用户名: 密码: 验证码:
大巴山构造带构造活动和流体微量稀土元素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经中生代印支运动与燕山运动,大巴山形成现今的构造格局。印支运动南北大巴山发生俯冲碰撞;燕山期为陆内造山阶段。野外和室内研究表明,中生代以来大巴山构造带主要经历了NE-SW挤压和NW-SE挤压两期应力作用。印支期和燕山期都为NE-SW挤压,应力场特征为:σ1(40°∠2°)、σ3(175°∠88°);NW-SE挤压晚于NE-SW挤压,其应力场特征为:σ1(143°∠1°)、σ3(267°∠88°)。根据不同的构造变形特征,NE至SW大巴山可划分为4个不同的构造带:冲断-推覆构造带、基底拆离构造带、盖层滑脱构造带和前陆坳陷带。各构造带发育不同的构造变形样式。NE至SW,变形性质由韧性变形过渡为脆性变形,变形深度和强度逐渐减弱。
     对大巴山构造带内方解石脉进行了微量稀土元素分析。围岩具有单一的源,反映较稳定的沉积环境。稀土元素具有Eu异常,成脉环境为还原环境。NE-SW挤压过程,活动流体主要为围岩脱水,有富Ba和Rb且稀土元素总量及La/Yb低的流体加入。NW-SE挤压过程,活动流体亦主要来自围岩脱水,同样有富Ba和Rb且稀土元素总量及La/Yb(?)氐的流体加入。
The tectonic Framework of Dabashan was fianally formed after Indosinian movement and Yanshan movement. Subduction and collision of south and north Dabashan took place during the Indosinian movement,and during the Yanshan movement intracontinental orogenesis took place in Dabashan area. Two paleotectonic stress fields in Dabashan area during Mesozoic have been obtained By the field and indoor study: NE-SW compression and NW-SE compression. NW-SE compression took place during the Indosinian movement and Yanshan movement and the characters of stress field were:σ1 (40°∠2°)、σ3 (175∠88°) NW-SE compression were later than NE-SW compression,its characters of stress field were:σ1 (143°∠1°)、σ3 (267°∠88°).According to different characters of structural deformation,from NE to SW,Dabashan can be divided into 4 different structural deformation belts:thrust-nappe structural belt, The basement detachment structural belt, cap rock decollement structural belt and forland depression structural belts.There are different tectonic styles in different structural belt. From NE to SW, the patten of deformations are from ductile to brittle and the strength and depth of deformations decrease gradually.
     Trace elements and REEs of calcite veins filled in fractrures in Dabashan Tectonic belt have been analyzed.The wall-rocks had single origin,indicating the stable sedimentary environment. REEs showed positive Eu anomaly, which indicated environment of the formation of the calcite vein was reductive.The fluids flowed during the NE-SW compression were mainly from wall-rocks,mixing with another kind of fluid with high Ba and Rb and low∑REE and La/Yb. The fluids flowed during the NW-SE compression were mainly from wall-rocks,too,and also mixing with another kind of fluid with high Ba and Rb and low∑REE and La/Yb.
引文
[1]郑和荣,李铁军,蔡立国,等.中国中西部前陆冲断褶皱带油气地质条件及勘探建议.石油与天然气地质,2004,25(2):156-161
    [2]董树文,张岳桥,龙长兴,等.中国侏罗纪构造变革与燕山运动新诠释.地质学报,2007,(1):1449-1461
    [3]董树文,张岳桥,陈宣华,等.晚侏罗世东亚多向汇聚构造体系的形成与变形特征.地球学报,2008,29(3):306-317
    [4]曾溅辉.沉积盆地中地质流体运动与油气成藏.海相油气地质,2005,10(1):37-41
    [5]Dmitrievsky A. N, Balanyuk Ⅰ. E, Karakin A. V, et al. New fluid dynamic model for formation of giant hydrocarbon deposits.Journal of Geochemical Exploration, 2003,78-79:345-347.
    [6]Hensen C,Wallmannn K. Methane foration at Costa Rica continental margin-constraints for gas hydrate inventories and cross-decollement fluid flow.Earth and Planetary Science Letters,2005,236:41-60
    [7]Moretti Ⅰ, Labaume S,Sheppard P, et al.Compartmentalisation of fluid flow by thrust faults, Sub-Andean Zone. Bolivia Journal of Geochemical Exploration 2000,69-70:493-497
    [8]Evans M.A. Fluid inclusions in veins from the Middle Devonian shales:a record of deformation conditions and fluid evolution in the Appalachian Plateau. Geological Society of American Bulletin,1995,107:327-339
    [9]武红岭,王小凤,马寅生,等.油田构造应力场驱动油气运移的理论和方法研究[J],石油学报,1999,20(5):7-12.
    [10]童亨茂,李德同.应力对流体及油气二次运移作用的几种模式.石油大学学报(自然科学版),1999,23(2):14-18
    [11]王毅,宋岩,单家曾.构造应力在油气运聚成藏过程中的作用.石油与天然气地质,2005,26(5):563-571
    [12]Swennena R, Muskhab K, Roure F. Fluid circulation in the Ionian fold and thrust belt (Albania) implications for hydrocarbon prospectivity.Journal of Geochemical Exploration,2000,69-70:629-634.
    [13]Suchy V, Dobes P, Filip J,et al.Conditions for veining in the Barrandian Basin (Lower Palaeozoic), Czech Republic:evidence from fluid inclusion and apatite fission track analysis.Tectonophysics,2002,348:25-50.
    [14]Ferket H, Swennen R, Ortufio S,et al. Reconstruction of the fluid flow history during Laramide foreland fold and thrust belt development in eastern Mexico: cathodoluminescence and 818O-δ13C isotope trends of calcite-cemented fractures. Journal of Geochemical Exploration,2003,78-79:163-167
    [15]Uysal T,Zhao JX,Golding SD,et al.Glikson M and Collerson fluid-flow events in the Bowen Basin,Australia. Chemical Geology,238(1-2):63-71
    [16]Johannes Schonenberger,Jasmin Kohler,Gregor Markl. REE systematics of fluorides,calcite and siderite in peralkaline plutonic rocks from the Gardar Province,South Greenland.Chemical Geology,2008,247:16-35
    [17]Wood,RM,King,G. Hydrological signatures of earthquake strain.JGR,1993,98: 22035-22068
    [18]Labaume P,Kastner,M,Trave,A,et al. Carbonate veins from the decollement zone at the toe of the northern Barbados accretionnary prism.Proceeding of the ODP,Scientifics results,1997,156:79-96
    [19]Caja M.A,Permanyer A,Marfil R,et al.Fluid flow record from fracture-fill calcite in the Eocene limestones from the South-Pyrenean Basin (NE Spain) and its relationship to oil shows.Journal of Geochemical Exploration,2006,89:27-32.
    [20]任纪舜.新一代中国大地构造图——中国及邻区大地构造图(1:5000000)附简要说明:从全球看中国大地构造.地球学报,2003,24(1):1-2
    [21]程裕淇.中国区域地质概论.北京:地质出版社,1994,448-450
    [22]张国伟,孟庆任,于在平,等.秦岭造山带的造山过程及其动力学特征.中国科学(D辑),1999,26(3):193-200
    [23]张宗清,刘敦,付国民,等.北秦岭变质地层秦岭、宽坪、陶湾群同位素年代研究.北京:地质出版社,1994,1-191
    [24]Zhang G W, Meng Q R, Lai S C. Tectonics and Structure of Qinling Orogenic belt. Science in China (B),1995,38 (11):1379-1394
    [25]张国伟,孟庆任,于在平,等.秦岭造山带的造山过程及其动力学特征.中国科学(D辑),1996,26(3):193-200
    [26]张国伟,董云鹏,姚安平.秦岭造山带基本组成与结构及其构造演化.陕西地质,1997,15(2):1-14
    [27]张国伟,杨小明.关于“中央造山带”几个问题的思考.地球科学,1998,23(5):443-448
    [28]杨宗让,胡永祥.陕西略阳一带古板块缝合线存在标志及与南秦岭板块构造 的演化关系.西北地质,1990,(2):13-20
    [29]殷鸿福,杜远生,许继峰,等.南秦岭勉略古缝合带中放射虫动物群的发现及古海洋意义.地球科学,1996,21(2):184
    [30]赖绍聪,张国伟,杨永成,等.南秦岭勉县-略阳结合带蛇绿岩与岛弧火山岩地球化学及其大地构造意义.地球化学,1998,27(3):283-293
    [31]赖绍聪.秦岭造山带勉略缝合带超镁铁质岩的地球化学特征.西北地质,1997,18(3):36-45
    [32]李曙光,孙卫东,张国伟.南秦岭勉略构造带黑沟峡变质火山岩的年代学和地球化学.中国科学(D辑),1996,26(3):223-230
    [33]盛吉虎,杜远生,冯庆来,等.南秦岭勉略蛇绿混杂岩带硅质岩沉积环境研究.地球科学,1997,22(6):599-602
    [34]陈家义,杨永成,霍向光.汉中-碧口地区的造山结构和构造.陕西地质,1997,15(1):12-19
    [35]李三忠,赖绍聪,张国伟,等.秦岭勉略带康县—高川段现今结构与岩片性质[J].华南地质与矿产,2001,3:1-8.
    [36]赖绍聪,张国伟,杨永成.南秦岭勉县-略阳结合带变质火山岩岩石地球化学特征[J].岩石学报,1997,13(4):561-573.
    [37]董云鹏,张国伟,赖绍聪.随州花山蛇绿构造混杂岩的厘定及其大地构造意义[J].中国科学(D辑),1999,29(3):222-231.
    [38]李亚林,方维萱,张国伟,等.秦岭勉略构造带组成、变形特征及与成矿关系[J].西北地质科学,2000,21(1):69-76.
    [39]陈亮,孙勇,柳小明.青海省德尔尼蛇绿岩的地球化学特征及其大地构造意义[J].岩石学报,2000,16(1):106-110.
    [40]张国伟,程顺有,郭安林,等.秦岭-大别中央造山系南缘勉略古缝合带的再认识—兼论中国大陆主体的拼合[J].地质通报,2004,23(9/10):846-853.
    [41]张国伟,孟庆任,赖少聪.秦岭造山带的结构与构造[J].中国科学(B辑),1995,25(9):994-1003.
    [42]Meng Qing-Ren, Zhang Guo-Wei.Geologic framework and tec-tonic evolution of the Qinling orogen,central China[J].Tectono-physics,2000,323:183-196.
    [43]李曙光,侯振辉,杨永成,等.南秦岭勉略构造带三岔子古岩浆弧的地球化学特征及形成时代[J].中国科学(D辑),2003,33(12):1065-1073.
    [44]赖绍聪,张国伟,董云鹏.秦岭-大别勉略构造带蛇绿岩与相关火山岩性质及其时空分布[J].中国科学(D辑),2003,33(12):1174-1183.
    [45]许继锋,于学元,李献华,等.高亏损的N2MORB型火山岩的发现:勉略古洋 盆存在的新证据[J].科学通报,1997,42(22):2414-2418.
    [46]许继锋,于学元,李献华,等.秦岭勉略带中鞍子山蛇绿杂岩的地球化学—古洋壳碎片的证据及意义[J].地质学报,2000,74(1):39-50.
    [47]董树文,胡健民,李三忠,等.大别山侏罗纪变形及其构造意义.岩石学报,2005,021(04):1189-1194
    [48]张岳桥,施炜,廖昌珍,等.鄂尔多斯盆地周边断裂运动学分析与晚中生代构造应力体制转换.地质学报,2006,80(5):639-647.
    [49]Carey E. Recherche des directions principales de contraintes as-sociees au jeu dune population de failles. Review Geologique Dy-namique Geographique Physique, 1979,21:57-66.
    [50]Angelier J. Tectonic analysis of fault slip data sets. J. Geophy.Res,1984,89, 5835-5848.
    [51]李占奎,丁燕云.大巴山推覆构造特征的探讨.物探与化探,2007,31(6):495-498
    [52]雒昆利,端木和顺.大巴山区早古生代基性火成岩的形成时代。中国地质,2001,20(3):262-266
    [53]张庆龙,卢华复,何建坤,等.大巴山前缘含油气构造条件,天然气工业,1995,15(4):5-9
    [54]乐光禹.大巴山造山带及其前陆盆地的构造特征和构造演化.矿物岩石,1998,18(增刊):8-15.
    [55]董云鹏,查显峰,付明庆,等.秦岭南缘大巴山褶皱-冲断推覆构造的特征.地质通报,2008,27(9):1494-1508.
    [56]丁道桂,郭彤楼,胡明霞,等.论江南—量马峰基底拆离式构造南方构造问题之一.石油实验地质,2007,29(2):120-132
    [57]张必龙,朱光,JIANG Dazhi,等.川东“侏罗山式”褶皱的数值模拟及成因探讨.地质论评,2009,55(5):701-711
    [58]Nicole Vatin-Perignon, Richard A. Oliver, Pierre Goemans,et al. Geodynamic interpretations of plate subduction in the northernmost part of the Central Volcanic Zone from the geochemical evolution and quantification of the crustal contamination of the Nevado Solimana volcano, southern Peru.Tectonophysics,1992,205(1-3):329-355
    [59]Karyne M, Rogers, John D,et al. A geochemical appraisal of oil seeps from the East Coast Basin, New Zealand. Organic Geochemistry,1999,30(7):593-605 [60]John M.Moore,David J.Waters.Geochemistry And origin of cordierite- orthoamphibole/orthopyroxene-phlogopite rocks from Namaqualand, South Africa. Chemical Geology,1990,85(1-2):77-100
    [61]Axel Brunsmann, Gerhard Franz, Jorg Erzinger. REE mobilization during small-scale high-pressure fluid-rock interaction and zoisite/fluid partitioning of La to Eu. Geochimica et Cosmochimica Acta,2001,65(4):559-570
    [62]Jens C. Grimmer, Lothar Ratschbacher, Michael McWilliams, Leander Franz, Ines Gaitzsch, Marion Tichomirowa, Bradley R. Hacker, Yueqiao Zhang. When did the ultrahigh-pressure rocks reach the surface? A 207Pb/206Pb zircon,40Ar/39Ar white mica, Si-in-white mica, single-grain provenance study of Dabie Shan synorogenic foreland sediments. Chemical Geology,2003,197(1-4):87-110
    [63]J. A. Miller, I. S. Buick, I. Cartwright Textural implications of high-pressure fluid flow controlled by pre-subduction deformation and alteration patterns. Journal of Geochemical Exploration,2000,69-70:551-555
    [64]A.S. Templeton, C.P. Chamberlain, P.O. Koons, et al.Stable isotopic evidence for mixing between metamorphic fluids and surface-derived waters during recent uplift of the Southern Alps, New Zealand.Earth and Planetary Science Letters,1998, 154(1-4):73-92
    [65]V. Suchy, W. Heijlen, Ⅰ. Sykorova,et al. Geochemical study of calcite veins in the Silurian and Devonian of the Barrandian Basin (Czech Republic):evidence for widespread post-Variscan fluid flow in the central part of the Bohemian Massif. Sedimentary Geology,2000,131(3-4):201-219
    [66]Christophe Larroque, Nicole Guilhaumou, Jean-Francois Stephan, et al.Advection of fluids at the front of the Sicilian Neogene subduction complex.Tectonophysics, 1996,254,(1-2):41-55
    [67]Wickman,F.E.Istope ratios:Aclue to the age of certain marine sediments.J.Geol, 1948,56:61-66
    [68]BauM, DulskiP.Comparative study ofyttrium and rare earth elementbehaviors in fluorine-rich hydrothermal fluids[J].ContribMineral Petrol,1995,119:213-223
    [69]彭建堂,胡瑞忠,漆亮,等·锡矿山热液方解石的REE分配模式及其制约因素[J]地质论评,2004,50(1):25-32
    [70]黄智龙,陈进,韩润生,等·云南会泽铅锌矿床脉石矿物方解石REE地球化学[J].矿物学报,2001,21(4):659-666
    [71]黄智龙,李文博,陈进,等.云南会泽超大型铅锌矿床构造带方解石稀土元素地球化[J].矿床地质,2003,22(2):199-207
    [72]朱志敏,郑荣才,罗丽萍,等.四川木洛稀土矿床方解石元素地球化学特征及其成因意义.矿物学报,2008,28(4):455-460
    [73]MollerP, MorteaniG, Schley F. Discussion of REE distribution patterns of carbonatites and alkalic rocks[J]. Lithos,1980,13(2):171-179
    [74]王登红,李华芹,陈毓川,等.桂西北南丹地区大厂超大型锡多金属矿床中发现高稀土元素方解石[J].地质通报,2005,24(2):176-180

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700