基于DMA法的沥青混合料动态粘弹特性及剪切模量预估方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高速公路里程的日益增加,沥青路面的早期损坏现象不断涌现。相关研究表明,沥青路面的各种损坏均与沥青混合料的粘弹性有关。沥青混合料是由非均质分布的矿料、沥青和空隙组成的复杂三相体系,其粘弹性能与各组分的力学特性及体积分数密切相关,目前沥青混合料复数剪切模量G~*和相位角计算未直接利用沥青流变数据,而沥青路面经常处于车辆动荷载作用下。因此,基于动态力学分析(DMA)方法研究沥青混合料宽频宽温动态粘弹特性和根据各组分特性研究沥青混合料动态模量预估方法是非常重要的。
     DMA是测试材料在周期性变化应力或应变作用下材料发生形变时模量和阻尼特性。DMA方法通常在小应变条件下测定,小应变条件符合路面变形规律;且DMA只需小试样就可以在宽频宽温条件下连续测定,在较短的时间内获得不同应力、应变、时间、温度和频率范围内沥青混合料的动态力学性能,可全面评价沥青混合料的粘弹力学行为。沥青混合料的粘弹力学行为分析的前提条件是获得粘弹函数主曲线。借鉴国内外研究成果,采用高级剪切流变仪AR-2000对沥青混合料进行DMA频率扫描;再利用时温等效原理验证沥青混合料属于简单热流变材料,仅需水平移动就可得到粘弹函数主曲线,文中采用最小二乘法非线性拟合获得的主曲线涵盖工程应用的全部频率范围,为全面研究沥青混合料粘弹行为提供充分依据。
     应用DMA频率谱和时温等效原理获得沥青的玻璃化转变温度(T_g)和沥青混合料的T_g,克服了DMA温度谱可能未覆盖T_g的不足。动态频率扫描(DFS)是获得材料物性特征指标T_g的有效方法。沥青的T_g与沥青混合料的T_g的变化趋势一致,且相关性良好,并与WLF方程中的C_2有良好的相关性。结果表明,沥青和沥青混合料低温性能可用同一指标T_g评价。
     在对比已有流变模型基础上,选用CAM模型基于主曲线研究了沥青及沥青混合料宽温宽频域内的粘弹力学行为。重点讨论不同空隙率沥青混合料极限低频和极限高频时粘弹行为,以及在低温、中温、中高温、高温时沥青混合料的粘弹比例。研究表明,CAM模型是研究沥青混合料粘弹行为的有效模型,其参数物理意义明确,且对体积指标变化较敏感,能为沥青混合料性能研究及工程应用提供指导。
     为了描述沥青混合料的复杂的动态粘弹力学行为,对沥青混合料的动态粘弹性能的本构关系进行了研究,分别采用广义Maxwell模型和和分数阶导数Maxwell模型、Burgers模型和分数阶导数Burgers模型对动态粘弹性能进行拟合,并对经典粘弹模型和分数阶导数模型的拟合结果进行分析。分析发现,广义Maxwell模型在曲线两端拟合效果较差,分数阶导数Maxwell模型的拟合效果较好,且拟合得到的参数具有一定的物理意义,可定量评价沥青混合料的动粘弹特性;Burgers模型不能很好的拟合动态蠕变曲线,在蠕变开始阶段偏差尤为明显,分数阶导数Burgers模型可以较精确的描述沥青混合料的动态蠕变曲线。结果表明,分数阶导数模型可较好的描述沥青混合料动粘弹行为。
     在分析沥青混合料粘弹函数影响因素敏感性的基础上,推导了改进的Hirsch模型;再根据Superpave的沥青流变数据和沥青混合料的体积参数,采用改进的Hirsch模型预估了沥青混合料的剪切模量和相位角。结果表明,预估值和实测值相关性良好( R~2 > 0.89),改进的Hirsch模型是一种简单可行的预估沥青混合料复数剪切模量和相位角的方法。改进的Hirsch模型G~*计算充分考虑了沥青混合料的体积组成特性和Superpave沥青的G~*值,而且参数少,这样减少了误差且易操作;大大节约了实验时间和费用;改进的Hirsch模型为沥青混合料动态剪切模量和相位角的预估及粘弹特性的研究提供了一种有效途径。
With the highway mileage growing, more and more early damage in asphalt pavement has emerged. Researches indicated that various damages of asphalt pavement are relevant to viscoelastic of asphalt mixtures. Asphalt mixtures are particulate composite materials consisting of uniformly distributed mineral aggregates, asphalt binder and air voids. The viscoelastic characteristics are contact with various components. At present, the studies on viscoelastic behavior of asphalt mixtures do not make full use of Superpave asphalt rheological data. Meanwhile, asphalt pavements often bear vehicle load. Therefore, this research on viscoelastic characteristics in wide-temperature-wide-frequency for asphalt mixtures based on dynamic mechanical analysis(DMA)and predicting according to the components properties are very necessary.
     Dynamic mechanical analysis (DMA) is an important method to study the viscoelastic properties of asphalts and aphalt mixtures under cyclic stress or strain. DMA is usually operated under conditions of small strain and small strain deformation consistent with the pavements. DMA was employed to obtain dynamic mechanical properties of asphalts and asphalt mixtures within different stress, strain, time, temperature and frequency region using a small sample, which can not be obtained from others method. Therefore, DMA method can evaluate the viscoelastic behavior of asphalt mixtures completely. To obtain the viscoelastic function master curve is prerequisite for viscoelastic behavior analysis of asphalt mixtures. According to domestic and foreign research results, a high advanced shear rheometer AR-2000 is used to obtain the DMA sweep test data. Asphalt mixtures is a simple thermal rheological materials determined by time-temperature superposition principle, and just horizontal movement can viscoelastic function master curve for asphalt mixtures, and master curve obtained by non-linear fitting covering the entire frequency range of engineering applications provides a sufficient basis for a comprehensive study of the viscoelastic behavior of asphalt mixtures.
     The glass transition temperature(T_g)for asphalts and asphalt mixtures are got using the DMA frequency spectrum and time-temperature superposition principle and overcome the shortage that dynamic mechanical temperature spectra may not cover the T_g. The dynamic frequency sweep (DFS) is an effective method to obtain T_g characteristic index of asphalt and asphalt mixtures. T_g of sphalts and T_g of asphalt mixtures are the same trend and good correlation. Meanwhile, there is good correlation between WLF equation in the C2 in WLF equation and T_g of asphalt and asphalt mixtures. The results show that the same index T_g can evaluate the lower temperature performance for asphalt and asphalt mixtures.
     Comparison of other rheological models, a CAM model with clear physical meaning of parameters is used to study viscoelastic behavior for asphalt mixtures in wide-temperature -wide-frequency based on their master curves. The viscoelastic behavior for asphalt mixtures in limit low frequency and limit high frequency and the viscoelastic ratio for asphalt mixtures at low temperature, intermediate temperature, intermediate-high temperature and high temperature are investigated using of CAM model. The results show that CAM model with good clear physical meaning and sensitive to volume index changes is effective model of quantitative study for asphalt mixture viscoelastic behaviors, can study the performance and provide application guidance for asphalt mixtures.
     To analyze the dynamic complex viscoelastic properties of asphalt mixtures, dynamic viscoelastic constitutive equation of asphalt mixtures dynamic properties was studied, consisting of generalized Maxwell model and fractional derivative Maxwell model, Burgers model and fractional derivative model, and the fitting results of classical viscoelastic model and fractional derivative model are analyzed. The results indicate that generalized Maxwell model fit less effective at both end of the curve, but fractional derivative Maxwell model with clear physical meaning parameters in some degree can fit the test data well and can describe the dynamic performance for asphalt mixtures in quantitative; Burgers model can not fit the dynamic creep curve accurately and the beginning of fitting deviation in creep curve is particularly evident, while fractional derivative Burgers model can describe the asphalt mixture dynamic creep curves accurately.It is concluded that the fractional derivative model can descirbe the dynamic viscoelastic behavior accurately.
     Considering the components of asphalt mixtures material impact on its viscoelastic behavior, an improved Hirsch model was derived. A micromechnical improved Hirsch model is used to predicte the shear modulus and phase angle of asphalt mixtures using Superpave asphalt rheological data and considering. The results show that there is a good correction between predicted value and measured value( R~2 > 0.89)and the improved Hirsch model is a simple and practical approach to estimate the complex shear module and phase angle for asphalt mixtures. If measured the volume index of asphalt mixtures, its viscoelastic function paramaters can estimate according to asphalt rheological data at same temperature and same frequency and its components fractions. This greatly reduces the experimental cost and time. Improved Hirsch model for provides an effective way to estimate dynamic shear modulus and phase angle for asphalt mixtures and investigate the viscoelastic behavior of asphalt mixtures.
引文
[1]沈金安.沥青及沥青混合料路用性能[M].北京:人民交通出版社. 2001
    [2]交通部重庆公路科学研究所译,《美国公路战略研究计划(SHRP)》[M].北京:人民交通出版社,1995
    [3]沈金安,李福晋,陈景.高速公路沥青路面早期损坏分析与防治对策[M].北京:人民交出版社,2004
    [4] Dongre, Raj, D’Angelo, John and Gerry Reinke. A New Criterion for Superpave HighTemperature Binder Specification[J]. Transportation Research Record, TRB 2004: Transportation Research Board, National Research Council, Washington D.C:25-41
    [5]张肖宁.沥青与沥青混合料的粘弹力学原理及应用[M].北京:人民交通出版社, 2006
    [6] PETERSEN J C. Chemical Composition of Asphalt as Related to Asphalt Durability: State of the Art(Transportation Research Record 999)[R].Washington DC:TRB,1984
    [7] WIMPY S. Determination of Critical Asphalt Pavement Voids Through Laboratory Aging[D].[sl]:Civil Engineering,University of Connecticut,1992.
    [8] PRITHVI S K, SANJOY C.Evaluation of Voids in the Mineral Aggregate for HMA Paving Mixtures(NCAT Report No.96-4)[R].[sl]:National Center for Asphalt Technology of Auburn University,1996.
    [9] The Asphalt Institute. Mix Design Methods for Asphalt Concrete and Other Hot-mix Types(MS-2)[M].[sl]:Asphalt Association of America,1997.
    [10] HARVEY J T, TSAI B W. Effects of Asphalt Content and Air Void Content on Mix Fatigue and Stiffness[J]. Transportation Research Record. Washington D.C :TRB, 1996. 38-45.
    [11]杨挺青,罗文波,徐平等.粘弹性理论与应用[M].科学出版社,2004
    [12]李好新,索智,王培铭.不同空隙率沥青混合料的形变及破坏[J].建筑材料学报. 2008,11(3): 306~310
    [13] AASHTO. Specification for Performance-graded Asphalt Binder. AASHTO Standard MP1. Washington, D.C.1998:10~89
    [14] Bahia H. U., Hanson D. L., Zeng, M.L, Zhai, H., Khatri, M. A.etc. Characterization of Modified Asphalt Binders in Superpave Mix Design[R]. NCHRP Report 459, National Cooperative Highway Research Program, National Academy Press. Washington, D.C. 2001:46~49
    [15]张义同.热粘弹性理论[M].天津:天津大学出版社, 2002 ,110~111.
    [16] Elbirli, B, and Shaw, M. T. Time Constants from Shear Viscosity Data[J]. Journal of Rheology. John Wiley and Sons Inc., 1978, 22(5): 561~570
    [17] Anderson, D. A., Le Hir, Y. M., Planche, J., Martin D., Zero Shear Viscosity of Asphalt Binders. Presented at the 81st Annual Transportation Research Board Meeting, TRB, National Research Council, Washington D. C., 2001:2~19
    [18] Sybilski. Zero-Shear Viscosity of Bituminous Binder and its Relation to Bituminous Mixtures Rutting Resistance[J], Transportation Research Record 1535, TRB, 1996: 15~21
    [19] Desmazes, C., Lecomte, M., 1, D., Phillips, M. A Protocol for Reliable Measurement of Zero-Shear-Viscosity in order to Evaluate the Anti-Rutting Performance of Binders, Proceedings, 2nd Eurasphalt & Eurobitume Congress, Barcelona, Spain.2000:200~203
    [20] Andrei D, Witczak MW, Mirza MW. Development of a Revised Predictive Model for the Dynamic (Complex) Modulus of Asphalt Mixtures. NCHRP 1-37A Inter Team Report[R], University of Maryland, 1999.
    [21]林绣贤.论HMA的设计空隙率和矿料最小间隙率[J].上海公路,2004,(4):1-5
    [22]赵延庆,潘有强,黄大喜.沥青混合料动态模量Hirsch预测模型的验证研究[J].公路,2007. 11(11),196~199
    [23] Christensen D.W., Anderson. D.A. Interpretation of Dynamic Mechanical Test Data for Paving Grade Asphalt Cements[J]. Journal of the Association of Asphalt Paving Technologists. 1992, 61:59~72
    [24]赵延庆,吴剑,文健.沥青混合料动态模量及其主曲线的确定与分析[J].公路. 2006, (8):163~167
    [25] Christensen D, Pellinen T, Bonaquist R. Hirsch Model for Estimating the Modulus of Asphalt Concrete.[J]. Journal of the Association of Asphalt Paving Technologists.. 2003,72:97~121.
    [26] Huang B, Shu X, Li G, Chen L. Analytical Modeling of Three-layered HMA Mixtures[J]. International Journal Geomech 2007,7(2):140~148.
    [27] Buttlar WG, Roque R. Evaluation of Empirical and Theoretical Models to Determine Asphalt Mixtures Stiffnesses at Low Temperature[J]. Journal of the Association of Asphalt Paving Technologists.. 1996,65:99~141.
    [28] Buttlar W.G, Bozkurt D, Al-Khateeb GG, Waldhoff AS. Understanding Asphalt Mastic Behavior Through Micromechanics[C]. TRB-1681. Transportation Research Board,Washington, D.C, 1999:157~169.
    [29] Shashidhar N, Shenoy A. On using Micromechanical Models to Describe Dynamic Mechanical Behavior of Asphalt Mastics[J]. Mech Mater 2002,34:657–69.
    [30] Shu Xiang, Huang Baoshan. Micromechanics-based Dynamic Modulus Prediction of Polymeric Asphalt Concrete Mixtures[J]. Composites. Part B, Engineering. 2008,39(4): 704-713
    [31] Cristian Druta. A Micromechanical Approach for Predicting the Complex Shear Modulus and Accumulated Shear Strain of Asphalt Mixtures From Binder and Mastics [D]. Louisiana State University Dissertation. 2006
    [32]曾梦澜,黄欣哲,李洁等.沥青结合料与混合料动力性质的关系[J].中南公路工程.2003, 28(4):11-15
    [33]过梅丽.高聚物与复合材料的动态力学热分析[M].北京:化学工业出版社,2002
    [34] Petersen J.C., Robertson R.E., Branthaver. J.F. Binder Characterization and Evaluation Volume 4: Test Methods, SHRP-A-370[R]. National Research Council, 1994:36~48
    [35] Monismith C.L., Alexander R.L., and Secor K.E., Rheologic Behaviour of Asphalt Concrete[R], Proceedings of the Association of Asphalt Paving Technologists, 1968,(35):400~450
    [36] Thomas Bennert, Ali Masher, and Joseph Smith. Evaluation of Crumb Rubber in Hot Mix Asphalt. Final Report[R]. Department of Civil and Environmental Engineering, Rutgers University.2004.7:4~38
    [37]孙立军.沥青路面结构行为理论[M].北京:人民交通出版社.2005
    [38] Aroon Shenoy. Developing Unified Rheological Curves for Polymer Modified Asphalts[J]. Materials and structures.2000, 33:425~437
    [39] Naga Shashidhar, Aroon Shenoy. On using Micromechanical Models to Describe Dynamic Mechanical Behavior of Asphalt Mastic.[C]. the 79th Annual meeting of the Transportation Research Board, Washington, D.C., January 9,2000, Session 483: 320~356
    [40] Shenoy, A. Refinement of the Superpave Specification Parameter for Performance Grading of Asphalt[J]. Journal of Transportation Engineering. 2001, 127(5): 357 ~362.
    [41] Gerald H. Reinke,Stacy Glidden. Development of Mixture Creep Performance Tests Using a Dynamic Shear Rheometer[R]. Transportion Research Board of the National Academies. 2004.9:1~43
    [42]曹丽萍.SBS改性沥青低温性能的研究[D].哈尔滨工业大学硕士论文.2004: 52~83
    [43]曹丽萍,谭忆秋,董泽蛟,孙立军.应用玻璃化转变温度评价SBS改性沥青低温性能[J].中国公路学报.2006,19(2):1~6
    [44]贾娟.改性沥青高温流变性能与应用研究[D].广州:华南理工大学博士学位论文.2005:82~100
    [45]詹小丽.基于DMA方法对沥青粘弹性能的研究[D].哈尔滨:哈尔滨工业大学博士学位论文.2007:32~86
    [46]迟凤霞.基于变形特性的沥青混合料形态学研究[D].广州:华南理工大学博士学位论文.2008:56~98
    [47] Joe W. Button. New Simple Performance Tests for Asphalt Mixes. NCHRP Report 465:Simple Performance Test for superpave Mix Design[R]. TRB 2004:1~44
    [48] Andrei, D. Witczak, M.W., and Mirza, M.W., Development of a Revised Predictive Model for the Dynamic (Complex) Modulus of Asphalt Mixtures , Development of the 2002 Guide for the Design of New and Rehabilitation Pavement Structures[R]. NCHRP 1-37A, Interim Team Technical Report, Department of Civil Engineering,University of Maryland, College Park, MD. 1999:56~72
    [49]吴刚.填充类导电复合材料结构与动态粘弹行为研究[D].杭州:浙江大学博士学位论文. 2004:25~39
    [50] Ruymbeke E. van, Keunings R., V. Stephenne. Determination of the Molecular Weight Distribution of Entangled Linear Polymers from Linear Viscoelasticity Data. Journal Non Newtonian Fluid Mech. 2002, 105: 153~175
    [51]郑强,赵铁军.多相/多组分聚合物动态流变行为与相分离的关系[J].材料研究学报.1998,11(3):225~232
    [52]张明强.高性能热塑性复合材料高低温力学性能研究[D].哈尔滨:哈尔滨工业大学硕士学位论文.2006:26~48
    [53] [美]迈克尔?鲁宾斯坦,科拉夫H.科尔比.高分子物理[M].化学工业出版社. 2007:126~225
    [54]迟凤霞,张肖宁,王丽健等.沥青混合料动态剪切模量主曲线的确定[J].吉林大学学报(工学版),2009,39(2):349~353
    [55] Anderson, D. A., et al. Binder characterization, Volume 3: Physical properties. Strategic Highways Research Program, Rep. No. SHRP -A-369[R], National Research Council, Washington, D.C.1994:43~79
    [56]杨挺青.粘弹性理论及其应用[M].科学出版社,2004:69~105.
    [57]孟勇军.不同嵌段比的SBS改性沥青流变性能研究[D].哈尔滨:哈尔滨工业大学博士学位论文.2008
    [58]沈金安.国外沥青路面设计方法总汇[M].北京:人民交通出版社, 2004:52~118
    [59] Pellinen T.K.. Investigation of the Use of Dynamic Modulus as an Indicator of Hot-Mix Asphalt Performance[D]. Arizona State University. 2001:30~123
    [60] Bonaquist R.F., Chriestensen D.W.. Simple Performance Tester for Superpave Mix Design Equipment Specification for the Simple Performance Test System[R]. NCHRP 9-29, Washington, D.C. 2004:102~168
    [61] Mirza M. W. andWitczak M. W.. Development of a Global Aging System for Short and Long Term Aging of Asphalt Cements[J]. Journal of the Association of Asphalt Paving Technologists. 1995, 64: 42~60
    [62] Mauricio Centeno , Israel Sandoval, Ignacio Cremades et.al. Assessing Rutting Susceptibility of Five Different Modified Asphalts in Bituminous Mixtures using Rheology and Wheel Tracking Test[C]. Transportion Research Board of the National Academies 2008
    [63]交通部公路科学研究所.道路沥青及沥青混合料路用性能的研究总报告[R].“八五”国家重点科技项目(总报告),1995
    [64]姚苛.沥青混合料动态模量测试方法与研究预估模型研究[D].哈尔滨:哈尔滨工业大学博士学位论文.2007:5~7,78~109
    [65]马林.间接拉伸试验模式下沥青混合料动态模量研究[D].广州:华南理工大学博士学位论文.2009
    [66] Marasteanu M., Anderson D.. Time-Temperature Dependency of Asphalt Binders an Improved Model[J]. Asphalt Paving.Technology, Journal of the Association of Asphalt Paving Technologists. 1996,65: 408~448
    [67] Stastna J., Zanzotto L., and Berti. J. How Good are Some Rheological Models of Dynamic Functions of Asphalt?[J]. Journal of the Association of Asphalt Paving Technologists. 1997,66: 458~485
    [68] Menglan Zeng, Hussain U. Bahia, Huachun Zhai. Rheological Modeling of Modified Asphalt Binders and Mixtures[R]. Annual Meeting of the Association of Asphalt Paving Technologists. 2001:8~35
    [69]郑健龙,周志刚,张起森.沥青路面抗裂设计理论与方法[M].人民交通出版社.2002:112~160
    [70] Marasteanu M.O., andAnderson D.A.. Improved Model for Bitumen Rheological Characterization[R]. Eurobitume Workshop on Performance Related Properties for136 Bituminous Binders, Luxembourg, 1999: 133~134
    [71]赵熙.基于离散单元方法的沥青路面结构细观力学模型研究[D].广州:华南理工大学博士学位论文.2009
    [72]关宏信,郑健龙,张起森.行车荷载作用下沥青路面粘弹性应力响应规律分析[J].中外公路. 2006, 26,(1): 44~47
    [73]郑健龙,吕松涛,田小革.沥青混合料粘弹性参数及其应用[J].郑州大学学报(工学版),2004,25(4):8~15
    [74]陈静云,周长红,王哲人.沥青混合料蠕变试验数据处理与粘弹性计算[J].东南大学学报(自然科学版),2007,37(6): 1091~1095
    [75] Xu, QingXia. Modeling and Computing for Layered Pavements under Vehicle Loading[D]. North Carolina State University, 2004
    [76]张裕卿,黄晓明.重复荷载下沥青混合料永久变形的粘弹性力学模型[J].公路交通科技,2008,25(4): 1~6
    [77]张久鹏,黄晓明,李辉.重复荷载作用下沥青混合料的永久变形[J].东南大学学报(自然科学版),2008,38(3):511~515
    [78]张丽娟,张肖宁,王端宜. Precise Solution on Permanent Deformation of Asphalt Pavements under Moving Concentrated Loading[J].北京:科学技术与工程. 2007. 7(22):5848~5854
    [79]万成.基于X-ray CT和有限元方法的沥青混合料三维重构与沥青混合料三维重构与数值试验研究[D].广州:华南理工大学博士学位论文,2010
    [80]李晓明.基于流变特性的沥青胶浆评价方法及性能研究[D].哈尔滨:哈尔滨工业大学博士学位论文.2006
    [81] JTG F40-2004,公路沥青路面施工技术规范[S].中华人民共和国行业标准.2004.09
    [82] JTG E42-2005,公路集料试验规程[S].中华人民共和国行业标准.2005.03
    [83]美国沥青协会.贾渝,曹荣吉,李本京(译).高性能沥青路面(Superpave)基础参考手册[M].北京:人民交通出版社. 2005
    [84]吴文亮.沥青混合料的数字图像处理技术与概率统计方法研究[D].广州:华南理工大学博士学位论文, 2009
    [85] Airey, G. D., Hunter, A. E., and Rahimzadeh (2002c). The Influence of Geometry and Sample Preparation on Dynamic Shear Rheometer Testing. Proceedings[C]., the 4th European Symposium on the Performance of Bituminous and Hydraulic Materials in Pavements, A. A. Balkema, Rotterdam, The Netherlands,2002. 3~12
    [86] Cheung, C. Y., Cebon, D. Deformation Mechanisms of Pure Bitumen[J]. Journal Materials in Civil Engineering. 1997, 9(3):117~129
    [87] Gordon D. Airey, Behzad Rahimzadeh,Andrew C. Collop. Linear Rheological Behavior of Bituminous Paving Materials[J]. Journal of Materials in Civil Engineering. 2004, 16(3):212~220
    [88] Airey, G. D., Rahimzadeh, B., and Collop, A. C. (2002a). Linear Viscoelastic Limits of Bituminous Binders.[J] Journal of the Association of Asphalt Paving Technologists . 71: 160~196
    [89] Airey, G. D., Rahimzadeh, B., and Collop, A. C. (2002b). Linear and Nonlinear Rheological Properties of Asphalt Mixtures[R]. Proceedings., the 4th European Symp. on the Performance of Bituminous and Hydraulic Materials in Pavements, A. A. Balkema, Rotterdam, The Netherlands, 2002:137~145
    [90] Monismith, C.L. Alexander R.L., and Secor K.E., Rheologic Behaviour of Asphalt Concrete[R], Proceedings of the Association of Asphalt Paving Technologists, 1968, 35:400~450
    [91] Superpave Support and Performance Models Management Field Validation of the Simple Performance Test[R]. NCHRP 9-19, Washington, D.C. 2001:52~86
    [92]张裕卿,黄晓明.蘑复茼载下沥青混合料永久变形的黏弹性力学模型[J].公路交通科技,2008,25(4):l~6.
    [93]笠原笃,冈川秀幸,菅原照雄.沥青混合料的动态性质及其在沥青路面结构力学分析中的应用[C].哈尔滨建筑大学沥青混合料力学性能研究论文集. 1982:123~126
    [94]叶国铮.柔性路面疲劳与优化设计[M].北京:人民交通出版社, 1989:7~8
    [95]李云雁,胡传荣,试验设计与数据处理[M].北京:化学工业出版社. 2005
    [96]周键炜,王大明,白琦峰.沥青混合料动态模量主曲线研究[J].公路工程.2009,34(5): 60~62,78
    [97] Reinke Gerald H , Glidden Stacy. Development of Mixture Creep Performance Tests using a Dynamic Shear Rheometer [J] . Transportion Research Board of the NationalAcademies ,2004,9 :1243.
    [98]过梅丽,赵地禄.高分子物理[M].北京航空航天大学出版社.2005.09
    [99]吴华晔,巫静安.高分子流变学导论[M].北京:化学工业出版社,1994,118~127
    [100]周光泉,刘孝敏.粘弹性理论[M].合肥:中国科学技术大学出版社.1996
    [101]刘泉声,许锡昌,山口勉等.岩石时-温等效原理的理论与实验研究[J];岩石力学与工程学报.2002,21(3):320~325
    [102] Plazek, D. J.; Rosner, M. J.; Plazek, D. L., Viscoelastic Behavior of Amorphous Polymers Near the Glass Temperature[J]; Joural. Polym. Sci.: Part B: Polym. Phys. 1988, 26;473-489
    [103]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,1990:65~79
    [104]王锦燕,陈静波,魏永强,申长雨.聚合物熔体动态流变主曲线生成的统一方法[J].中国塑料.2003,17(8):53~57
    [105] Ferry J D. Viscoelastic Properties of Polymers[R], 3rd cd., New York, John Willey & Sons, 1980
    [106]金日光,华幼卿.高分子物理. [M].北京:化学工业出版社,1997.
    [107]日本レオロジ一学会編.講座レオロジ一[M]..京都:高分子刊行会,1993
    [108]郑强,林宇,叶一兰等.《高分子物理》教学中WLF方程的系数求解与分析[J].高分子通报. 2010,(6):99~105
    [109]胡全星,姜豫东,李健等.推进剂松弛模量主曲线及WLF方程参数的拟合处理[J].固体火箭技术. 2003,26(2):46~48
    [110]孙志忠,袁慰平,闻震初.数值分析(第二版)[M].东南大学出版社.2002:160~176
    [111]王秀峰,江红涛,程冰等.数据分析与科学绘图软件Origin详解[M].北京:化学工业出版社. 2008
    [112] Wang Duanyi, WANG Zheren,ZHANG Xiaoning, Analysis of Structural Factors That Inflence the Low-temperature Cracking of Asphalt Pavement. ISCORD,1991
    [113]王端宜,刘敬辉,刘宇.沥青混合料粘弹塑性断裂参数的研究[J].华南理工大学学报(自然科学版).2009,39(11):7~11,21
    [114]詹小丽,张肖宁,卢亮.沥青低温粘弹性能的预测[J].吉林大学学报(工学版). 2008,28(3):530~534
    [115]郝培文,张登良,胡西宁.沥青混合料低温抗裂性能评价指标[J].西安公路交通大学学报. 2000,20(13). 1~5
    [116] Bahia H.U. and Anderson D.A., Glass Transition Behavior and Physical Hardening of Asphalt Binders[R], Proceedings of the Association of Asphalt Paving Technologists, 1993, 62:93~129
    [117] NCHRP Report 459, Characterization of Modified Asphalt Binders in Superpave Mix Design[R], National Cooperative Highway Research Program, Transportation Research Board-National Research Council, National Academy Press, Washington, D.C., 2001.
    [118]李健伟,徐亚娟.测试方法对聚合物玻璃化温度的影响[J].塑料料技.2009,37(2):65~67
    [119] Kitae Nam & Hussain U.Bahia. Effect of Binder and Mixture Variables on Glass Transition Behavior of Asphalt Mixtures[J]. Journal of the Association of Asphalt Paving Technologists . 2004,(73.):89~119
    [120]高家武主编.高分子材料近代测试技术[M].北京:北京航空航天大学出版社, 1994
    [121]周平华,许乾慰.热分析在高分子材料中的应用[J].上海塑料,2004(1):36~40
    [122] Vinay G,Wachs A,Frigaard I.Start up Transients and Efficient Computation of Isothermal Waxy Crude Oil Flows[J].Non-Newtonian Fluid Mech,2007,143:141-56.
    [123] H Zhai, D Salomon. Evaluation of Low-Temperature Properties and the Fragility of Asphalt Binders with Non-arrhenius Viscosity Temperature Dependence [J]. Transportation Research Record: Journal of the Transportation Research Board.2005,(1901):44~51
    [124] Xue Li and Mihai Marasteanu. Evaluation of the Low Temperature Fracture Resistance of Asphalt Mixtures Using the Semi Circular Bend Test. [J]. Journal of the Association of Asphalt Paving Technologists . 2004(73):401~426
    [125]何平笙.新编高聚物的结构与性能[M].北京:科学出版社.2009
    [126] [美] J.J.阿克洛尼斯, W. J.麦克奈特.聚合物粘弹性引论[M].北京:科学出版社, 1996
    [127]陈平,唐传林.高聚物的结构与性能[M].北京:化学工业出版社,2005
    [128]唐鸿龄,张元林,陈豪球.应用概率[M].南京:南京工学院出版社,1988
    [129] Jones G.M, Darte M I r, G Littlefield. Thermal Expansion Contraction of Asphaltic Concrete [C]. Proceedings of the Association of Asphalt Paving Technologists, 1968, 37: 56~100.
    [130]韩青英.硬质抗水损害沥青及其混合料性能研究[D].广州:华南理工大学硕士学位论文,2010
    [131] AASHTO TP9-96, Method for Determining the Creep Compliance and Strength of Hot Mix Asphalt (HMA) Using the Indirect Tensile Test Device[S]. AASHTO Provisional Standards, Washington, D.C.: American Association of State Highway Transportation Officials, May 2002 edition
    [132] Hastie T. , Principal Curves and Surfaces[R], Laboratory for computational Statistics Stanford University, Dept.of Statistics Technical Report 11, 1984.
    [133] ARA,Inc.ERES Consultants Division, Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures[R] , Final Report to the National Cooperative Highway Research Program, March, 2004.:228~2224.
    [134]张争奇,赵战利,张卫平.矿料级配对沥青混合料低温性能的影响[J].长安大学学报:自然科学版,2005,25 (2):1~5.
    [135]银花,王大明,赵尘等,沥青混合料分数导数粘弹性本构关系研究[J].森林工程.2010, 26(2):77~82
    [136] Adhikari S. Simulation of Mechanical Behavior of Asphalt Concrete: Two Dimensional and Three-Dimensional Discrete Element Model of Micro[D]. Michigan Technological University PHD Dissertation.2008
    [137]卢亮.功能型沥青混合料及其设计方法研究[D].华南理工大学博士学位论文.2009
    [138] You, Z., Adhikari, S., Masad, E., and Dai, Q. , Microstructural and Micromechanical Properties if Field and Lab-compacted Asphalt Mixtures[J], Journal of Association of Asphalt Paving Technologists (AAPT), 2009,78,
    [139] You, Z., Adhikari, S., and Dai, Q.. Air Void Effect on an Idealized Asphalt Mixture Using a Two-Dimensional and Three-Dimensional Discrete Element Modeling Approach[J]. International Journal of Pavement Engineering, Taylor & Francis.2008
    [140] Bari, J., and Witczak, M. W. . Development of a New Revised Version of Witzacak E* Presictive Mocxel for Hot Mix Asphalt Mixtures [J] .Journal of the Association of Asphalt Paving Technologists ,2006,75:381~423.
    [141]李立寒,陈建军,苏洲等.基于车辙试验的空隙率效应模型的建立[J].公路交通科技.2007,24(1):37~43
    [142] Cooleyjral, Kandhalps, Buchananms. Loaded Wheel Testers in the United States:State of the Pracitce (NCAT Report 00-04)[R].USA:National Center for Asphalt Technology, 2000
    [143]胡旭东,张起森,范勇军. HMA动态模量Witczak和Hirsch预测模型[J].2006,26(6):204~207
    [144] Monismith C L. Rutting Prediction in Asphalt Concrete Pavements [R]. Washington D C: Transportation Research Record 616,Transportation Research Board,National Academy of Sciences,1976·
    [145] Sousa J B,Craus J, Monismith C L. Summery Report on Permanent Deformation in Asphalt Concrete[R]·SHRP-A/IR-91-104, Strategic highwayresearch program·National research board,1991:21~31
    [146] Tamura I , Tomota Y, Ozawa I. Strength and Ductility of Fe-Ni-C Alloys Composed of Austeniteand Martensite with Various Strength [J ] . Institute of Metals (Monograph and Report Series) , 1973 , 1 (3) :611~615.
    [147] Eshelby J D. The Determination of the Elastic Field of an Ellip soidal Inclusion and Related Problems [J]. Proceedings of the Royal Society of London ( Series A , Mathematical and Physical Sciences ) , 1957 ,241 :375~396.
    [148] Shen Lianxi , Li J . Effective Elastic Moduli of Composites Reinforced by Particle or Fiber with an Inhomogeneous Interphase [J]. International Journal of Solids and Structures , 2003 , 40 (6) : 1393~1409.
    [149] Dongre R, Myers L, D'Angelo J, Paugh C, Gudimettla J.Field Evaluation of Witczak and Hirsch Models for Predicting Dynamic Modulus of Hot-mix Asphalt[J]. Journal of the Association of Asphalt Paving Technologists . 2005(74):381~442
    [150] Hirsch T J. Modulus of elasticity of concrete affected by elastic moduli of cement paste matrix and aggregate [ J] .Journal of the American Concrete Institute, 1962,59.
    [151]卢平,刘佐民.基于Hirsch模型的复合材料弹性模量的改进算法[J].中国机械工程2008,19(23):2582~2585
    [152]刘洪海,范鹏云,岳鹏程等.影响沥青混合料体积参数的因素与质量控制[J].武汉理工大学学报.2007,29(9).55-58
    [153]辛德刚,王哲.高速公路沥青路面材料与结构[M].北京:人民交通出版社,2002.
    [154]解晓光,王哲人.沥青碎石混合料动力变形特性研究[J].中国公路学报,2006,19(2): 24~30.
    [155]张争奇,李宁利,陈华鑫.改性沥青混合料拌合与压实温度确定方法[J].交通运输工程学报,2007,7(2):36~40.
    [156] Mcleod N W. Comparison of Density of Marshall Specimens and Pavement Cores [J]. Journal of the Association of Asphalt Paring Technologists, 1955, 24:32~36.
    [157] Mcleod N W. Relationship Between Density, Bitumen Content, and Voids Properties ofCompacted Paving Mixtures[R]. Washington D C: Highway Research Board of the National Academies, 1956.
    [158] Mcleod N W. Selecting the Aggregate Specific Gravity for Bituminous Paving Mixtures[R]. Washington D C: Highway Research Board of the NationalAcademies, 1957.
    [159] Witczak M.W. and Pellinen T.K.. AC Mixture Response Comparison to Performance E* and Sm Prediction Equation Methodology Results. Superpave Support and Performance Models Management, Task C-Simple Performance Test[R], NCHRP 9-19, Team Report SPT-ALF-2(L), 2000.
    [160]王志方,张国忠,刘刚.采用分数阶导数描述胶凝原油的流变模型[J].中国石油大学学报.2008,32(2):114~118
    [161]孙海忠;张卫.服从分数导数Kelvin本构模型的粘弹性阻尼器的阻尼性能分析及试验研究[J].振动工程学报.2008,21(1):48~53
    [162]刘林超.分数导数型粘弹性材料的力学行为及在结构减振中的应用研究[D].暨南大学博士学位论文.2000
    [163]吴杰,上官文斌.采用粘弹性分数导数模型的橡胶隔振器动态特性的建模及应用[J].工程力学.2008,25(1):161~166
    [164] Ya P, Hartono S. Modeling of Nonlinear Elastomeric Mounts. Part 1:Dynamic Testing and Parameter Identification [J]. SAE Technical Paper Serials 2001:1~42.
    [165] Park S W. Analytical Modeling of Viscoelastic Dampers for Structural and Vibration Control [J]. Solids and Structures, 2001, 38: 8065~8092.
    [166]孙海忠,张卫.分数算子描述的粘弹性材料的本构关系研究[J].材料科学与工程学报,2006,24(6):926 ~930.
    [167]张肖宁,尹应梅,邹桂莲.不同空隙率沥青混合料的粘弹性能[J].中国公路学报,2010,23(4):1~7
    [168] Monismith C L,Ogawa N,Freeme C.Permanent Deformation of Subgrade Soils due to Repeated Loadings[R].Washington D C:Transportation Research Board,1975.1~5
    [169] Yin Yingmei , ZHANG.Xiaoning. Study on Dynamic Repeated Creep Tests for Viscoelastic Property of Asphalt Mixtures with Varying Air Voids Content[C]. Beijing,ICCTP 2010:3697~3707
    [170]李好新,索智,王培铭.不同空隙率沥青混合料的形变及破坏[J].建筑材料学报.2008,11(3):306~310
    [171]朱正佑,李根国.具有分数导数本构关系的Timoshenko梁的静动力学行为分析[J],应用数学和力学,2002,23:36~41
    [172]延西利,扈惠敏,张登良.沥青混合料线性流变模型的数值模拟[J] .西安公路交通大学学报, 1999 , 19 (1):25~29
    [173] Michaeland erson R., Pamela A. turner, RoberT L. Peterson. (2002). Relationship of Superpave Gyratory Compaction Properties to HMA Rutting Behavior[R]. NCHRP-478:24-58
    [174]赵延庆,潘友强,黄荣华.基于动态模量的沥青路面力学响应分析[J] .重庆交通学院学报,2008, 27(1):57~60
    [175] R. F. Bonaquist. Simple Performance Tester for Superpave Mix Design. Quarterly Progress Report (Appendix B), National Cooperative Highway Research Program (NCHRP) Project 9-29, 2003.
    [176] AASHTO TP62: Standard Method for Determining Dynamic Modulus of Hot-Mix Asphalt Concrete Mixtures[S].2005
    [177] Li Yongqi and Metcalf J.B.. Two Step Approach to Prediction of Asphalt Concrete Modulus from Two Phase Micromechnical Models[J]. Journal of Materials in Civil Engineering,2005 .17(4):407~415
    [178]田云德,秦世伦.复合材料等效弹性模量的改进混合律方法[J ] .西南交通大学学报, 2005 ,40 (6) : 783~787.
    [179] Bari J,Witczak M W. New Predicitive for the Viscosity and Complex Shear Modulus of Asphalt Binders for Use with the Mechanistic-Empirical Pavement Design Guide[C].TRB,Washington,D.C ,2007.
    [180] Pellinen T K, Witczak M W. Stress Dependent Master Curve Construction for Dynamic (complex) Modulus[J] . Journal of the Association of Asphalt Paving Technologists , 2002,71 (1) :281~309.
    [181] Dickinson E.J, and Wilt H.P, The Dynamic Shear Modulus of Paving Asphalts as a Function of Frequency[J], Transactions of the Society of Rheology, 1974,18(4):591~606

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700