非饱和土孔隙水作用机理及其在边坡稳定分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非饱和土内孔隙水的作用形式是引起岩土体力学性质变化的根本性原因。论文依托作者在参与降雨诱发浅层非饱和土滑坡项目(美国地调局-科罗拉多矿业大学联合项目)时所取得的试验成果以及所观察到的非饱和土体特殊性质,综合利用数学解析、室内试验和数值模拟等手段,从宏观现象和微观结构,对非饱和土内的孔隙水作用机理以及相应的土体力学性质进行研究。论文主要内容包括:
     (1)利用推导所得公式来计算不同降雨量q、进气压力值倒数α以及q/ks条件下的土层稳态渗流场分布形式,相对于其它因素而言,渗流场分布形式对降雨强度的大小会更为敏感一些。进一步对砂土、粉土及粘土三种典型土体进行研究,得到了降雨/蒸发条件相同且达到了稳态渗流阶段时,不同类型土体内的吸力场和含水量场分布状况的特点:三种类型的土体中,粘性土体对降雨边界条件的变动最为敏感,这体现在降雨强度发生相同变化时,粘土层内渗流场分布所产生的调整幅度是最大的,这种现象又会进一步反应在该土体的强度性能等方面。继续对瞬态渗流场进行分析,研究两阶段降雨作用时土层内的渗流场分布。结合公式推导所得的边界条件/初始条件,利用Laplace变换对已有的无量纲二阶偏微分方程进行求解,得到了可用于计算瞬态渗流场分布形式的方程式。采用非线性的Boussinesq方程来描述受恒定变动速率库水位影响的坡体内非稳定潜水流,结合特定的边界条件,推导得出了坡内浸润线(地下水位线)位置的计算表达式。通过该表达式可知,边坡岩土层内的变化幅度要受到库区水位变动速率、渗透系数以及给水度值等因素的影响。
     (2)在滑坡现场不同位置和不同深度处采集四种类型的土体,对这些土体进行瞬态水力特性循环试验,将试验所得初始数据输入到HYDRUS-1D软件中进行拟合,并考虑到高进气值陶瓷板、孔隙水中逸出气体对试验结果所造成的影响,最终可得到非饱和土体相应于脱湿进程和吸湿进程时的几种主要水力参数。不同水力进程条件下所得的同种水力参数值之间的差异明显,将这种现象称为非饱和土的“滞后效应”。
     (3)从微观结构角度入手,对相同直径双颗粒非饱和土系统和不同直径双颗粒非饱和土系统进行分析,得到了相应于不同类型双颗粒非饱和土系统时的填充角、含水量以及基质吸力等参数之间的函数关系表达式,通过这些表达式计算得到的数据,对不同水力路径条件下,非饱和土的滞后效应等特殊性质进行了验证,并得到了级配不同土体的滞后效应特点。
     (4)联合常规土工试验和微观结构分析两种手段,得到了吸力对非饱和土强度的贡献形式和贡献规律。针对试验过程中土体所呈现出的特殊性质,对不同含水量时的土样进行微观结构扫描试验,观察其内的孔隙水与土体颗粒之间的作用形式,并对不同赋存形式的孔隙水在提供土体强度时所起的作用进行了分析。
     (5)在区分不同水力路径的前提下,将试验所得的土体水力学参数和物理力学参数应用于数值模型中,研究结果表明,对受库区水位变动影响的边坡而言,相应于不同库水变动类型和变动速率的边坡,其整体稳定性会呈现出不同的发展规律;对受不同类型降雨作用的边坡体而言,边坡整体稳定性会随着降雨持时或强度的增长而逐渐降低。低强度长持时的降雨事件,往往会引发深层滑坡,而短时高强度降雨,则对边坡浅层岩土体造成很大的影响,会诱发浅层滑坡;不同阶段降雨共同作用的结果表明,对处于雨季的滑坡进行预警时,要综合考虑降雨持时、强度、累计降雨量以及边坡体自身的物理力学和水力学特性,单一的因素是难以反映客观实际的。
     论文的各部分研究内容联系紧密,共同组成了一个较为初步且合理的理论体系,为相关领域研究人员提供一定的参考,并可作为进一步研究工作的基础。
The type of pore water action is a solid and considerable factor which couldinduce to the physical property change of soil or rock mass. This thesis wascompleted by basing the experimental results and some typical phenomenon gotfrom the project which named Rainfall induce shallow landslide in unsaturated soilslope (it is the co-project fulfilled by the USGS and CSM). In order to demonstratedthe action mechanism of pore water within unsaturated soil and the correspondingcharacteristics of soil mass, three types of methods was used in this research work,namely, the analytical method, laboratory test method and numerical simulationmethod. Major conclusions that got from this thesis can be seen as follows:
     (1) To calculate the seepage state data by using the deduced equation and byselected parameters, the rainfall intensity q, the inverse value of air-entry pressureand the ration of rainfall intensity with saturated hydraulic conductivity, respectively,we can see that the seepage state within soil layer is more sensitive with rainfallintensity. Furthermore, take research on several types of soil for getting insight intothe steady seepage condition within these different type of soil layers, comparedwith the other two factors, the rainfall event will take more influence on the seepagestate of soil layer, and as for the three type of soil: sandy soil, silty soil or clay soil,the last one could take more sensitive on the rainfall event, and the correspondingsoil strength is also has the same characteristic. Combined the deduced boundarycondition, initial condition and Laplace transform equation, we can take solution fora partial differential equation of second order, and get a equation to calculate thetransient seepage condition, finally. Select the un-linear Boussinesq equation todemonstrate the unsteady seepage state profile of soil layer which is under theinfluence of water level fluctuation with specified velocity, and based the knownresults, this thesis provide an equation for the location calculation of water tablewithin soil layer. From the expression we can see that the range of variation isconsiderable influence by the velocity of water level fluctuation, hydraulicconductivity and specific yield.
     (2) TWRI tests were conducted for several types of soil which collected in alandslide site. Experimental results need to be taken as input data in HYDRUS-1Dcomputer code, the influence of HAE disk and pore air within water were also taken into consideration. Some major hydraulic parameters were obtained from these tests,and huge hysteresis effect could be found between these parameters related wettingprocess and drying process, respectively.
     (3) Claiming at the micro-structure point, we can get some insights into the samediameter two-particle unsaturated soil system and the different diameter two-particlesunsaturated soil system, obtained expressions from these known data that can be used toestablish the relationship among contact angle, water content and matric suction. Usingthese expressions to validate the hysteresis effect of unsaturated soil and to experiencethe same issue for different grading level soil.
     (4) By combining the methods of common type of soil test and micro-structureanalysis into research work, the contribution type and contribution rule of matric suctionto soil strength can be obtained. And according to the special characteristic ofunsaturated soil, the micro-structure survey work was conducted on some soil sampleswith different water contents. The interactive relation and related mechanism forstrength contribution that provided by pore water were also detected and demonstratedby this test.
     (5) The difference between wetting process and drying process were consideredduring taking experimental data into slope model. The research results show us thataccording to different range type of water level variation, the slope stability will act asdifferent type of developments. As for the slope that under the influence of differentrainfall conditions, the slope stability will reduce gradually with the rainfall intensityincrease or with the rainfall time elapse. The rainfall with low intensity but long actiontime could induce to landslide in deep location, in the other way, shallow landslideoccurs usually for the influence of high intensity but short action time. The two-phaserainfall event also shows us that all of the rainfall action time, rainfall intensity and theslope soil properties are important in landslide forecast work.
     Each part of this thesis can take tightness interactive and comprise an initial butreasonable theory system; the related researcher could take this work as a benefitedreference or based on it to further their study work.
引文
[1] Bishop, A. W., The use of pore pressure coefficients in practice [J]. Ge′otechnique,1954,4,No.4:148–152.
    [2] Bishop, A. W., The principle of effective stress [J]. Teknisk Ukeblad I Samarbeide MedTeknikk, Oslo, Norway,1959,106(39):859–863.
    [3] Bishop, A. W., and Blight, G. E., Some aspects of effective stress in saturated and unsaturatedsoils [J]. Ge′otechnique,1963,13, No.3:177–197.
    [4] Bishop, A. W., and Donald, I. B., The experimental study of partly saturated soil in the triaxialapparatus [C]. Proceedings of the5th International Conference Soil Mechanics andFoundation Engineering, Paris,1961, Vol.1, pp.13–21.
    [5] Bishop, A. W., Alpan, I., Blight, G. E., and Donald, I. B., Factors controlling the shear strengthof partly saturated cohesive soils[C]. ASCE Research Conference on the Shear Strength ofCohesive Soils, University of Colorado, Boulder,1960, pp.503–532.
    [6] Fredlund, D. G., Volume Change Behavior of Unsaturated Soils [D]. Ph.D. dissertation,University of Alberta, Edmonton, Canada,1973,
    [7] Fredlund, D. G., Soil suction monitoring for roads and airfields [C]. Symposium on theState-of-the-Art of Pavement Response Monitoring Systems for Roads and Airfields,sponsored by the U.S. Army Corps of Engineers, Hanover, NH, March6–9,1989.
    [8] Fredlund, D. G., and Wong, D. K. H., Calibration of thermal conductivity sensors formeasuring soil suction [J]. Geotechnical Testing Journal,1989,12(3):188–194.
    [9] Fredlund, D.G., and Xing, A., Equations for the soil-water characteristic curve [J]. CanadianGeotechnical Journal,1994,31:521–532.
    [10] Fredlund, D. G., Morgenstern, N. R., and Widger, R. A., Shear strength of unsaturated soils [J].Canadian Geotechnical Journal,1978,15, No.3:313–321.
    [11] Fredlund, D. G., Rahardjo, H., and Gan, J., Non-linearity of strength envelope for unsaturatedsoils [C]. Proceedings of the6th International Conference on Expansive Soils, New Delhi,India,1987, Vol.1, pp.49–54.
    [12] Fredlund, D. G., Xing, A., and Huang, S., Predicting the permeability function for unsaturatedsoil using the soil-water characteristic curve [J]. Canadian Geotechnical Journal,1994,31:533–546.
    [13] Jennings, J.E., and Burland, J.B., Limitations to the use of effective stresses in partly saturatedsoils [J]. Ge′otechnique,1962,12(2):125–144.
    [14] Fredlund, D.G., and Morgenstern, N. R., Stress state variables for unsaturated soils [J]. Journalof Geotechnical Engineering Division,1977,103:447–466.
    [15] Fredlund, D. G., Morgenstern, N. R., and Widger, R. A., Shear strength of unsaturated soils [J].Canadian Geotechnical Journal,1978,15, No.3:313–321.
    [16] Fredlund, D. G., and Rahardjo, H., Soil Mechanics for Unsaturated Soils [M]. Wiley, NewYork,1993.
    [17]孙树国,陈正汉,朱元青.等.压力板仪配套及SWCC试验的若干问题探讨[J].后勤工程学院学报,2006,04:1-5.
    [18]陈正汉,谢云,孙树国.等.温控土工三轴仪的研制及其应用[J].岩土工程学报,2005,27(8):929-933.
    [19]关亮,陈正汉,黄雪峰.等.非饱和重塑黄土的三轴试验研究[J].工程勘察,2011,11:14-18.
    [20]陈正汉,卢再华,蒲毅彬.非饱和土三轴仪CT机配套及其应用[J].岩土工程学报,2001,23(4):387-392.
    [21]陈正汉,馗胜霞,孙树国.等.非饱和土固结仪和直剪仪的研制及应用[J].岩土工程学报,2004,26(2):162-166.
    [22]陈正汉,李婉,刘辉.衰减荷载作用下饱和软土的固结分析[J].后勤工程学院学报,2006,04:6-11.
    [23]陈正汉,方祥位,朱元青.膨胀土和黄土的细观结构及其演化规律研究[J].岩土力学,2009,30(1):1-11.
    [24]陈正汉.关于土力学理论模型与科研方法的思考[J].力学与实践,2003,06:59-62.
    [25]陈正汉.非饱和土与特殊土力学的理论与实践[J].后勤工程学院学报,2011,27(4):1-7.
    [26]陈正汉,秦冰.非饱和土的应力状态变量研究[J].岩土力学,2012,33(1):1-11.
    [27] Ning Lu, and William J. Likos., Suction Stress Characteristic Curve for Unsaturated Soil [J].JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING,2006,132(2):131-142.
    [28] Ning Lu., Is Matric Suction a Stress Variable [J]. JOURNAL OF GEOTECHNICAL ANDGEOENVIRONMENTAL ENGINEERING,2008,134(7):899-905.
    [29] Ning Lu, Alexandra Wayllace, Jiny Carrera, and William J. Likos., Constant Flow Method forConcurrently Measuring Soil-Water Characteristic Curve and Hydraulic ConductivityFunction [J]. Geotechnical Testing Journal,2006,29(3):256-266.
    [30] Ning Lu, Lechman, J., and Miller, K.T., Experimental verification of capillary force and waterretention between uneven-sized spheres [J], Journal of Engineering Mechanics,2008,134(5):385-395.
    [31] Nam, S., Gutierrez, M., Diplas, P., Petries, J., Wayllace, A., Lu, N. and Munoz, J.J.,Comparison of testing techniques and models for establishing the SWCC of riverbank soils [J],Engineering Geology,2010,110(1-2):1-10.
    [32] Lu, N., and Godt, J.W., Infinite slope stability under unsaturated seepage conditions [J], WaterResources Research,2008,44, W11404, doi:10.1029/2008/WR006976.
    [33] Likos, W.J., and Lu, N., An automated humidity system for measuring total suctioncharacteristics of clays [J], Journal of Geotechnical Testing, ASTM,2003,28(2),178-189.
    [34] Jonathan W. Godt, Rex L. Baum, and Ning Lu., Landsliding in partially saturated materials [J].GEOPHYSICAL RESEARCH LETTERS,2009, VOL.36, L02403:1-5.
    [35] Ning Lu,William J. Likos著,韦昌富,侯龙,简文星合译.《非饱和土力学(中文版)》
    [M].高等教育出版社,2012,06.
    [36]王朝阳,倪万魁,蒲毅彬.三轴剪切条件下黄土结构特征变化细观试验[J].西安科技大学学报,2006,26(1):51-54.
    [37]王朝阳.非饱和黄土的强度特性及非线性本构模型研究[D].西安:长安大学,2004.
    [38]王朝阳,许强,倪万魁.等.非饱和原状黄土的非线性损伤本构模型研究[J].岩土力学,2010,31(4):1108-1111.
    [39]刘旭,王兰民,陈龙珠.等.基于微结构失稳假说及广义吸力理论的黄土体变模型[J].岩土力学,2007,28(12):2517-2523.
    [40]姚攀峰.非饱和土土压力研究[D].北京:清华大学水利水电系,2003.
    [41]姚攀峰,张明,戴荣.等.非饱和土的广义朗肯土压力[J].工程地质学报,2004,12(8):285-291.
    [42]姚攀峰,祁生文,张明.等.非饱和土土压力理论工程应用化探讨[C].中国土木工程学会第十届土力学及岩土工程学术会议,重庆:重庆大学出版社,2007.
    [43]姚攀峰.再论非饱和土的抗剪强度[J].岩土力学,2009,30(8):2315-2318.
    [44]凌华,殷宗泽.非饱和土强度随含水量的变化[J].岩石力学与工程学报,2007,26(7):1500-1503.
    [45] H. Rahardjo, T.T. Lee, E.C. Leong, and R.B. Rezaur., Response of a residual soil slope torainfall [J]. Canadian Geotechnical Journal,2005,42:340–351.
    [46] Gasmo, J.M., Rahardjo, H., and Leong, E.C., Infiltration effects on stability of a residual soilslope [J]. Computers and Geotechnics,2000,26:145-165.
    [47] Tsaparas, I., Rahardjo, H., Toll, D.G., and Leong, E.C., Controlling parameters forrainfall-induced landslides [J]. Computers and Geotechnics,2002,29:1-27.
    [48] Rezaur, R.B., Rahardjo, H., and Leong, E.C., Spatial and temporal variability of pore-waterpressures in residual soil slopes in a tropical climate [J]. Earth Surface Processes andLandforms,2002,27(3):317-338.
    [49]吴长富,朱向荣,尹小涛.等.强降雨条件下土质边坡瞬态稳定性分析[J].岩土力学,2008,29(2):386-391.
    [50]詹良通,吴宏伟,包承纲.等.降雨入渗条件下非饱和膨胀土边坡原位监测[J].岩土力学,2003,24(2):151-158.
    [51] Hsin-Fu Yeh, Chen-Chang Lee and Cheng-Haw Lee., A RAINFALL-INFILTRATIONMODEL FOR UNSATURATED SOIL SLOPE STABILITY [J]. Journal of EnvironmentEngineering Manage,2008,18(4):261-268.
    [52]罗先启,刘德富,吴剑.等.雨水及库水作用下滑坡模型试验研究[J].岩石力学与工程学报,2005,24(14):2476-2483.
    [53] SHAKOOR A, SMITHMYER A J. An analysis of storm-induced landslides in colluvial soilsoverlying mudrock sequences, southeastern ohio, USA [J]. Engineering Geology,2005,78:257-274.
    [54]尚羽,吴辉.水位快速变动下边坡稳定性分析[J].交通科技,2010,06:36-39.
    [55]刘东燕,侯龙,郑志明.水位变动对库区边坡稳定性的影响机理研究[J].地球与环境,2012,40(1):70-75.
    [56] Zhiming ZHENG, Long HOU and Chuansheng WU., Stability of slope which locates onreservoir region and the corresponding influence mechanisms induced by fluctuation of waterlevel [C].2011,2011International Conference on Multimedia Technology, ICMT2011, pp.4591-4595.
    [57] Dongyan Liu, Long Hou and Chuansheng Wu., Numerical Analysis for Unsaturated Soil SlopeWhich Locates on Reservoir Region and under the Condition of Water Level Fluctuation [J].Journal of Information and Computational Science,2012,9(10):2719-2729.
    [58]董金玉,杨继红,孙文怀.等.库水位升降作用下大型堆积体边坡变形破坏预测[J].岩土力学,2011,32(6):1774-1780.
    [59]王桂尧,付强,吴胜军.降雨条件下红粘土路基水分运移数值分析[J].中外公路,2011,31(3):16-21.
    [60]王柳江,刘斯宏,汪俊波.等.电场-渗流场-应力场耦合的电渗固结数值分析[J].岩土力学,2012,33(6):1904-1911.
    [61]李瑛,龚晓南,卢萌盟.等.堆载-电渗联合作用下的耦合固结理论[J].岩土工程学报,2010,32(1):77-81.
    [62] Gardner, W. R., Calculation of capillary conductivity from pressure plate outflow data [J]. SoilScience Society of America Proceedings.1956,20:317–320.
    [63] Gardner, W. R., Some steady state solutions of the unsaturated moisture flow equation withapplication to evaporation from a water table [J]. Soil Science.1958,85(4):228–232.
    [64] Gardner, W. H., Water content [M]. in Methods of Soil Analysis, Part1, Physical andMineralogical Methods, Soil Science Society of America, Monograph9, Madison, WI.1986,pp.493-544.
    [65] Gardner, W., and Widstoe, J. A., The movement of soil moisture [J]. Soil Science.1921,11:215-232.
    [66]李顺群,赵少飞,王学志.一维稳态渗流时非饱和土中的基质吸力分布[J].岩土力学,2006,27(s):91-94.
    [67] Brooks, R. H., and Corey, A. T., Hydraulic properties of porous media [J]. Colorado StateUniversity, Hydrology Paper,1964, March No.3.
    [68] van Genuchten, M. T., A closed form equation for predicting the hydraulic conductivity ofunsaturated soils [J]. Soil Science Society of America Journal,1980,44:892–898.
    [69] van Genuchten, M. T., Leij, F. J., and Yates, S. R., The RETC code for quantifying thehydraulic functions of unsaturated soils [R]. U.S. Department of Agriculture, AgriculturalResearch Service,1991, Report IAG-DW12933934, Riverside, CA.
    [70] Richards, L. A., The usefulness of capillary potential to soil moisture and plant investigators[J]. Journal of Agricultural Research,1928,37:719-742.
    [71] Richards, L. A., Capillary conduction of liquids through porous medium Journal of Physics [J].1931,318-333.
    [72] Richards, L. A., Water conducting and retaining properties of soils in relation to irrigation [C].in Proceedings of an International Symposium on Desert Research, Jerusalem,1952, pp.523-546.
    [73] Richards, L. A., and Weeks, L., Capillary conductivity values from moisture yield and tensionmeasurements on soil columns [J]. Soil Science Society of America Proceedings,1953,55:206-209.
    [74] Pullan, A. J., The quasilinear approximation for unsaturated porous media flow [J]. WaterResources Research,1990,26(6):1219-1234.
    [75] Srivastava, R., and Yeh, T. C. J., Analytical solutions for one-dimensional, transientinfiltration toward the water table in homogeneous and layered soils [J]. Water ResourcesResearch,1991,27(5):753-762.
    [76]时卫民,郑颖人.库水位下降情况下滑坡的稳定性分析[J].水力学报,2004,3:75-80.
    [77]时卫民,郑颖人.库水位下降情况下滑坡的稳定性评价[J].工程勘察,2004,1:26-30.
    [78]郑颖人,时卫民,孔位学.库水位下降时渗透力及地下水浸润线的计算[J].岩石力学与工程学报,2004,23(18):3203-3210.
    [79]毛昶熙.电模拟试验与渗流研究[M].北京:水利出版社,1981.
    [80]刘红岩,秦四清.库水位上升条件下边坡渗流场模拟[J].工程地质学报,2007,15(06):796-801.
    [81]王德咏,李科.库水位上升对千将坪滑坡的影响研究[J].灾害与防治工程,2007,2:15-19.
    [82]刘才华,陈从新,冯夏庭.库水位上升诱发边坡失稳机理研究[J].岩土力学,2005,26(5):769-773.
    [83] Lu, N., and Likos, W. J.,2004, Unsaturated Soil Mechanics [M]. Wiley, NY, pp.417-419.
    [84] Lu, N., and Likos, W. J.,2004, Unsaturated Soil Mechanics [M]. Wiley, NY, pp.463-464.
    [85] Mualem, Y., Hysteretical Models for Prediction of the Hydraulic Conductivity of UnsaturatedPorous Media [J]. Water Resour. Res.,1976,12(6):1248-1254.
    [86] Alexandra Wayllace1and Ning Lu., A Transient Water Release and Imbibitions Method forRapidly Measuring Wetting and Drying Soil Water Retention and Hydraulic ConductivityFunctions [J]. Geotechnical Testing Journal,2012,35(1):1-15.
    [87]俞培基,陈愈炯.非饱和土的水气形态及其力学性质的关系[J].水力学报,1965,1:16-23.
    [88]沈珠江,孙大伟.超固结土变形和稳定的折减吸力算法[J].岩土工程学报,2005,27(1):105-109.
    [89]沈珠江.广义吸力和非饱和土的统一变形理论[J].岩土工程学报,1996,18(2):1-9.
    [90] Lu, N., and Likos, W. J.,2004, Unsaturated Soil Mechanics [M]. Wiley, NY, pp.118.
    [91] Dallavalle,J.M., Micrometrics [M],1943, Pitman, London.
    [92] Lu, N., and Likos, W. J.,2004, Unsaturated Soil Mechanics [M]. Wiley, NY, pp.178-179.
    [93]贺炜,赵明华,陈永贵.等.土-水特征曲线滞后现象的微观机制与计算分析[J].岩土力学,2010,31(4):1078-1083.
    [94] Tom Schanz, Yulian Firmana Arifin, Muhammad Ibrar Khan et al., Time effects on totalsuction of bentonites [J]. Soils and Foundations,2010,50(2):195-202.
    [95] Childs, E. C.,1969, Soil Water Phenomena [M]. Wiley-Interscience, New York.
    [96] Lu, N., and Likos, W. J.,2004, Unsaturated Soil Mechanics [M]. Wiley, NY, pp.178-181.
    [97] Orr, F. M., Scriven, L. E., and Rivas, A. P., Pendular rings between solids: meniscusproperties and capillary force [J]. Journal of Fluid Mechanics,1975,67(4):723-742.
    [98]王瑞钢,闫澍旺,邓卫东.降雨作用下高填土质路堤边坡的渗流稳定分析[J].中国公路学报,2004,17(4):25-30.
    [99]肖元清,胡波,王钊.基质吸力对非饱和土抗剪强度影响的试验研究[J].三峡大学学报(自然科学版),2005,27(4):326-328.
    [100]申春妮,方祥位,王和文.等.吸力、含水率和干密度对重塑非饱和土抗剪强度影响研究[J].岩土力学,2009,30(5):1347-1351.
    [101]林鸿州,李广信,于玉贞.等.基质吸力对非饱和土抗剪强度的影响[J].岩土力学,2007,28(9):1932-1936.
    [102]孟黔灵,姚海林,邱伦锋.吸力对非饱和土抗剪强度的贡献[J].岩土力学,2001,22(4):423-426.
    [103]李堆树,夏啤,乐俊义.水对三峡库区滑带(体)土直剪强度参数的弱化规律研究[J].岩土力学,2006,27(s):1170-1174.
    [104] S.J. WHEELER, R.S. SHARMA, M.S. R. BUISSON. Coupling of hydraulic hysteresis andstress–strain behaviour in unsaturated soils [J]. Geotechnique,2003,53(1):41-54.
    [105] Vanapalli, S. K., Fredlund, D. G., Pufahl, D. E., and Clifton, A. W., Model for the prediction ofshear strength with respect to soil suction[J]. Canadian Geotechnical Journal,1996,33,379-392.
    [106] Lu, N., and Likos, W. J.,2004, Unsaturated Soil Mechanics [M]. Wiley, NY, pp.160-168.
    [107]中村浩之.论水库滑坡[J].水土保持通报,1990,10(1):53-64.
    [108] Griffiths D V,Lane P A. Slope stability analysis by finite elements [J]. Geo-technique,1999,49(3):387-403.
    [109]唐晓松,郑颖人.水位下降对边(滑)坡稳定性的影响[J].公路交通科技,2007,24(10):44-47.
    [110]马力,游扬声,缪启龙.强降水诱发山体滑坡预报[J].山地学报,2008,26(5):583-589.
    [111]崔云,孔纪名,倪振强.等.强降雨在滑坡发育中的关键控制机理及典型实例分析[J].灾害学,2011,26(3):13-17.
    [112]中华人民共和国国土资源部.全国地质灾害通报[G].2010年1-8月.
    [113] USGS. Landslide Hazards in the Seattle, Washington, Area[R]. USGS Fact Sheet2007-3005,2007,1-4.
    [114]刘东燕,侯龙,伍川生.等.美国地质灾害防治现状综述[J].中国地质灾害与防治学报,2011,22(2):119-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700