基于DEM的黄土高原流域面积高程积分谱系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面积高程积分(Hypsometric Integral)是一种具有明确物理含义和地貌学意义的地形分析指标。作为一种宏观的地貌分析指标与方法,面积高程积分虽能定量地揭示流域发育特征,但其分析的理论与方法体系亟待完善。特别是,虽然前人对部分流域的面积高程积分展开过分析讨论,但基于该指标与方法对于区域性的流域地貌发育及地貌空间格局的系统研究明显不足。本文首先系统地分析了面积高程积分的基本概念,对其特征属性、影响因素及分类体系进行深入探讨。在此基础上提出了流域面积高程积分谱系的概念模型、地学含义、组成要素及分析方法。基于数字地形分析及地学信息图谱方法,以黄土高原重点水土流失区,特别是其中多级典型流域为实验样区,以多尺度数字高程模型(DEM)为基本信息源,研究基于流域面积高程积分谱系分析黄土高原流域地貌形态的方法,获得了对黄土流域地貌及空间分异特征的新认识,得到了基于流域面积高程积分谱系的黄土高原重点水土流失区地貌分区图。论文主要的研究内容和结论如下:
     1.在明确面积高程积分基本性质的基础上,提出了流域面积高程积分谱系的概念模型,特别围绕其衍生的各类分析方法,展开深入研究与分析。研究表明,流域面积高程积分谱系能够对原有面积高程积分的地形形态表达进行有效补充,通过系统地对流域内部各地形特征要素的面积高程积分表达,在相当程度上丰富了面积高程积分的理论体系与分析方法。
     2.在系统分析流域特征要素的基础上,构建了流域面积高程积分谱系的指标组合。实验结果显示,以不同的地形特征要素作为面积高程积分分析的地理对象所构建的一系列面积高程积分值和积分曲线,能够有效表达流域整体与局部的地貌形态与发育特征;根据地形特征要素面积高程积分相关性的差异,所遴选出的“流域边界-沟沿线-主沟谷”和“流域-沟谷网络-主沟谷”两组参数,可作为分析流域基本形态特征与发育进程的基本分析指标。
     3.面向空间序列上典型的黄土小流域,分析了面积高程积分的尺度效应。从高程分级,DEM分辨率以及地域稳定面积三个方面分析发现:绘制积分曲线时采用100级高程分级既可满足精度要求,又能保证计算效率;DEM分辨率对面积高程积分的影响敏感性较弱,在不同分辨率条件下积分值基本保持稳定;黄土小流域面积超过10平方公里时,面积高程积分达到一定的相似性及地域稳定性。
     4.分别以空间序列典型样区小流域和时间序列模拟小流域为分析对象,讨论了面积高程积分谱系的变化特征。研究表明,谱系中的各指标量值在黄土高原地理空间上呈现有序分布;不同发育阶段的模拟小流域也显示,面积高程积分在时间上具有较好的地貌发育对应性。以黄土高原重点水土流失区作为研究区域,所构建的面积高程积分多指标系列地图,反映出黄土高原重点水土流失区中的大部分小流域虽尚处于地貌发育过程的壮年期,但仍呈现东西向及南北向在发育进程上的空间差异性。
     论文的创新点总结为:
     首次提出了流域面积高程积分谱系的概念模型与分析框架。面积高程积分曲线序列及属性序列的有机组合,在流域地貌研究中所呈现的形态、数量及过程变化特征,能够较深刻地揭示流域地貌的外在表现与发育规律,实现在地貌学理论与分析方法上的创新。基于面积高程积分谱系对黄土高原重点流失区的研究,从一个全新的视角深入审视黄土高原流域地貌特征及在宏观上的空间格局特征。该研究也是基于海量DEM数据进行区域地貌研究的一次有益的探索,是GIS数字地形分析方法的创新实践。
Hypsometric integral is a terrain analysis factor with apparent physical and geomorphologic meanings which could reflect the landform erode stage and evolution process. As a macroscopic parameter and method in terrain analysis, the applications of hypsometric integral could reveal the quantitative characteristic of landform evolution in watershed scale. However, it still needs to be improved and enriched of the hypsometric integral analysis method, particularly in the little progress has been made of hypsometric integrals in the applications of watershed evolution and geomorphologic pattern from previous literatures. On the basis of aforementioned shortages, this paper conducts a systematic analysis on the concepts of hypsometric integral, and then, the attributes of its morphologic feature, formation factors and its classification scheme have been deeply discussed. In addition, the spectrum serial of hypsometric integrals is proposed followed with its conceptual model, geographic meaning, component features and analysis methods. Based on the methods of digital terrain analysis and geo-informatic Tupu, the spectrum serial of hypsometric integrals is applied to the loess watershed landform in the severe soil erosion area of Loess Plateau. Finally, a new understanding of loess watershed landform and its spatial differentiation characteristic has been achieved. The main research contents and conclusions are listed as following:
     1. Clearing the basic characteristics of hypsometric integrals. This paper puts forward the conceptual model of the spectrum serial of hypsometric integral and carries out the further derived studies on various analysis methods. The results indicate that the spectrum serial could make a good understanding for the description of the geomorphology by each integral. Well expressed hypsometric integrals of each watershed terrain features, could enrich the theory and analysis methods to some extent.
     2. The index groups of the hypsometric integral are selected according to the terrain features analysis of watershed landform. The experiment results show that a serial of the integral values and their corresponding curves, derived from different terrain features, could efficiently reveal the geomorphological and the evolution characteristic of watershed from the whole to the local. According to the correlation variance of the hypsometric integral of terrain features, two index groups are selected as the basic index group to analyze the morphologic characteristics and evolution process of watershed landform, i.e. boundary of watershed, watershed and main gully as a group, and watershed, stream network and main gully as the other.
     3. The scale effect of the hypsometric integral is analyzed with the small loess watersheds along with the time serial. The experiment of scale effect among the grading scale, data scale and region scale show that, the integral curve appears high accuracy and well calculation efficiency when the elevation grade use100; The resolution of DEM shows a weak sensitivity to the integral value, i.e. the value keeps stable with the resolution varying; When the area of the test site exceeds10km2, the integral value states a similarity to others as well as regional stability.
     4. A discussion on the variance characteristic of the spectrum serial of the hypsometric integral is given with two different analysis serials, i.e. the typical watersheds on the spatial serial and simulated watersheds on the time serial. The results indicate that each index of the spectrum serial has an orderly spatial distribution, and the simulated watersheds also prove that the well correspondence characteristic between the integral value and evolution stage. The multi-index maps of hypsometric integral in the severe soil erosion area reveal that, despite most of the small watersheds are in mature stage,, it still present the spatial differentiation on the evolution process from east to west and from south to north in the study area.
     This paper enriches the theories and methods of digital terrain analysis through the studies on the spectrum serial of the hypsometric integral of watersheds in loess plateau. The conclusions strengthen the understanding of the loess watershed landform and its spatial differentiation characteristic. This paper is an innovative and beneficial work/job for the application of the geo-informatic Tupu.
引文
[1]刘东生.黄河中游黄土.北京:科学出版社,1964.
    [2]刘东生.黄土与环境.北京:科学出版社,1985.
    [3]甘枝茂.黄土高原地貌与土壤侵蚀研究.西安:陕西人民出版社,1989.
    [4]景才瑞.中国黄土形成的气候条件、时代与成因.地理学报,1980,35(1):83-86.
    [5]Sun Jimin. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau. Earth and Planetary Science Letters,2002,203:845-859.
    [6]郭正堂,丁仲礼,刘东生.黄土中的沉积—成壤事件与第四纪气候旋回.科学通报,1996,41(1):56-59.
    [7]赵景波.淀积理论与黄土高原环境演变.北京:科学出版社,2002.
    [8]周亚利,鹿化煜,Mason, J.A.浑善达克沙地的光释光年代序列与全新世气候变化.中国科学(D辑),2008,38(4):452-462.
    [9]刘东生.黄土的物质成分与结构.北京:科学出版社,1966.
    [10]鹿化煜,安芷生.前处理方法对黄土沉积物粒度测量影响的实验研究.科学通报,1997,42(23):2535-2538.
    [11]朱显谟.黄土区土壤侵蚀的分类.土壤学报,1956,4(2):99-115.
    [12]张宗祜.我国黄土高原区域地质地貌特征及现代侵蚀作用.地质学报,1981,55(4):308-320.
    [13]唐克丽.中国水土保持.北京:科学出版社,2004.
    [14]Saadat, H., Bonnell, R., Sharifi, F., et al. Landform classification from a digital elevation model and satellite imagery. Geomorphology,2008, (100):453-464.
    [15]Saito, H., Nakayama, D., Matsuyama, H. Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence:The Akaishi Mountains, Japan. Geomorphology,2009, (109):108-121.
    [16]周毅.基于DEM的黄土高原正负地形及空间分异研究.南京师范大学博士学位论文,南京:南京师范大学,2011.
    [17]Horton, R.E. Drainage basin characteristics. Transactions of the American Geophysical Union.1932.
    [18]Strahler, A.N. Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin,1952,63,1117-1142.
    [19]Strahler, A.N. The earth sciences, Harper and Row. Pub New York and London. 1963.
    [20]Schumm, S.A. The role of creep and rainwash on the retreat of Badland slopes. Amer. Jour. Sci.1956,254:693-706.
    [21]Morisawa, M.E. Development of drainage systems on an upraised lake floor. Amer. Jour, of Science.1964.262,341-354.
    [22]陆中臣,贾绍风,黄克新,袁宝印.流域地貌系统,大连出版社,1991.
    [23]承继成,江美球.流域地貌数学模型.北京:科学出版社,1986.
    [24]杨昕,汤国安,刘学军,李发源,祝士杰.数字地形分析的理论、方法与应用.地理学报,2009,64(9):1058-1070.
    [25]Dragut, L., Blaschke, T. Automated classification of landform elements using object-based image analysis. Geomorphology,2006,81:330-344.
    [26]刘爱利,汤国安.中国地貌基本形态DEM的自动划分研究.地球信息科学,2006,8(4):8-16.
    [27]Prima, O.D.A., Echigo, A., Yokoyama, R., et al. Supervised landform classification of Northeast Honshu from DEM derived thematic maps. Geomorphology,2006,78:373-386.
    [28]涂汉明,刘振东.中国地势起伏度研究.测绘学报,1991,20(4):311-319.
    [29]Zhou, Qiming, Liu, Xuejun. Analysis of errors of derived slope and aspect related to DEM data properties. Computers & Geosciences,2004,30(4): 369-378.
    [30]刘学军,龚健雅,周启鸣等.DEM结构特征对坡度坡向的影响分析.地理与地理信息科学,2004,12(6):1-6.
    [31]秦承志,朱阿兴,李宝林等.坡位的分类及其空间分布信息的定量化.武汉大学学报(信息科学版),2009,34(3):374-378.
    [32]闾国年,钱亚东,陈忠明.基于栅格数字高程模型自动提取黄土地貌沟沿线技术研究.地理科学,1998,18(6):567-573.
    [33]朱红春,汤国安,张友顺等.基于DEM提取黄土丘陵区沟沿线.水土保持通报,2003,23(5):43-45.
    [34]杨族桥,郭庆胜,牛冀平等.DEM多尺度表达与地形结构线提取研究.测绘学报,2005,34(2):134-137.
    [35]刘学军,卢华兴,卞璐等.基于DEM的河网提取算法的比较.水利学报,2006,37(9):1134-1141.
    [36]曲均浩,程久龙,崔先国等.垂直剖面法自动提取山脊线和山谷线.测绘科学,2007,32(5):30-31,93.
    [37]罗明良.基于DEM的地形特征点簇研究.中科院成都山地灾害与环境研究 所博士学位论文,成都:中国科学院,2008.
    [38]李发源.黄土高原地面坡谱及空间分异研究.中科院成都山地灾害与环境研究所博士学位论文,成都:中国科学院,2007.
    [39]曲木威振.基于DEM的流域边界谱及空间分异研究——以在黄土地貌的实验为例.西北大学硕士学位论文,西安:西北大学,2008.
    [40]贾旖旎.基于DEM的黄土高原流域边界剖面谱研究.南京师范大学博士学位论文,南京:南京师范大学,2010.
    [41]张维.基于DEM的陕北黄土高原流域剖面谱研究.南京师范大学硕士学位论文,南京:南京师范大学,2011.
    [42]Horton, R.E. Erosional development of streams and their drainage basins, Hydrophysical Approach to Quantitative Morphology. Geol. Soc. America Bull, 1945.56:275-370.
    [43]Shreve, R.L. Statistical law of stream numbers. Jour. Geol.1966,74:17-37.
    [44]Scheidegger, A.E. Horton's law of stream lengths and drainage areas. Water Resources Research.1968.4(5):1015-1021.
    [45]甘枝茂.从黄土地貌的发育中认识黄土高原的土壤侵蚀及其防治.水土保持通报,1982,(1):6-10.
    [46]陈永宗.黄河中游黄土丘陵区的沟谷类型.地理科学.1984,4(4):321-327.
    [47]罗来兴,祁延年.陕北无定河清涧河黄土区域的侵蚀地形与侵蚀量.地理学报,1955,21(1):35-44.
    [48]陈浩,Y.Tsui,蔡强国等.沟道流域坡面与沟谷侵蚀演化关系以晋西王家沟小流域为例.地理研究,2004,23(3):329-338.
    [49]罗来兴,祁延年.黄土邱陵区沟壑发育与侵蚀量计算的实例_陕北绥德菲园沟流域.地理学报,1953,19(2):187-193.
    [50]陈永宗.黄土高原沟道流域产沙过程的初步分析.地理研究,1983,2(1):35-47.
    [51]刘秉正,翟明柱,吴法啟.渭北高原沟谷侵蚀初探.水土保持研究,1990,(12):25-33.
    [52]陈传康.陇东东南部黄土地形类型及其发育规律.地理学报,1956,22(3):223-231.
    [53]桑广书,甘枝茂.洛川塬区晚中更新世以来沟谷发育与土壤侵蚀量变化初探.水土保持学报,2005,19(1):109-113.
    [54]励强,陆中臣,袁宝印.地貌发育阶段的定量研究.地理学报,1990,45(1):110-120.
    [55]何雨,贾铁飞,李容全.黄土丘陵区沟谷发育及其稳定性评价.干旱区地理,1999,22(2):64-70.
    [56]严宝文,王涛,马耀光.黄土高原水蚀沟谷发育阶段研究.人民黄河,2004,26(6):16-18.
    [57]袁宝印,巴特尔,崔久旭等.黄土区沟谷发育与气候变化的关系(以洛川黄土塬区为例).地理学报,1987,42(4):328-227.
    [58]白占国.黄土高原沟谷侵蚀速率研究_以洛川黄土源区为例.水土保持研究,1994,1(5):22-25,30.
    [59]桑广书,甘枝茂,岳大鹏.元代以来洛川塬区沟谷发育速度和土壤侵蚀强度研究.中国历史地理论丛,2002,17(2):122-127.
    [60]桑广书,甘枝茂,岳大鹏.元代以来黄土塬区沟谷发育与土壤侵蚀.干旱区地理,2003,26(4):355-360.
    [61]李军锋,李天文,陈正江等.基于DEM的黄土高原丘陵沟壑区沟谷网络节点研究.干旱区地理,2005,28(3):386-391.
    [62]桑广书,陈雄,陈小宁等.黄土丘陵地貌形成模式与地貌演变.干旱区地理,2007,30(3):375-380.
    [63]景可,陈永宗.黄土高原侵蚀环境与侵蚀速率的初步研究.地理研究,1983,2(2):1-11.
    [64]刘秉正,吴发启.黄土塬区沟谷系统的侵蚀发展研究.水土保持学报,1993,7(2):33-39.
    [65]谢振乾.陕西渭南黄土台塬区沟谷侵蚀作用的初步研究.陕西地质,1994,12(2):56-63.
    [66]夏正楷.黄土高原第四纪期间水土流失的地质记录和基本规律.水土保持研究,1999,6(4):49-53.
    [67]邓成龙,袁宝印.末次间冰期以来黄河中游黄土高原沟谷侵蚀_堆积过程初探.地理学报,2001,56(1):92-98.
    [68]程彦培,石建省,杨振京等.古地形对黄土区岩土侵蚀趋势的控制作用.干旱区地理,2010,33(3):334-339.
    [69]游智敏,伍永秋,刘宝元.利用GPS进行切沟侵蚀监测研究.水土保持学报,2004,18(5):91-94.
    [70]李郎平,鹿化煜.黄土高原25万年以来粉尘堆积与侵蚀的定量估算.地理学报,2010,65(1):37-52.
    [71]蔡强国.坡面细沟发生临界条件研究.泥沙研究,1998,(1):52-59.
    [72]胡刚,伍永秋.发生沟蚀(切沟)的地貌临界研究综述.山地学报, 2005,23(5):565-570.
    [73]李斌兵,郑粉莉,张鹏.黄土高原丘陵沟壑区小流域浅沟和切沟侵蚀区的界定.水土保持通报,2008,28(5):16-20.
    [74]雷阿林,唐克丽.坡沟系统土壤侵蚀研究回顾与展望.水土保持通报,1997,17(3):37-43.
    [75]陈浩,王开章.黄河中游小流域坡沟侵蚀关系研究.地理研究,1999,18(4):363-372.
    [76]熊东红,范建容,卢晓宁等.冲沟侵蚀研究进展.世界科技研究与发展,2007,29(6):29-35.
    [77]Harlin, J.M. Statistical moments of the hypsometric curve and its density function. Mathematical Geology.1978,10(1):59-71.
    [78]Harrison, C.G.A., Brass, G.W., Saltzman, E., Sloan Ⅱ, J., Southam, J., Whitman, J.M. Sea level variations, global sedimentation rates and the hypsographic curve. Earth and Planetary Science Letters,1981,54:1-16.
    [79]Harrison, C.G.A., Miskell, K.J., Brass, G.W., Saltzman, E.S., Sloan Ⅲ, J.L. Continental hypsography. Tectonics,1983,2:357-377.
    [80]Cogley, J.G., Hypsometry of the continents. Zeitschrift fur Geomorphologie. Supplementband,1985,53:1-48.
    [81]Schubert, G., Reymer, A.P.S. Continental volume and freeboard through geological time. Nature,1985,316:336-339.
    [82]Wyatt, A.R. Post-Triassic continental hypsometry and sea-level. Journal of the Geological Society (London).1986,143:907-910.
    83]Willgoose, G, Hancock, G. Revisiting the hypsometric curve as an indicator of form and process in transport limited catchments. Earth Surface Processes and Landforms,1998,23:611-623.
    84] Hancock, G.R., Martinez, C., Evans, K.G., Moliere, D.R. A comparison of SRTM and high-resolution digital elevation models and their use in catchment geomorphology and hydrology. Australian examples. Earth Surface Processes and Landforms.2006,31:1394-1412.
    85]Masek, J.G., Isacks, B.L., Gubbels, T.L., Fielding, E.J. Erosion and tectonics at the margins of continental plateaus. Journal of Geophysical Research.1994,99: 13941-13956.
    86] Montgomery, D.R., Balco, G., Willet, S.D. Climate, tectonics, and the morphology of the Andes. Geology.2001,29:579-582.
    [87]陈彦杰,郑光佑,宋国城.面积尺度与空间分布对流域面积高度积分及其地质意义的影响.地理学报(中国台湾),2005,39:53-69.
    [88]Walcott Rachel C. Summerfield M.A. Scale dependence of hypsometric integrals:An analysis of southeast African basins. Geomorphology.2008, 96:174-186.
    [89]Lifton, N.A., Chase, C.G. Tectonic, climatic and lithologic influences on landscape fractal dimension and hypsometry:implications for landscape evolution in the San Gabriel Mountains, California. Geomorphology,1992,5, 77-114.
    [90]Hurtrez, J.E., Sol, C., Lucazeau, F. Effect of drainage area on hypsometry from an analysis of small-scale drainage basins in the Siwalik Hills (central Nepal). Earth Surface Processes and Landforms,1999,24:799-808.
    [91]Azor, A., Keller, E.A., Yeats, R.S. Geomorphic indicators of active fold growth: South Mountain-Oak Ridge anticline. Ventura basin, southern California. Geological Society of America Bulletin,2002,114:745-753.
    [92]Chen, Y.C., Sung, Q., Cheng, K. Along-strike variations of morphotectonic features in the Western Foothills of Taiwan:tectonic implications based on stream-gradient and hypsometric analysis. Geomorphology,2003,56:109-137.
    [93]赵洪壮,李有利,杨景春,司苏沛.天山北麓流域面积高度积分特征及其构造意义.山地学报,2009,27(3):285-292.
    [94]赵洪壮,李有利,杨景春,吕红华,司苏沛.面积高度积分的面积依赖与空间分布特征.地理研究,2010,29(2):271-282.
    [95]毋河海.关于高程面积曲线及其应用问题.地理学报,1965,31(2):157-169.
    [96]艾南山.侵蚀流域系统的信息熵.水土保持学报,1987,1(2):1-8.
    [97]艾南山,岳天祥.再论流域系统的信息熵.水土保持学报,1988,2(4):1-9.
    [98]信忠保,许炯心,马元旭.黄土高原面积高程分析及其侵蚀地貌学意义.山地学报,2008,26(3):356-363.
    [99]廖义善,蔡强国,秦奋,张建波,丁树文.基于DEM黄土丘陵沟壑区不同尺度流域地貌现状及侵蚀产沙趋势.山地学报,2008,26(3):347-355.
    [100]Brocklehust, S.H., Whipple, K.X. Hypsometry of glaciated landscapes. Earth Surface Processes and Landforms,2004,29:907-926.
    [101]张敬春,李川川,张梅,刘耕年.格尔木河流域面积高程积分值的地貌学分析.山地学报,2011,29(3):257-268.
    [102]Luo, W. Hypsometric analysis of Margaritifer Sinus and origin of valley networks. Journal of Geophysical Research,2002,107:1-10.
    [103]Sepinski, T.F., Coradetti, S. Comparing morphologies of drainage basins on Mars and Earth using integral-geometry and neural maps. Geophysical Research Letters 31,2004. (15) (Art. No.L15604).
    [104]Ansan, V., Mangold, N. New observations of Warrego Valles, Mars: evidence for precipitation and surface runoff. Planetary and Space Science,2006, 54:219-242.
    [105]周启鸣,刘学军.数字地形分析.北京:科学出版社,2006.
    [106]Jones, K.H. A comparison of algorithms used to compute hill slope as a property of the DEM, Computer and Geosciences,1998,24(4):315-323.
    [107]Fleming, M.D., Hoffer, R.M. Machine processing of Landsat MSS data and DMA topographic data for forest cover type mapping:West Lafayette, IN, Purdue, University, Laboratory for Applications of Remote Sensing, LARS Technical Report 062879.1979.
    [108]Unwin. Introductory Spatial Analysis, Methuen, London and New York. 1981.
    [109]Sharpnack, D.A., Akin, G. An Algorithm for computing slope and aspect from elevations, Photogrammetric Survey,1969,35:247-248.
    [110]Horn, B.K.P. Hill shading and the reflectance map, Proceedings of IEEE, 1981,69(1):14-47.
    [111]Chang, K., Tsai, B. The effect of DEM resolution on slope and aspect mapping. Cartography and Geographic Information Science,1991,18(1):69-77.
    [112]Carter, J. The effect of data Precision on the calculation of slope and aspect using gridded DEMs. Cartographica,1992,29(1):22-34.
    [113]Brown, D.G, Bara, T.J. Recognition and reduction of systematic error in elevation and derivative surfaces from 7 1/2 minute DEMs. Photogrammetric Engineering and Remote Seneing,1994,60(2):189-194.
    [114]Bolstad, P.V., Stowe, T. An Evaluation of DEM accuracy elevation, slope and aspect. Photogrammetric Engineering and Remote Seneing,1994,60(11), 189-194.
    [115]Florinsky, I.V. Accuracy of local topographic variables derived from digital elevation model. IJGIS,1998,12 (1):47-61.
    [116]汤国安,刘学军,闾国年.数字高程模型及地学分析的原理与方法.北京:科学出版社,2005.
    [117]刘振东,孙玉柱,涂汉明.利用DTM编制小比例尺地势起伏度图的初步研究.测绘学报,1990,19(1):57-62.
    [118]朱红春.基于DEM的黄土高原地貌类型提取与制图--以黄土高原丘陵沟壑实验样区为例.地球信息科学,2003(4):110-113.
    [119]汤国安,赵牡丹,李天文,刘咏梅,谢元礼.DEM提取黄土高原地面坡度的不确定性.地理学报,2003,58(6):824-830.
    [120]Tang Guoan, Li Fayuan, Liu Xuejun et al. Research on the Slope Spectrum of the Loess Plateau. Science in China Series E:Technological Sciences,2008, 51(Supp.l):175-185.
    [121]Peucker, T.K., Doughlas, D.H., Detection of surface specific point by local parallel processing of discrete terrain elevation data. Computer Graphics and Imagine Processing,1975,4:375-387.
    [122]Wood, J.D., The geomorphological characterisation of digital elevation model, PhD Thesis, University of Leicester.1996.
    [123]黄培之.提取山脊线和山谷线的一种新方法.武汉大学学报,信息科学版,2001,26(3):247-252.
    [124]王耀革,王玉海.基于等高线数据的地性线追踪技术研究,测绘工程,2002,11(3):42-44.
    [125]黄培之,陈凯辉,刘泽慧.基于共轭地表曲面的山脊线和山谷线提取方法的研究,测绘科学,2004,29(5):25-27.
    [126]Mark, D.M. Automatic detection of drainage networks from digital elevation models, Cartographica,1984,21(2/3):168-178.
    [127]O'Callaghan, J.F., Mark, D.M. The extraction of drainage networks from digital elevation data. Computer Vision, Graphics, and Image Processing.1984, 28:323-344.
    [128]Costa-Cabral, M.C., Burges, S.J. Digital elevation model networks (DEMON):A model of flow over hillslopes for computation of contributing and dispersal areas, Water Resources Research,1994,30(6):1681-1692.
    [129]Tarboton, D.G. A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resources Research,1997, 32(2):309-319.
    [130]闾国年,钱亚东,陈钟明.基于栅格数字高程模型提取特征地貌技术研究.地理学报,1998,53(6):562-570.
    [131]朱红春,汤国安等.基于DEM提取黄土丘陵区沟沿线.水土保持通报, 2003,23(5):43-45.
    [132]易红伟,汤国安等.河网径流节点及其基于DEM的自动提取.水土保持学报,2003,17(3):108-111.
    [133]周毅,汤国安,张婷,王春.基于格网DEM线状分析窗口的地形特征线快速提取方法.测绘通报,2007,(10):67-69.
    [134]Okabe, A., Sadahiro, Y. A Statistical Method for Analyzing the Spatial Relationship between the Distribution of Activity Points and the Distribution of Activity Continuously Distributed over a Region. Geographical Analysis,1994, 26(2):152-167.
    [135]Sadahiro, Y. Analysis of Surface Changes Using Primitive Events. International Journal of Geographical Information Science,2001,15 (6): 523-538.
    [136]Sadahiro, Y. A Graphical Method for Exploring Spatiotemporal Point Distributions. Cartography and Geographic Information Science,2002,29 (2): 67-84.
    [137]Sadahiro, Y. Stability of the Surface Generated from Distributed Points of Uncertain Location. International Journal of Geographical Information Science, 2003,17(2):139-156.
    [138]Sadahiro, Y, Masui, M. Analysis of qualitative similarity between surfaces. Geographical Analysis,2004,36 (3):217-233.
    [139]Doornkamp, J.C. Trend-surface analysis of planation surface, with an East African case study. Spatial Analysis in Geomorphology, Harper&RowPublishers, 1972:247-283.
    [140]蒋忠信.低次趋势面描述云南地势宏观特征的探讨,地理研究,1990,9(1):10-17.
    [141]黄瑞红.丹霞盆地地貌趋势面分析,中山大学学报(自然科学版),1996,35增刊:100-105.
    [142]Andrea B.C., Vicente T.R., Valentino S., et al. Geomorphometric analysis for characterizing landforms in Morelos State, Mexico. Geomorphology,2005, 67:407-422.
    [143]李军锋,李天文,陈正江等.基于DEM的黄土高原丘陵沟壑区沟谷网络节点研究,干旱区地理,2005,28(3):386-391.
    [144]李军锋,李天文,汤国安等.基于DEM的沟谷网络节点水流累积量研究,山地学报,2005,23(2):228-234.
    [145]Dong Youfu, Tang Guoan, Luo Mingliang. The extraction and quantitative analysis of channel junctions based on DEMs. Geoinformatics 2008 and Joint Conference on GIS and Built Environment,2008, SPIE 71462N.
    [146]易红伟.基于DEM的黄土高原沟壑信息挖掘研究,2004,西北大学硕士论文.
    [147]吴良超.基于DEM的黄土高原沟壑特征及其空间分异规律研究,2005,西北大学硕士论文.
    [148]Luo Mingliang, Tang Guoan, Zhou Jieyu. Landform classification based on adjacency index of feature lines. Proceedings of SPIE,2007.5,6751-48.
    [149]陆中臣,周金星,陈浩.黄河下游河床纵剖面形态及其地文学意义.地理研究,2003,21(1):30-38.
    [150]崔灵周,朱永清,李占斌.基于分形理论和GIS的黄土高原流域地貌形态量化及应用研究.郑州:黄河水利出版社,2006.
    [151]李钜章.中国地貌基本形态划分的探讨.地理研究,1987,6(2):32-39.
    [152]Tanner, W.F. Examples of departure from the Gaussian in geomorphic analysis. American Journal Science,1959,257:458-460.
    [153]Scheidegger, A.E. Theoretical geomorphology:Prentice-Hall, Englewood Cliffs,1961,333p.
    [154]Evans, I.S. General geomorphometry, derivatives of altitude, and descriptive statistics, Spatial analysis in geomorphology,1972,17-90.
    [155]Allen, J.R. Polynomial regression analysis of beach profiles. Prof. Geographer,1975,27(2):189-193.
    [156]邬建国.景观生态学——格局、过程、尺度与等级.北京:高等教育出版社,2004.
    [157]李志林,朱庆.数字高程模型(第二版).武汉:武汉大学出版社.2003.
    [158]汤国安,龚健雅,陈正江,成燕辉,王占宏.数字高程模型地形描述精度量化模拟研究.测绘学报.2001,30(4):361-365.
    [159]牛文元.理论地理学.北京:商务印书馆,1992.
    [160]蒋德麒,赵诚信,陈章霖.黄河中游小流域径流泥沙来源初步分析.地理学报,1966,32(01):20-36.
    [161]Werner, C. Explorations into the formal structure of drainage basins, earth surface processes and landforms,1994,19:747-762.
    [162]周成虎.地貌学辞典.北京:中国水利水电出版社,2006.
    [163]黄河中上游管理局.黄河流域水土保持图集.北京:地震出版社.2011.
    [164]Wallis, C., Wallace, R., Tarboton, D.G., Watson, D.W., Schreuders, K.A.T., Tesfa, T.K. Hydro logic Terrain Processing Using Parallel Computing.18th World IMACS/MODSIM Congress, Cairns,2009,Australia:13-17.
    [165]Do, H.T., Limet, S., Melin, E. Parallel Computing Flow Accumulation in Large Digital Elevation Models, International Conference on Computational Science,2011,Procedia Computer Science 4:2277-2286.
    [166]Colombo, R., Vogt, J.V., Soille, P., Paracchini, M.L., De Jager, A. Deriving river networks and catchments at the European scale from medium resolution digital elevation data. CATENA,2007,70:296-305.
    [167]Gong, J. and Xie, J. Extraction of drainage networks from large terrain datasets using high throughput computing. Computers & Geosciences, 2009,35:337-346.
    [168]英国赠款小流域治理管理项目执行办公室.小流域综合评价方法和模型研究.北京:中国计划出版社,2008.
    [169]熊礼阳,汤国安,袁宝印,陆中臣,李发源,张磊.2013.基于DEM的黄土高原(重点流失区)地貌演化的继承性研究.中国科学·地球科学(in press).
    [170]刘学军,卢华兴.论DEM地形分析中的尺度问题.地理研究,2007,26(3):433-442.
    [171]王春.基于DEM的陕北黄土高原地面坡谱不确定性研究.西北大学硕士学位论文,西安:西北大学,2005.
    [172]Pike, R.J., Wilson, S.E. Elevation-relief, hypsometric integral and geomorphic area-altitude analysis. Geological Society of America Bulletin. 1971,82:1079-1084.
    [173]秦承志,朱阿兴,施迅.坡位渐变信息的模糊推理.地理研究,2007,26(6):1165-1174.
    [174]汤国安,杨昕.ArcGIS地理信息系统空间分析实验教程.北京:科学出版社.2006.
    [175]高毅平,汤国安,周毅,李发源.陕北黄土地貌正负地形坡度组合研究.南京师范大学学报.2009,32(2):135-140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700