大跨径钢桥桥面铺装体系力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沥青混凝土作为大跨径钢箱桥梁通用的铺装材料,具有保护桥面板,提高桥梁使用寿命、行车舒适性与安全性,减少振动与噪声等优点,但由于不同桥型结构体系的受力特点不同及铺装材料与钢桥面板性能差异大等原因,铺装层开裂、铺装层与钢板脱层、车辙破坏等病害非常普遍,本文结合工程实例,开展大跨径钢箱桥面铺装体系关键力学问题研究,为铺装体系的优化设计与病害分析提供新的计算方法和思路。论文主要完成了以下工作:
     (1)以珠江黄埔大桥钢箱梁悬索桥为工程背景,进行整桥非线性分析,并选取结构中受力最不利的局部梁段,建立局部梁段的板壳及实体单元有限元模型,通过引入梁单元模型与板壳实体单元模型界面上的位移约束条件,建立混合单元模型,进行有限元分析计算,并将分析结果与局部铺装体系的有限元分析结果进行比较,为进一步进行局部铺装体系层间接触分析提供模型。
     (2)构造了一种12节点实体板单元模拟钢桥面沥青混凝土铺装层,用8节点实体单元模拟钢桥面板,通过Goodman单元模拟两种实体板单元之间的接触状态,形成一种新型的组合单元,该单元能较好地反映各种沥青铺装层和桥面板的接触状态;通过UPFs的二次开发技术,在大型通用有限元软件平台上,完成了组合单元的实现,在此基础上对钢桥面铺装体系各主要力学指标随层间接触状态变化的敏感性进行详细研究,确定铺装层力学性能指标的关键因素,得到相应力学指标与层间切向劲度系数的关系表达式,给出铺装层材料及钢桥面板结构参数的合理取值范围,弥补了只考虑层间完全连续状态或层间滑动状态确定设计参数而导致的两种极端状态,为钢桥面铺装体系的设计提供理论依据。
     (3)根据蠕变函数与松弛函数之间的微分型本构方程,对蠕变试验数据非线性拟合得到用多项式描述的蠕变曲线,对其进行Laplace变换与逆变换,有效地实现了蠕变曲线向松弛曲线的转换;应用该方法将环氧沥青混凝土蠕变试验得到的蠕变柔量转换为松弛模量,应用计算机数值模拟方法,分析温度变化、加卸载条件变化及层间接触状态变化对环氧沥青混凝土及SMA10改性沥青混凝土铺装体系受力性能的影响规律。
     (4)在对沥青混凝土铺装材料疲劳试验及蠕变试验过程中的耗散能进行分析的基础上,将疲劳试验中结构上施加的荷载分解为产生蠕变效应的荷载和产生疲劳效应的荷载,分别考虑蠕变与疲劳损伤函数的演化过程,引入蠕变-疲劳损伤因子,计算蠕变和疲劳荷载作用下的损伤能耗,提出了由复合梁疲劳试验预测沥青混凝土材料蠕变性能的方法,弥补了现有蠕变试验只能反映材料蠕变性能而无法反映结构约束条件作用的不足,更为合理地描述了在钢板约束作用下沥青混凝土铺装材料的蠕变性能;通过常温下一个实例验证了该方法的可行性,为合理分析复合梁铺装材料蠕变性能提供理论依据,并提出采用能量法建立的的铺装层应力-疲劳寿命关系式。
As pavement material,asphalt mixture has advantages such as protecting bridge deck, prolonging service life,promoting crane comfortability,reducing vibration and noise, though different mechanical characteristics of different bridge types and variance between pavement materials and steel decks cause pavement cracking,disengagement between pavement and deck,rut and other early damage. This paper makes researches on the pavement system of long-span steel box bridges,provides new analysis method and thinking on optimization and damage analysis of pavement system. Main research works in this thesis are as followed:
     (1) Nonlinear analysis of ZhuJiang HuangPu steel suspension bridge was proceeded, a local box beam with the biggest bending moment was extracted and a finite element model of it was built, displacement constraints conditions on the interface of beam model and shell-solid model were introduced, finite element analysis was proceeded, results were compared with finite element analysis results of local pavement systems.
     (2) A 12-nodes solid shell element was constituted and a method of analyzing nonlinear contact problem was adopted. Spatial analysis model was constituted by 8 nodes solid shell element, Goodman contact element and 12 nodes solid shell element. The user program was implemented through UPFs secondary exploitation technique of ANSYS software. Spatial pavement system analysis model was constituted. Detail analysis was carried out on sensitivity of pavement system mechanical indexes according to contact state change and least-squares method was used to express mathematical relation between tangential stiffness coefficient and mechanical indexes. According to different material parameters and structure parameters, pavement system was analyzed and incomplete contact conditions were considered. Key factors that can reflect mechanical properties indexes were defined, reasonable range of pavement material and steel bridge deck were determined.
     (3) A changing method of relaxation and creep function of asphalt mixture was proposed under corresponding fundamental relationship of relaxation curve and creep curve. Combined with characters of steel deck pavement system, detailed research on the visco-elastic response of steel bridge pavement which endured the automobile load was implemented. Quasi-elastic method was used to analyse basic law of pavement system mechanical response according to different temperatures and different contact conditions between steel deck and pavement. Variation pattern of mechanical response was analysed under the conditions of loading and unloading.
     (4) Leading coupling effect of creep damage and fatigue damage into asphalt mixture creep model, expression of creep-fatigue damage factor was given. Corresponding dissipated energy relations between steel deck composite beam fatigue test and creep test in constant stress was established and creep feature forecast method of asphalt mixture was proposed by composite beam fatigue test. Stress-fatigue life relation of pavement material equation was proposed by energy methods.
引文
[1]黄卫,钱振东.高等级沥青路面设计理论与方法[M].北京:科学出版社,2001
    [2]小西一郎(日).钢桥(第一分册)[M].北京:人民铁道出版社,1980
    [3]黄卫,张晓春,胡光伟.大跨径钢桥面铺装理论与设计的研究进展[J].东南大学学报,2002,32(3):480-487
    [4]黄卫,刘振清.大跨径钢桥面铺装设计理论与方法研究[J].土木工程学报,2005,38(1):51-59
    [5]上海壳牌公司.壳牌沥青手册[R].北京:人民交通出版社,1995
    [6]吕伟民.国内外环氧沥青混合料材料的研究与运用[J].石油沥青,1994(3): 16-21
    [7] Bild S.Contribution to the improvement of the durability of asphalt pavement on orthotropic steel bridge decks [D].Achen:Rwthachen,1985
    [8]黄卫,钱振东,程刚.环氧沥青混凝土在大跨径钢桥面铺装中的应用[J].东南大学学报,2002,32(5):783-787
    [9] Huang Wei, TangManchung, Cheng Gang.Epoxy asphalt pavement of second Yangtze River Bridge[J].IABSE Conference,2001
    [10]黄卫,钱振东,程刚等.大跨径钢桥面环氧沥青混凝土铺装研究[J].科学通报, 2002,47(24):1893-1897.
    [11]李瑞敏.钢桥面铺装用环氧沥青混凝土特性研究[D].南京:东南大学,2001
    [12]王晓,程刚,黄卫.环氧沥青混凝土性能研究[J].东南大学学报,2001,31(6):21-24
    [13]黄卫,胡光伟,张晓春.大跨径钢桥面沥青混合料特性研究[J].公路交通科技,2002,19(4):50-52
    [14]胡光伟,黄卫,张晓春.钢桥面铺装层粘弹塑性研究及数值分析[J].公路交通科技,2001,18(12):39-42
    [15]刘腾爱,钱振东.环氧沥青混凝土自然养生强度增长特性分析[J].盐城工学院学报,2008,21(2):54-57
    [16]周晓华,宗海,王晓等.环氧沥青混合料低温性能研究[J].公路,2006(1):179-182
    [17]宗海,王建伟,吕斌.时温对环氧沥青混合料的影响分析[J].公路,2006(11):134-139
    [18]罗桑,钱振东,宗海.基于灰关联分析的环氧沥青混合料抗弯拉性能研究[J].武汉理工大学学报,2008,32(3):393-396
    [19]曹雪娟,唐伯明.热分析动力学研究环氧沥青混凝土的固化条件[J].公路交通科技, 2008,25(7):17-20
    [20]陈晨,陈志明,翟洪金.环氧沥青混凝土铺装最佳容留时间的确定[J].公路,2008(6):183-186
    [21]王新明,闵召辉,黄卫.环氧沥青混合料的弹性性能预测[J].公路交通科技,2007 24(7):34-38
    [22]闵召辉,黄卫,钱振东.环氧树脂沥青混合料粘弹行为的力学模型分析[J].公路交通科技,2007,24(7):5-24
    [23]闵召辉,王晓,黄卫.环氧沥青混合料的蠕变性能试验研究[J].公路交通科技,2004,21(1):1-18
    [24]周巍,李素莹.环氧沥青混合料材料性能的试验研究[J].中外公路,2006,65(7):64-67
    [25]张勇,钱振东,罗桑.国产环氧沥青混合料在钢桥面铺装中的应用[J].上海公路,2008(2):23-26
    [26]李志勇,刘卓,娄义军等.国产多组分新型环氧沥青性能研究[J].市政公用建设, 2008,(3):41-44
    [27] Qian Zhendong,Luo Sang,Wang Jianwei.Laboratory evaluation of epoxy resin modified asphalt mixtures[J].Journal of Southeast University,2006,l23(1): 117-12
    [28]刘大梁,刘小燕.环氧沥青混合料性能试验研究[J].公路交通科技,2005,22(4):13-19
    [29] W.Pelika,M.Esslinger.Die stahlfahrbahn berechnung and konstruktion[M].A.N. Forsch- Hft,1957
    [30] M.S.Troitsky,A.K.Azad.Analysis of orthotropic steel bridge decks by a stiffness method[J].Proc.Instn Civ. Engrs,1973,55(6):441-461
    [31] A.K.Azad,M.S.Troitsky.Experimental investigation of an orthotropic steel bridge deck[J].Proc.Instn Civ. Engrs,1977,15:393-490
    [32]王磊,李家宝.结构分析的有限差分法[M].北京:人民交通出版社,1982
    [33] Y.K.CHEUNG.结构分析的有限条法(第二版)[M].北京:人民交通出版社,1980
    [34] Lo,Y.C.,Cusens,P.A.R..桥梁工程中的有限条法[M].人民交通出版社,1985
    [35] Cheung,Yau Kai.有限单元法实用导论[M].南宁:广西人民出版社, 1982
    [36] Gunther G.H.,BildS,Sedlacek G..Durability of asphalt pavements on orthotropic decks of steel bridge [J].Steel Research,1987,7:84-106.
    [37] Metcalf C.T. . Flexural Tests of paving materials for orthotropic steel plate bridges[J].Highway Research Record,1967,155:56-78
    [38] Cullimore M.S.G., Flett LD., Smith J.W..Flexure of steel bridge deck plate with asphalt surfacing[J].IABSE Periodical,1983:58-83
    [39] Koroneose.Oscillations measurements of an orthotropic roadway deck with bituminous cover[J].Bitumen Teere Asphalt Peche,1971(5):223-236
    [40] Kolstein M.H.,Dijkink J.H..Behavior of modified bituminous surfacing on orthotropic steel bridge decks[J].Proceedings of the 4th Euro-bitumen Symposium ,1989,l:907-915
    [41] Kolstein, M.H.,Wardenier, J..Stress reduction due to surfacing on orthotropic steel decks[J].Proceedings of the ISAB Workshop:Evaluation of Existing Steel and Composite Bridges,1997
    [42] G.H.Gunther,S.Bild,G.Sedlacek.Durabilidy of asphaltic pavements on orthotropic decks of steel bridges[J].Construct Steel Research,1987,7:5-106
    [43] S.Bild.Durability design criteria for bituminous pavements on orthotropic steel bridge decks[J].Can.J.Civ.Eng.1987,14 (1): 41–48
    [44] Nakanishi,N.,Okochi,T..The structural evaluation for an asphalt pavement[J].AAPA,2000:113-123
    [45] J.B. Kennedy, F,Asce,M.,H.Soliman.Temperature distribution in composite bridges[J].Journal of Structure Engineering,1987,113(3):474-482
    [46] Pfeil,Michele S.,Battista,Ronaldo C.,Mergulhao,Aluisio J.R..Stress concentration in steel bridge orthotropic decks [J].Journal of Constructional Steel Research,2005,61(8):1172-1184
    [47] ZHU,X. Q., LAW, S. S.. Identification of vehicle axle loads from bridge dynamic responses [J].Journal of Sound and Vibration,2000,236(4):705-724
    [48] Charles Seim,T.Y.Lin.Inspection of the surfacing of the steel deck of the RAMA IX bridge in ANGKOK[J],THAILAND, 1998
    [49] Tatsuo Nishizawa,Kenji Himeno,Kenichiro Nomura etc.Development of a new structural model with prism and strip elements for pavement on steel bridge decks[J]. The International Journal of Geomechanics,2001,1(3):351-369
    [50] Ake Hermansson . Mathematical model for paved surface summer and winter temperature:Comparison of Calculated and Measured Temperatures[J].Cold Regions Science and Technology,2004:1~17.
    [51]沈桂平,曹雪琴.正交各向异性钢桥面板铺装的疲劳承载力试验研究[J].上海铁道大学,1996,13(9):100-108
    [52]余叔藩.SMA路面技术在美国的发展[J].公路,1998(10):45-52.
    [53]余叔藩.SMA路面技术在美国的发展(续)[J].公路,1998(11):48-51.
    [54]余叔藩.SMA路面在欧洲的实践(上)[J].中外公路,2000,20(1):14-18.
    [55]余叔藩.SMA路面在欧洲的实践(下)[J].中外公路,2000, 20(2):9-12.
    [56]余叔藩,陈仕周,陈献南.大跨径悬索桥钢桥面沥青铺装技术[J].中国公路学报,1998,11(3): 33-40
    [57]黄晓明,王捷,陈仕周.大跨钢桥桥面铺装结构受力分析[J].土木工程学报,1999, 32(1): 63-66
    [58]方萍,何兆益,周虎鑫.正交异性钢桥面板与沥青混合料铺装的计算分析[J].第三届全国桥梁学术会议论文集,1993:453-456
    [59]方萍,伍波.钢桥面板及铺装的静载试验和有限元分析[J].华东公路,2000(4):38-42
    [60]伍波,方萍.钢桥面铺装的有限元分析和环道模型设计[J].公路, 2001(1):24-27
    [61]徐军,陈忠延.正交异性钢桥面板的结构分析[J].同济大学学报,1999,27(2):170-174
    [62]肖秋明,查旭东.沥青混合料钢桥面铺装的剪切分析.中南公路工程,2000,25(1): 53-54
    [63]李闯民,李宇峙.钢桥桥面沥青铺装层应变变化规律研究.公路交通科技,2000,17(6):1-4
    [64]张起森,李宇峙等.厦门海沧大桥桥面沥青铺装层直道疲劳试验研究.中国公路学报.2001,14(1):60-72
    [65]邵膜庚,张起森.直道钢桥面沥青铺装动应变测试分析[J].公路,2001(1):63-66
    [66]徐伟,李智,张肖宁.正交异性钢桥面铺装研究及设计要点分析[J].中外公路,2006 24(4): 174-179
    [67]曹映泓,左智飞,徐伟.大跨径钢桥面铺装有限元模拟分析[J].中外公路,2006,26(5):54-59
    [68]段乃民,莫介臻,徐伟.大跨径钢桥面结构有限元优化分析[J].中外公路,2006,26(5):59-64
    [69]顾兴宇,邓学钧,周世忠,周建林.不同轮载对钢桥面沥青铺装层受力的影响[J].公路交通科技,2002(2):57-59
    [70]李昶,邓学钧.钢箱梁桥桥面铺装层动态响应分析[J].东南大学学报,2004,34(2):253-256
    [71]胡光伟,钱振东,黄卫.正交异性钢箱梁桥面第二体系结构优化设计[J].东南大学学报,2001,31(5):75-79
    [72]胡光伟,黄卫,张晓春.润扬长江大桥钢桥面铺装层力学分析[J].公路交通科技,2002,19(8):1-3
    [73]钱振东,黄卫,杜昕等.车载作用下大跨径缆索支承桥桥型对铺装层受力的影响研究[J].中国科学工程,2006:8(9):34-41
    [74]刘振清,洪锦祥,徐志峰.用能量法分析钢桥面沥青混合料铺装体系疲劳特性[J].公路交通科技,2005,22(9):94-97
    [75]林广平,黄卫,刘振清.正交异性钢桥面板第一体系受力状态对铺装层的影响[J].公路交通科技,2006,23(1):63-90
    [76]林广平,黄卫,刘振清.正交异性钢桥面铺装层表面裂缝应力强度因子分析[J].公路交通科技,2006,23(2):74-78
    [77]黄卫,林广平,钱振东等.正交异性钢桥面铺装层疲劳寿命的断裂力学分析[J].土木工程学报,2006,39(9):113-122
    [78]闵召辉,黄卫,王晓.环氧沥青混合料钢桥面铺装层温度应力研究[J].公路交通科技, 2003,20(4):13-15
    [79]陈先华,陈妍,黄卫.环氧沥青混合料钢桥面铺装的弯曲特性[J].公路交通科技, 2007,24(11):4-8
    [80]陈团结.大跨径钢桥面环氧沥青混合料铺装裂缝行为研究[D].南京:东南大学,2006
    [81]陈团结,钱振东,黄卫.大跨径钢桥面铺装层动力响应研究[J].公路交通科技,2008,25(5):68-72
    [82]钱振东,刘云,黄卫.考虑不平度的桥面铺装动响应分析[J].土木工程学报,2007 ,40(4):49-53
    [83]东南大学交通学院.南京长江第二大桥环氧沥青混合料铺装材料与结构试验研究[R].南京:东南大学,2000
    [84]章登精.南京长江第三大桥环氧沥青桥面铺装工程[J].公路,2007(9): 21-24
    [85]润扬长江大桥建设指挥部.东南大学润扬长江公路大桥钢桥面铺装技术研究[R].南京:东南大学,2004
    [86]陈先华.润扬大桥钢桥面铺装结构试验研究[D].南京:东南大学,2002
    [87]曹睿明,宗海,吕斌.润扬大桥试验段铺装环氧沥青混合料性能评价[J].交通标准化,2007(2):157-161
    [88]徐永刚.杭州湾跨海大桥环氧沥青混合料试验段铺装[J].中外公路,2008,28(2): 124-128
    [89]陈先华,匡建军,程刚等.苏通大桥环氧沥青混合料铺装施工关键技术[J].公路交通科技(应用技术版),2008 4:14-18
    [90]陈先华,黄卫,游庆仲等.环氧沥青粘结层施工均匀性的影响因素与改善措施[J].公路交通科技(应用技术版), 2008(1):148-158
    [91] Clough G.W. , Duncan J.M. . Finite element analysis of retaining wall behavior[J].Journal of Soil Mechanics and Foundation Engineering,ASCE,1971,97(12):1657-1673J
    [92] Brandt J. R. T..Behavior of soil-concrete interfaces[D].Canada:The University of Alberta,1985
    [93]陈慧远.摩擦接触单元及其分析方法[J].水利学报,1985(4):44-50.
    [94]殷宗泽,朱泓,许国华.土与结构材料的接触面的变形及数学模型[J].岩土工程学报,1994,16 (3):14-22.
    [95]张冬霁,卢廷浩.一种土与结构接触面模型的建立及其应用[J].岩土工程学报,1998, 20(6):63-66.
    [96]张冬霁.考虑空间与时间效应的基坑工程数值分析研究[D],杭州:浙江大学. 2000
    [97]鲍伏波.接触面单剪试验与接触研究及其工程应用[D].南京:河海大学, 1999,
    [98]杜成斌,任青文.用于接触面模拟的三维非线性接触单元[J].东南大学学报,2001,31(4):93-96
    [99]武亚军,栾茂田,杨敏.土与结构间一种新的接触单元模型[J].同济大学学报(自然科学版),2005,33(4):433-435
    [100]武亚军,栾茂田,杨敏.土与结构间一种新接触单元的数值解.同济大学学报(自然科学版),2005,33(5):610-614
    [101]张振南,葛修润.二点接触单元法及其数值验证.岩石力学与工程学报.2005,14(14):2560-2564
    [102] Goodman R. F.,Taylor R. L.,Brekke T L.A model for the mechanics of jointed rock[J].Journal of Soil Mechanics and Foundation Engineering,ASCE,1968,94(3):637-660
    [103] Desai C.S.,Zaman M.M..Thin layer element for interfaces and joints[J].International Journal for Numerical and Analytical Methods in Geomechanics,1984,8(1):19-43
    [104] Zaman M.M.,Desai C. S.,Drumm E. C.,etal.Interface model for dynamic soil-structure interaction[J].Journal of Geotech Engrg,1984,110(9):1257-1273
    [105]吴胜东主编.润扬长江公路大桥建设第五册钢桥面铺装[D].人民交通出版社,2006,5
    [106]于力.环氧沥青在大跨径钢桥面粘结层中的应用研究[J].公路,2004(3):55-60
    [107]钱振东,黄卫,骆俊伟等.正交异性钢桥面铺装层的力学性能研究[J].交通运输工程学报,2002,2(3):47-51
    [108]肖秋明,查旭东.沥青混合料钢桥面铺装的剪切分析[J].中南公路工程, 2000,25(1):53-54
    [109]顾兴宇,吴一鸣.钢桥桥面铺装层间剪切应力影响因素及简化计算[J].交通运输工程学报,2007,7(3):70-75
    [110] Hameau.Asphalt surfacing applied to orthotropic steel bridge decks [R].Report 7-01-127-1,Delft University of Technology,2001
    [111]东南大学交通学院.南京长江第二大桥环氧沥青混合料铺装材料与结构试验研究[R].南京:东南大学,2000
    [112]项海帆.高等桥梁结构理论[M].北京:人民交通出版社,2001
    [113]曾广武.悬索桥主缆初张力对成桥结构性能的影响[J].中国铁道科学,2007,28(l):28-32
    [114]方明山,项海帆,肖汝诚.超大跨径桥梁结构中的特殊力学问题[J].重庆交通学院院报,1998 (12):5-9
    [115]苏庆田,吴冲,董冰.斜拉桥扁平钢箱梁的有限混合单元法分析[J].同济大学学报(自然科学版),2005,33(6):742-746
    [116] Cullimore.Flexure of steel bridge deck plate with asphalt surfacing[C].IABSE Periodical,1983(1):58-83
    [117] Hiromitsu N.,Takara O.,Koji G..The structural evaluation for an asphalt pavement on a steel plate deck[R].Engineering Research Laboratory,Taiyu Kensetsu Co,2003
    [118] Medani T.O.,Scarpas A.,et al.Design aspects for wearing courses on orthotropic steel bridge decks[J].Netherlands,Delft University of Technology,2003
    [119] AASHTO,LRFD Bridge Design Specifications[S],American association of state highway and transportation officials,Washington,D.C.,1994
    [120]谭明鹤.刚性悬索加劲钢桁梁桥空间及整体节点受力分析与残余应力研究[D].广州:华南理工大学,2008
    [121]顾兴宇,邓学钧,周世忠,周建林.车辆荷载下钢箱梁沥青混合料铺装受力分析[J].东南大学学报,2001,31(6):18-20
    [122] Bonnaure F., Gest G.,Gravois A..A new method of predicting the stiffness modulus of asphalt paving mixtures[J].Proceeding of AAPT,1977,(46):64-66
    [123]张义同著.热粘弹性理论[M].天津:天津大学出版社,2002
    [124]张肖宁.沥青与沥青混合料的粘弹性力学原理及应用[M].北京:人民交通出版社,2006
    [125]周光泉,刘孝敏等.粘弹性理论[M].合肥:中国科学技术大学出版社,1996
    [126]赵伯华等.松弛与蠕变力学性能转换关系的研究[J].实验力学,1995,10(2):140-144
    [127]华爱娅.钢挂梁桥面铺装力学分析与材料试验研究[D].杭州:浙江大学,2008
    [128]殷有泉.非线性有限元基础[M].北京:北京大学出版社,2007
    [129]冯志刚,周建平等.粘弹性有限元法研究[J].上海力学,1995,16(1):20-26
    [130]赵延庆,黄大喜,潘友强等.柔性基层沥青路面结构黏弹性力学响应分析[J].土木工程学报,2007,40(7):96-99
    [131]张婧娜,谭忆秋,张肖宁.应用能量原理预测沥青混合料的疲劳破坏[J].中国公路学报,1998,11(4):11-17
    [132]胡光伟.大跨径钢桥面铺装体系力学分析与优化设计[D].南京:东南大学.2005
    [133] Walker KP. Research and development program for non-linear structural modeling with advanced time-temperature dependent constructive relation ships[R] .Report NASA-CR-165533,1981
    [134]冯明珲,吕和祥,郭宇峰.一种粘弹塑性统一本构模型[J].力学学报, 2002,34(1):57-67
    [135]冯明珲,吕和祥,林皋等.粘弹塑性理论在混凝土变形中的应用[J].工程力学,2002,19(2):1-6
    [136]张久鹏,黄晓明,马涛.沥青混合料损伤蠕变性能及模型研究[J].岩土工程学报,2008,30(12):1867-1871
    [137]陈先华.复合梁的钢桥面铺装层疲劳特性研究[D].南京:东南大学.2002
    [138] GZ Voyiadjis,P I Kattan.Advances in damage mechanics:Metals and metal matrix composites[R].Elsevier Science Ltd.,1999
    [139]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1999
    [140] B.K.Dutta, H.S.Kushwaha. A modified damage potential to predict crack initiation:theory and experimental verification[J]. Engineering Fracture Mechanics 2004,71:263-275
    [141]郑健龙,吕松涛,田小革.基于损伤力学的沥青混合料疲劳寿命预估[J].中外公路,2005,25(3):94-98
    [142]吕松涛,马健,郑健龙等.沥青混合料粘弹性疲劳本构模型[J].长沙交通学院学报,2006,22(4):33-37
    [143]张久鹏,黄晓明.沥青混合料永久变形的弹黏塑-损伤力学模型[J].东南大学学报,2010,40(1):185-189
    [144] Blight G.E.. Deflection characteristics of an asphalt paved steel bridge deck under vehicular loading[R].City Engineer’s Department of Johannesburg,1973
    [145]东南大学交通学院.润扬大桥钢桥面铺装技术研究(总报告)[R].南京,东南大学,2004
    [146]关宏信,郑健龙.沥青路面结构的粘弹性有限元方法[J].长沙交通学院学报,2001,17(1):51-56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700