(4):615-620
    [34]魏汝龙.软枯土的强度和变形[M].北京:人民交通出版社,1987
    [35]刘保健,谢永利,李又云.公路软基在变荷载条件下的沉降计算[J].中国公路学报,2000,13(4):21-25.
    [36]沈珠江.软土的工程特性和软土地基设计[J].岩土工程学报,1998,20(l):100-111.
    [37]李又云,刘保健,谢永利.软土结构性对渗透及固结沉降的影响[J].岩石力学与工程学报,2006,25(增2):3587-3592.
    [38]邵光辉,刘松玉.海相结构软土的次固结研究[J].岩土力学,2008,29(8):2057-2061
    [39]刘维正,名磊.长江漫滩相软土结构性特征及其工程效应分析[J].岩土力学,2010,31(2):427-432.
    [40]Deleg P,Lefebvre G. Study of the structure of a sensitive champlain clay and evolution during consolidation[J].Canadian Geotechnical Journal,1984, 21:21-25.
    [41]Lapierre C.,Leroueil S.,Locat J. Mereury intrusion and permeability of Louiseville clay[A].Canadian Geotechnical Conferenee,1989:23-25.
    [42]Nagaraj T.S.,Pandian N.S.,Raju P.S.R.N. Compressibility behaviour of soft cemented soils[Jl.Geotechnique,1998, 48(2):281-287.
    [43]洪振舜,立石义孝,邓永锋,强结构性天然沉积土的强度变形特性[J].岩土力学,2004,25(8):1201-1204.
    [44]殷杰,高玉峰,洪振舜.连云港软黏土的不排水强度试验研究[J].岩土力学,2009,30(11):3291-3301.
    [45]Tavens, F. and Leroueil, S.. Laboratory and in situ stress-strain-time behavior of soft clays-state-of-the-art paper, Int. Symp. Geotech. Engng. Soft Soils, Mexico City 2 , 1990.
    [46]Cotecchia F.,Chandler R.J. A general frame work for the mechanical behaviour of clays[J」.Geotechnique,2000, 50(4):431-47.
    [47]王立忠,丁利,赵志远,李玲玲.结构性软土应力-应变关系分段特征研究[J].中国土木工程学会第九届土力学及岩土工程学术会议论文集[C].2003,305-318
    [48]邓国华,邵生俊,梁永恒.结构性黄土的压力敏感性研究[J].西安理工大学学报,2008,24(2):139-143.
    [49]Graham, J., Noonan, M.L. and Lew, K. V. Yield states and stress-strain relationship in a natural plastic clay[J]. Can. Geotech. J, 1983 ,20(3): 502-516.
    [50]Moulin, G. Etat Limite dume argile naturell-1 argile de pornic. Ph. D thesis, Universit de Nantes France, 1988
    [51]Tavenas and Leroueil. Clay behavior and the selection of design parameters[J]. Proc. 7th European conf. on SMFE. Brighton, 1979, 1: 281-291.
    [52]胡瑞林,李向全等.粘性土微结构定量模型及其工程地质特征研究[M],北京:地质出版社,1995
    [53]Collin S, K. and megown, A. The form and function of microfabric feature in variety of natural soils[J], Geothchnique. 1974, Vol.2.
    [54]Casagrande A,The structure of elay and its importance in oundation engineering. Journal of Boston soceiety of civil Engineering,1932,Vol.19
    [55]Lambe,T.W.(1958).The structure of compacted clay,J.SMFD,ASCE,Vol.84,NO.SMZ
    [56]陈宗基.Strueture mechanics of clay.Scientia Siniea[J].1959,(8):93–97
    [57]Aylmore, LAG and Quirk, JP. Swelling of clay water systems, Nature, 1959.
    [58]常宝琦.黄土湿陷性的初步研究[J].中国科学院哈尔滨土木建筑研究所黄土基本性质研究论文集[C],1962
    [59]林崇义,黄土的结构性特性[J].中国科学院哈尔滨土木建筑研究所黄土基本性质研究论文集[C],1962
    [60]Van Olphen,An introduction to clay colloid chemistry[M].1963
    [61]R.Brewer,Fabric and Mineral of soils,1964
    [62]N.K.Tovey,Quantitative analysis of eleetron micrographs of soil microstructure,Proeeedings of the Intenational Symposium on soil structure,1973
    [63]Hideki ohta,Toru Shibaya,An idealized model of soil structure,Proceedings of the International symposium on soil structure,1973
    [64]R.N.Yong and D.E.Sheeran, Fabric unit interaction and soil Behavior,Proeeedings of the International symposium on soil structure,1973
    [65]Mitchell,J.K.,Fundamentals of soil Bechavior,1976
    [66]高国瑞,兰州黄土显微结构与湿陷机理探讨[J].兰州大学学报,1979(l)
    [67]高国瑞,中国黄土的湿陷性[J].中国科学,1980(12)
    [68]高国瑞,中国黄土的微结构[J].中国科学,1980(20)
    [69]唐大雄,刘佑荣等.工程岩土学.北京:地质出版社,1987,157-161
    [70]Y,X Wu. Quantitative aPProach on microstructure of engineering clay,6th Congress of IAEG,1990,Amsterdam
    [71]刘松玉等,试论粘土粒度分布的分形结构[J].工程勘察,1992(2):1-4
    [72]胡瑞林,李向全等.粘土微结构定量模型及其工程地质特征研究[M].地质出版社,1995.3
    [73]蒋明镜.结构性粘土的本构模型和土体逐渐破损分析[D].南京水利科学研究院,博士学位论文,1996.5
    [74]齐吉琳.土的结构性及其定量化参数的研究西安理工大学,博士学位论文,1999.1
    [75]胡再强.黄土结构性模型及黄土渠道的浸水变形试验与数值分析[D].西安理工大学,博士学位论文,2000.11
    [76]张宗祜.我国黄土显微结构的研究,地质学报,vol.44,No.3,1964
    [77]张宗祜等,黄土湿陷变形过程中微结构变化特征及湿陷性评价[J].国际交流地质学术论文集[C],1985
    [78]王幼麟.粘性土结构特征的研究方法与问题[J].水文地质与工程地质论丛,1985
    [79]谭罗荣.土的微观结构研究概况和发展[J].岩土力学,1983,4(l):73-85,
    [80]谭罗荣.粘性土微结构定向性的x射线衍射研究[J].科学通报,1981(4)
    [81]白晓红,贾军刚.强化定向法在粘性土微观结构分析中的应用[J].太原理工大学学报,1996, 27(4) :31-34,
    [82]骆亚生,谢定义,邵生俊,张爱军.复杂应力状态下的土结构性参数[J].岩石力学与工程学报,2004,23(24):4248-4251.
    [83]刘莹,肖树芳,王清.吹填土沉积固化后结构强度增长的机理分析[J].同济大学学报,2003,31(11):1295-1298.
    [84]刘莹,王清.水泥与生石灰处理吹填土对比试验研究[J].工程地质学报,2006,14(3):424-429.
    [85]谢海澜,王清,李萍等.生石灰和水泥混合处理吹填土的试验研究[J].工程地质学报,2003,11(1):49-53
    [86]刘娉慧,王清,董钧祥.室内加固的吹填土微结构试验研究[J].水文地质工程地质,2005,(4):21-23
    [87]刘娉慧,肖树芳,王清.外掺剂加固吹填泥浆的机理分析[J].工程地质学报,2005,13(2):285-288
    [88]成玉祥,杜东菊,李忠良.结构性吹填土压缩变形微观机理试验[J].煤田地质与勘探,2008,36(4):46-49.
    [89]成玉祥,杜东菊,李忠良.结构性吹填土剪切破坏的微结构效应[J].水文地质工程地质,2008,35(1):32-35.
    [90]成玉祥,杜东菊.真空预压处理吹填土的微结构特征试验[J].煤田地质与勘探,2010,38(4):52-55.
    [91]杨爱武,杜东菊,卢力强.天津吹填软土沉积特性及其微观结构研究[J].水文地质工程地质,2010,37(5):83-87.
    [92]张彦.天津滨海新区软土微观结构特征及图谱研究[D].天津城市建设学院硕士论文,2010
    [93]Morgrnstern,N.R.,Tchalenko,J.S. Microscopic structure in kaolin subjected to direct shear[J]. Geotechnique, 1967,17(4):309–328.
    [94]N.K. Tovey, Quantitative analysis of electron micrographs of soil microstructure[J]. Proceedings of the International Symposium on soil structure, 1973,50–58.
    [95]Tovey N K, Wong K Y,Some aspects of quantitative measurement from electron micrographs of soilstructure,Geotechnique,1983,33
    [96]Tovey N K. Krinsley D H,Mapping of the orientation of fine-grained minerals in soils and sediments,Bulletin of LAEG,1992,46:93-101
    [97]Tovey N K, A digital computer technique for orientation analysis of micrographs soil fabric of Microscopy,1990,120:303-315
    [98]Osipov V I, Nikolaeva S K, Sokalov V N. Microstructural changes associated with thixotropic phenomena in clay soils[J]. Geotechnique, 1984, 34(2): 293-303.
    [99]吴义样.工程粘性土微观结构的定量评价[J].中国地质科学院院报,1991,46:93-101
    [100]Tyler S W, Wheat craft S W. Fractal scaling of soil particle-size distribution analysis and limitations,Soil Soc Am J,1992,56:362-369
    [101]McBrathney A B,Comments on "Fractal distribution of soil aggregate size distribution calculated numberand mass,Soil Sci Soc Am J,1993,57:1393-1394
    [102]Anandarajah A. On influence of fabric anisotropy on the stress-strain behaviour of clays[J]. Computer and Geotechnics, 2000, 27(1): 1-17.
    [103]施斌,李生林.Tokachev M.粘性土微观结构SEM图像定量研究[J]..中国科学,1995,A辑,25(6):666-672
    [104]徐永福,田美存.土的分形微结构.水利水电科技进展[J].1996,16(1):25-29
    [105]Bai X, Smart P. Change in microstructure of kaolin in consolidation and undrained shear[J]. Geotechnique,1997, 47(5): 1 009-1 017.
    [106]吴紫汪,马巍,蒲毅彬,等.冻土蠕变变形特征的细观分析[J].岩土工程学报, 1997, 19(3): 1-6.
    [107]李晓军,张登良.路基填土单轴受压细观结构CT监测分析[J].岩土工程学报, 2000, 22(2): 205-209.
    [108]LI Xiao-jun, WANG Zhi-ren, YIN jing-ze. CT discrimination of fabric change of unsaturated compacted loess during compression process[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(1): 107-111.
    [109]Kuo C Y, Fost J D, A Chameau J L. Image analysis determination of stereology based fabric tensors[J].Geotechnique, 1998, 48(4): 515-525.
    [110]李得福,周萃英,谭祥韶.基于软土微观结构研究的固结及沉降分析[A].第六次全国岩石力学与工程学术大会论文集[C].武汉:中国科学技术出版社, 2000. 177-180.
    [111]Anandarajah A. On influence of fabric anisotropy on the stress-strain behaviour of clays[J]. Computer and Geotechnics, 2000, 27(1): 1-17.
    [112]Latham J P, Y Liu, Munjiza A. A random method for simulating loose packs of angular particles using retrahedra[J]. Geotechnique, 2001, 51(10): 871-879.
    [113]Papadimitriou A G, Bouckovalas G D. Modeling sand fabric evolution during cyclic loading[A]. Proceedings of the Fifteenth International Conference on Soil Mechanics and Geotechnical Engineering[C]. Lisse:Balkema, 2001. 235-238.
    [114]Bohac J, Feda J, Kuthan B. Modeling of grain crushing and debonding[A]. Proceedings of the Fifteenth International Conference on Soil Mechanics and Geotechnical Engineering[C]. Lisse: Balkema, 2001. 43-46.
    [115]Katti D R, ShanamugasundaramV. Evolution of microstructure during swelling in expansive clays[J]. ComputerMethods and Advances in Geomechanics, 2001. 533-537.
    [116]Dudoignon P, Pantet A, Carra L, Velde B. Macro-micro measurement of particle arrangement in sheared kaokinic matrices[J]. Geotechnique, 2001,51(6): 493-499.
    [117]Haynie C, Frantziskonis G. Multiscale material characterization and application to artificially created microstructure [J]. Computer Methods and Advances in Geomechanies,2001. 529-532.
    [118]姚海林,刘少军,程昌炳.一种天然胶结土粘聚力的微观本质[J].岩石力学与工程学报, 2001, 20(6): 871-874.
    [118]雷华阳,肖树芳.天津海积软土微观结构与工程性质初探[J].地质与勘察,2002, 38(6): 81-85.
    [120]邵生俊,周飞飞,龙吉勇.原状黄土结构性及其定量化参数研究[J].岩土工程学报, 2004, 26(4): 531?536.
    [121]房后国,刘娉慧,袁志刚.海积软土固结过程中微观结构变化特征分析[J].水文地质工程地质,2007,(2):49-52.
    [122]张季如;祝杰;黄丽等.固结条件下软黏土微观孔隙结构的演化及其分形描述[J].水利学报,2008,39(4):394-400.
    [123]孔令荣,黄宏伟,P.Y.HICHER,张冬梅.上海淤泥质黏土微结构特性及固结过程中的结构变化研究[J].岩土力学,2008,29(12):3287-3292.
    [124]李军霞,王常明,张先伟.不同排水条件下软土蠕变特性与微观孔隙变化[J].岩土力学,2010,31(11):3493-3498.
    [125]张先伟,王常明.一维压缩蠕变前后软土的微观结构变化岩土工程学报,2010,32(11):1988-1694.
    [126]陈昌禄,邵生俊,邓国华.土的结构性参数与强度的关系及其在边坡稳定分析中的应用[J].中南大学学报(自然科学版),2010,41(1):328-334.
    [127]孙钧.岩土材料流变力学及其工程应用[M].北京:中国建筑工业出版社,1999,222-248
    [128]Geuze,E.C.W.A.&Tan Tjong Kie, The Mechanical behavior of clays[J]. Proc.ot the 2th international Congress Rheology, Oxford.Geotechnique(1),1953
    [129]陈宗基.固结及时间效应的单维问题.土木工程学报,1958,5(1):1-10
    [130]王常明,肖树芳,夏玉斌,刘成民.海积软土的固结蠕变[J].长春科技大学学报,2000,30(1):57-60
    [131]陈晓平,白世伟.软粘土地基粘弹塑性比奥固结的数值分析[J].岩土工程学报,2001,23(4):481-484
    [132]陈晓平,杨春和,白世伟.软基上吹填边坡蠕变特性有限元分析[J].岩石力学与工程学报,2001,20(4):514-518
    [133]雷华阳,肖树芳.天津软土的次固结变形特性研究[J].工程地质学报,2002,10(4):385-389
    [134]殷宗泽,张海波,朱俊高,李国维.软土的次固结[J].岩土工程学报,2003,25(5):521-526.
    [135]于新豹,刘松玉,缪林昌.连云港软土蠕变特性及其工程应用[J].岩土力学,2003,24(6):1001-1006
    [136]张芳枝,陈晓平,黄国怡.珠江三角洲饱和软粘土的固结特性试验研究[J].岩土力学,2003,24(增刊):192-194
    [137]章定文,刘松玉,于新豹.连云港海相软土工程特性及处治方法探讨[J].工程地质学报[J],2003,11(03):250-257
    [138]师旭超,汪稳,张在喜.广西海相淤泥的次固结特性研究[J].岩土力学,2003,24(5):863-865
    [139]陈晓平,白世伟.软土蠕变—固结特性及计算模型研究[J].岩石力学与工程学报,2003,22(5):728-734
    [140]高彦斌,朱合华,叶观宝,徐超.饱和软粘土一维次压缩Ca值的试验研究岩土工程学报,2004,26(4):459-463
    [141]俞晓,吕珊淑.软土流变室内试验方法及成果整理[J].国外建材科技,2004,25(2):15-16
    [142]张丽萍,关超,阎婧.营口地区软土流变模型参数及流变特性研究[J].沈阳建筑大学学报(自然科学版),2004,20(4):261-264
    [143]顾中华,高广运.基于软土固结蠕变试验非线性蠕变函数及参数分析[J].地下空间, 2004,24(1):11-13
    [144]周秋娟,陈晓平.软土蠕变特性试验研究[ J] .岩土工程学报, 2006, 28(5):626- 630.
    [145]刘汉龙,扈胜霞,Ali Hassan.真空-堆载预压作用下软土蠕变特性试验研究[J].岩土力学,2008,29(1):6-12.
    [146]冯志刚,朱俊高.软土次固结变形特性试验研究[J].水利学报,2009,40(5):583-588.
    [147]高洪梅,刘汉龙,刘金元.EPS颗粒轻质混合土蠕变特性试验研究[J].河海大学学报(自然科学版),2010,38(4):402-406.
    [148]谢宁.软土非线性流变的理论、试验和应用研究.[硕士学位论文],上海:上海同济大学,1993
    [149]施斌,姜洪涛,邵莉,蔡奕.速率过程理论在粘性土蠕变模拟中的应用[J].水利学报[J],2002,11:66-73
    [150]施斌,王宝军,宁文务.各向异性粘性土蠕变的微观力学模型.岩土工程学报[J],1997,19(3):7-13
    [151]陈铁林,陈生水,周成,沈珠江.粘土的流变特性分析.岩土工程学报[J],2001,23(3):279-283
    [152]Bazant Z P , Ansal A M, Krizek R J. Viscoplasticity of transversely isotropic clays,Journal of Engineering Mechanics Division, ASCE,1979,105(4): 549-565
    [153]张矿生,钟辉虹,流变性粘土变形特性的弹粘塑性研究.株洲工学院学报[J], 2003,17(2):92-95
    [154]朱志武,宁建国,宋顺成.基于内时理论的冻土试验研究与数值分析[J].力学学报,2009,41(4):549-554
    [155]Mosleh A AI-S, Stern S. A time-dependent bounding surface model for anisotropic cohesive soils,Soils and foundations, 1998,38(1):61-76
    [156]何开胜,沈珠江.结构性粘土的弹粘塑损伤模型[J].水利水运工程学报,2002,4:7-13
    [157]何开胜,沈珠江.结构性土的微观变形和机理研究.河海大学学报[J],2003,31(2):161-165
    [158]何俊,肖树芳.结合水对海积软土流变性质的影响[J].吉林大学学报(地球科学版),2003,33(2):204-207
    [159]周翠英,林春秀.基于微观结构的软土变形计算模型[J].中山大学学报(自然科学版),2008,47(1):16-20.
    [160]袁静,龚晓南,益德清.岩土流变模型的比较[J].岩石力学与工程学报,2001,20(6):772-779.
    [161]Taylor, D. W. and Merchant, W., A Theory of Clay Consolidation Accounting for Secondary Compression[J].J. of Mathematics a Physics,1940,Vol.19.
    [162]Sekiguchi H. Rheological characteristics of clays[C].Proc.9th ICSMFE, 1977,289-292.
    [163]Schilfman R. L., Chen A., Jordan J. C. An analysis of consolidation theories[J].Journal of Soil Mechanics and Foundarons,ASCE,1969,285-311.
    [164]Murayalma, S., Sekiguchi, H&Ueda, T.,A study of the stress-strain-time behavior of saturated clays based on a theory of nonlinear viscoelasticity[J].Soils and Foundations,1974, 14(2), 19-33.
    [165]Wu, T. H., Resendiz, D, Neukirchner, R.J., The analysis of consolidation by rate process theory[J].ASCE,92(SM6),1966,229-248.
    [166]Bardon, L.. Consolidation of Clay with Non-linear Viscosity [J].J. Geotechnique, 1965, Vol.15,No.4.
    [167]Gibson R. E, England G. L., Hussey M. J. L. The theory of one-dimensionalconsolidation of saturated clays:Ⅱ. Finite non-linear consolidation of thin homogeneous layers[J]. Geotechnique, 1967, 17(2), 261-273.
    [168]Gibson R. E., Schifhman R. L., Cargill K.W. The theory of one-dimensional consolidation of saturated clays:Ⅱ. Finite nonlinear consolidation of thick homogeneous layers[J].Canadian Geotechnical Journal,1981,18(2),280-293.
    [169]徐志英.考虑与骨架蠕变的三向固结理论[J].水利学报,1964(4):39-46
    [170]赵维炳.广义Voigt模型模拟的饱和土体一维固结理论及其应用[J].岩土工程学报,1989.
    [171]谢康和.双层地墓一维固结理论与应用[J].岩土工程学报[J],1994,16(5):24-35.
    [172]Xie, K. H., Li, B. H.& Li. Q.L.,A nonlinear theory of consolidation under time-dependent loading [C].1996,Proc.2th ICSSE. Nanjing.
    [173]Xie K H., Guo S, Li B H, Zeng G X.A theory of consolidation for soils exhibiting rheological characteristics under cyclic loading[C]. Proc. Of the 9th Int. Conf. On Computer Methods and Advances in Geo-mechanics.1997, 2, 1053-1058.Wuhan.
    [174]Xie, K. H. &Leo, C. J., An investigation into the nonlinear consolidation of layered soft soils[C].Research Report CEII, School of Civic Engineering and Envrionment,1999, UWS, Nepean, Australia.
    [175]殷德顺,任俊娟,和成亮,陈文.一种新的岩土流变模型元件[J].岩石力学与工程学报,2007,26(9):1899-1903.
    [176]Perzyna p. fundamental problems in visco-plasticity[A].In: Recent Advances in Aoolied Mechanics[C] New york Acedemic press,1966
    [177]Sekiguchi, H. & Toriihara. M., Theory of one-dimensional consolidation of clays with consideration of their rheological properties [J].Soils and Foundations, 1976, 16(1),27-44.
    [178]Sekiguchi H. Rheological characteristics of clays[C].Proc.9th ICSMFE, 1977,289-292.
    [179]Adachi T, Fusao Oka. Constitutive equations for normally consolidation clay based on elastic-viscoplastic[J].Soils and Found Tokyo,Japan,1982,22(4):47-70.
    [180]Adachi T, et al. Mathematical structure of an overstress elastic-visco-plastic model for clay[J].Soils and Found.,Tokyo,Japan,1987,27(3):31-42.
    [181]Niemunis A. &Krieg S. Viscous behaviour of soil under oedometric conditions [J].Canadian Geotechnical Journal, 1996,33.159-168.
    [182]李世军,孙均.上海淤泥质粘土的非线性流变行为分析[D],同济大学博士论文,1997
    [183]廖红建,俞茂宏.粘性土的弹粘塑性本构方程及应用[J],岩土工程学报,1998,20(2):41-44
    [184]Yin J H, Zhu J G. Elastic visco plastic consolidation modeling of soft clay.岩土工程学报[J], 1999,21(3):360-365
    [185]张延军,张延诘.海积软土弹粘塑性固结的数值分析[J].吉林大学学报地球科学版,2003,33(1):71-75
    [186]陈远洪,洪宝宁,龚道勇,刘萌成.一个考虑土体流变的修正剑桥粘弹塑性模型[J].河海大学学报(自然科学版),2002,30(5):44-47.
    [187]Valanis K C,Read H E.Anew endochronic plasticity model for soils[].In:Pande G N, Zienkiewicz O C,ed.soil mechanics transient and cyclic loads[C].[s.l]:[s.n.],1982
    [188]Bazant Z P, Krizek P J. Endochronic constitutive law for liquefaction of sand[C]. Proc. ASCE, 1976, 102(SM2):33 1-344.
    [189]Fusao Oka, S,Leroueil and F.Tauenas. A Constitutive Model for Natural Soft Clay with Softening[J].Val.29,No.3,54-66,Sept.1989,Japanese Society of Soil Mechnics and Foundation Engineering.
    [190]Adachi, T., Oka, F. and Zhang, F. (I998). "An elasto-viscoplastic constitutive model with strain softening,"Soils and Foudations, Vol. 38, No.2, pp. 27-35.
    [191]王建国.土的剪胀性分析及内时本构模型第六届土力学及基础工程学会论文集[C].上海:同济大学出版社,1991:199-202.
    [192]李建中,曾祥熹.用内蕴时间理论进行粘土流变性研究[J]固体力学学报,2000,21(2).171-174
    [193]Taylor D W. Fundamentals of Soil Mechanics [M].New York: Wiley and Sons, 1948.
    [194]Singh A, Mitchell J K. General stress-strain-time function for soils,Journal of Soil Mechanics and Foundation Division, ASCE, 1968,94(1):21-46
    [195]Mesri G. Eehres-Cordero E. Shields D R, Castro A. Shear stress-strain-ime behaviour of clays[J].Geoechnique,1981,31(4):537-552.
    [196]王常明,王清,张淑华.滨海软土蠕变特性及蠕变模型[J].岩石力学与工程学报, 2004,23(2):227-230
    [197]卢萍珍,曾静,盛谦.软粘土蠕变试验及其模型研究[J].岩土力学,2008,29(4):1041-1044.
    [198]王向余,刘华北,宋二祥.一种实用的土体统一弹塑-黏塑性本构模型[J] .河海大学学报(自然科学版),2009,37(2):166- 170.
    [199]郑榕明,陆浩亮,孙钧.软土工程中的非线性流变分析[J].岩土工程学报,1996,18(5):1-13
    [200]朱鸿鹄,陈晓平,程小俊,等.考虑排水条件的软土蠕变特性及模型研究[J].岩土力学,2006,27(5):694-698
    [201]冯紫良,范厚彬.软土流变试验的数值模拟[J].同济大学学报,2003,31(4):379-382
    [202]闫澍旺,张荣安.天津港南疆突堤南蠕变问题的有限元分析港工技术,2003(1):45-47
    [203]张敏江,张丽萍,张树标,关超.结构性软土非线性流变本构关系模型的研究[J].吉林大学学报(地球科学版),2004,34(2):242-246
    [204]王元占,王婷婷,王军.滨海软土非线性流变模型及其工程应用研究[J].岩土力学,2010,30(9).2679-2685
    [205]张先伟.结构性软土蠕变特性及扰动状态模型[D],吉林大学博士论文,2010
    [206]闫澍旺,刘克谨,侯仰慕.天津滨海新区软粘土的蠕变特性及无屈服面模型研究[J].岩土力学,2010,31(5).
    [207]Leroueil S.,Tavenas F.,Locat J. Discussion on:Correlations between index tests and The properties of remoulded clays-Carrier W.D.and Beehaan J.F.[J」.Geotechnique,1985,35(2):223-226.
    [208]杨顺安,张瑛玲,刘虎中,等.深圳地区吹填淤泥的工程特征[J].地质科技情报,1997,16(1):85-89.
    [209]文海家,严春风,汪东云.吹填软土的工程特性研究[J].重庆建筑大学学报,1999,21(2):79-83.
    [210]彭涛,武威,黄少康,侯培丽.吹填淤泥的工程地质特性研究[J].工程勘察,1999,(5):1-5.
    [211]王华敬,顾长存,苏慧.钱塘江吹填土的沉淀特性研究[J].连云港职业技术学院学报,2002,15(2):60-63
    [212]刘莹,王清,肖树芳.不同地区吹填土基本性质对比研究[J].岩土工程技术,2003,(4):197-200.
    [213]刘莹,王清.江苏连云港地区吹填土室内沉积试验研究[J].地质通报,2006,25(6):762-765.
    [214]龚镭,余文天.新吹填淤泥的工程性质变化特性研究[J].工程勘察,2008,(6):23-25.
    [215]王深,刘浩吾,许强.三峡泄滩滑坡滑动带土的改进Mesri蠕变模型[J].西南交通大学学报,2004,39(1):15-19.
    [216]刘雄.岩石流变学概论[M].北京:地质出版社,1994.
    [217]沈珠江.结构性粘土的弹塑性损伤模型[ J].岩土工程学报,1993,15(3): 1-6
    [218]李建中,彭芳乐,龙冈文夫.粘土的粘塑性特性试验与三要素本构模型[J].岩土力学,2005,26(6):915-919.
    [219]刘绘新,张鹏,盖峰.四川地区盐岩蠕变规律研究[J].岩石力学与工程学报,2002,21(9): 1290-1294.
    [220]朱定华,陈国兴.南京红层软岩流变特性试验研究[J].南京工业大学学报,2002,24(9): 77-79.
    [221]方安平,叶卫平等编著.origin 8.0实用指南[M].北京:机械工业出版社, 2010.
    [222]损伤力学及其应用[M].北京:科学出版社,2002
    [223]曾攀.有限元分析及其应用[M].北京:清华大学出版社,2004.
    [224]关治,陈景良.数值计算方法[M].北京:清华大学出版社,1990.
    [225]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,1998.
    [226]周翠英,牟春梅.软土破裂面的微观结构特征与强度的关系[].岩土工程学报,2005,27(10):1136-1141

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700