复杂胶体晶体的制备、结构及其光子带隙性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以复杂胶体晶体为主要研究对象,基于逐层生长、共沉积和结晶化胶体阵列等三种制备方法,系统研究了其形成机制、微观结构及光子带隙性质。
     发展了基于逐层生长方式的模板辅助电场诱导沉积方法,研究发现模板层中微球与水的介电失配是二元胶体晶体形成的驱动力,模板层内间隙位置的空间限制是影响二元胶体晶体结构的动力学因素。系统讨论了微球粒径比、乳液体积分数、电场加载条件等因素对二元胶体晶体结构的影响。该方法突破了现有逐层生长方法在微球粒径比方面的限制,并首次制备了三元胶体晶体。
     采用加速蒸发沉积方法制备二元胶体晶体,讨论了微球粒径比和数量相对比例对所得二元胶体晶体结构的影响。从空间填充的角度论证了毛细作用力诱导共沉积制备二元胶体晶体的临界粒径比为0.33。实验证明,当微球粒径比高于该值时,大球将无法形成具有密排有序结构的基本点阵,所得二元胶体晶体的有序度很低。这与现有文献报道一致。以二元胶体晶体为模板,通过溶胶-凝胶方法制备了二氧化硅复杂有序多孔膜。这种膜继承了胶体晶体模板的结构,微孔尺寸比模板中微球有一定收缩。
     通过离子交换方法制备了结晶化胶体阵列,研究表明其光子带隙波长与微球体积分数的关系满足Bragg公式。实验考察了不同溶剂类型对结晶化胶体阵列光子带隙的影响,证实了其光子带隙对染料发光的抑制作用。通过紫外光引发聚合制备了聚合结晶化胶体阵列,实验证明:在一定载荷范围内,聚合结晶化胶体阵列的光子带隙与外加压力呈可逆线性关系。
     首次制备了二元结晶化胶体阵列,并研究了其中微球排列结构及光子带隙与微球有效粒径差异的关系。发现当有效粒径相差较小时,二元阵列的光子带隙及微球有序点阵的有效晶格常数与微球百分数呈线性关系;当差异较大时,乳液中微球堆积呈无序-有序混合结构,光子带隙性质也有所劣化。对比发现二元结晶化胶体阵列与固溶体在微观结构、相变行为等方面存在很高的相似性,提出其可作为凝聚态物理、金属物理学等领域的研究模型,并在光子晶体等诸多等领域具有潜在的应用价值。
This dissertation focuses on complex colloidal crystals. The formation mechanism, microstructure and photonic bandgap properties of complex colloidal crystals were investigated systematically based on three different preparation ways, i.e. layer-by-layer method, co-assembly method, and crystalline colloidal arrays.
     Template-assisted electric field-induced assembly (TAEFIA) on the basis of layer-by-layer method was developed. It was revealed that the mismatch of relative permittivity between the colloidal particles and water in template layer was the driving force in the formation of binary colloidal crystals, and the steric constraint of the interstitial sites in template layer was the dynamic factor responsible for the structure of binary colloidal crystals. The influence of particle size ratio, volume fraction and electric field parameters on the structure of binary colloidal crystals was systematically studied. By TAEFIA, we were able to overcome the limit on size ratio in current layer-by-layer methods, and fabricated ternary colloidal crystal for the first time.
     Binary colloidal crystals were prepared by accelerated evaporation deposition, and the influence of particle size ratio and relative content on crystal structure was discussed. It was revealed that the critical size ratio of binary colloidal crystals fabricated in capillary force-induced co-assembly method is 0.33 from the viewpoint of space-filling. It was found that with a size ratio higher than the critical value the particles with larger diameter cannot form ordered close-packed basic lattice, and as a result the corresponding binary colloidal crystal had a low degree of order, which was in accordance with previous literatures. Moreover, with binary colloidal crystals as templates, complex ordered porous silica films were fabricated by sol-gel technology. The as-prepared films replicated the structure of colloidal crystal templates, and its pore size shrunk compared with those of the particles in templates.
     Crystalline colloidal arrays (CCAs) were prepared via ion-exchange technology. It was found that the relation between the photonic bandgap wavelength of CCA and its volume fraction conformed to Bragg equation. The effect of different solvent on the photonic bandgap of CCA was investigated, and the suppression on dye fluorescence by photonic bandgap in CCA was confirmed. Moreover, polymerized crystalline colloidal arrays (PCCAs) were fabricated by ultraviolet-initiated polymerization. It was revealed that the photonic bandgap wavelength of PCCA film was reversibly proportional to extrinsic pressure in certain load range.
     Binary CCA was prepared for the first time, and the influence of effective particle size difference on its particle arrangement and photonic bandgap properties was studied. It was found that the photonic bandgap wavelength of binary CCA and the effective lattice parameter of particle lattice were proportional to the particle number percentage in binary CCA with a small size difference. But the particle arrangement exhibited a mixed structure of order and disorder with a large size difference, whereas degradation of photonic bandgap properties was also resulted. The resemblance between binary CCA and solid solution on microstructure and phase transition was revealed via comparison. We suggested that binary CCA can be used as a research model in condense matter physics and metal physics, and may find potential applications in many fields, such as photonic crystals.
引文
[1]陈宗淇,王光信,徐桂英.胶体与界面化学.北京:高等教育出版社, 2001.
    [2] Pieranski P. Colloidal crystals. Contemp. Phys., 1983, 24: 25-73.
    [3] Sanders J V. Colour of precious opal. Nature, 1964, 204: 1151-1153.
    [4] Sanders J V, Diffraction of light by opals. Acta Crystallogr., Sect. A: Found. Crystallogr., 1986, 24: 427-434.
    [5] Parker A R, Welch V L, Driver D, et al. Opal analogue discovered in a weevil. Nature, 2003, 426: 786-787.
    [6] Schultz T D, Bernard G D. Pointillistic mixing of interference colours in cryptic tiger beetles. Nature, 1989, 337: 72-73.
    [7] Kose A, Hachisu S. Kirkwood-Alder transition in monodisperse latexes. I. Nonaqueous systems. J. Colloid Interface Sci., 1974, 46: 460-469.
    [8] Clark N A, Hurd A J, Ackerson B J. Single colloidal crystals. Nature, 1979, 281: 57-60.
    [9] Pusey P N, van Megen W. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature, 1986, 320: 340-342.
    [10] Davis K E, Russel W B, Glantschnig W J. Disorder-to-order transition in settling suspensions of colloidal silica: X-ray measurements. Science, 1989, 245: 507-510.
    [11] Vlasov Y A, Bo X Z, Sturm J C, et al. On-chip natural assembly of silicon photonic bandgap crystals. Nature, 2001, 414: 289-293.
    [12] Jiang P, Bertone J F, Hwang K S, et al. Single-crystal colloidal multilayers of controlled thickness. Chem. Mater., 1999, 11: 2132-2140.
    [13] Hiltner P A, Krieger I M. Diffraction of light by ordered suspensions. J. Phys. Chem., 1969, 73: 2386-2389.
    [14] Asher S A, Holtz J, Liu L, et al. Self-assembly motif for creating submicron periodic materials. Polymerized crystalline colloidal arrays. J. Am. Chem. Soc., 1994, 116: 4997-4998.
    [15] Weissman J M, Sunkara H B, Tse A S, et al. Thermally switchable periodicities and diffraction from mesoscopically ordered materials. Science, 1996, 274: 959-960.
    [16] Holtz J H, Asher S A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature, 1997, 389: 829-832.
    [17] Holtz J H, Holtz J S W, Munro C H, et al. Intelligent polymerized crystalline colloidal arrays: novel chemical sensor materials. Anal. Chem., 1998, 70: 780-791.
    [18] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 1987, 58: 2059-2062.
    [19] John S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett., 1987, 58: 2486-2489.
    [20] Xia Y N, Gates B, Li Z Y. Self-assembly approaches to three-dimensional photonic crystals. Adv. Mater., 2001, 13: 409-413.
    [21] Lopéz C. Materials aspects of photonic crystals. Adv. Mater., 2003, 15: 1679-1704.
    [22] Lopéz C. Three-dimensional photonic bandgap materials semiconductors for light. J. Opt. A: Pure Appl. Opt., 2006, 8: R1-R14.
    [23] Kosaka H, Kawashima T, Tomita A, et al. Superprism phenomena in photonic crystals. Phys. Rev. B, 1998, 58: R10096-R10099.
    [24]陈凯,盛秋琴,韩军,等.光子晶体及其应用研究.光电子技术, 2003, 23 : 16-23.
    [25] Joannopoulos J D, Johnson S G, Winn J N, et al. Photonic crystals molding the flow of light. Second edition. Princeton: Princeton University Press, 2008.
    [26] Arsenault A, Foumier-Bidoz S, Hatton B, et al. Towards the synthetic all-optical computer: science fiction or reality. J. Mater. Chem., 2004, 14: 781-794.
    [27] Jeong U, Wang Y L, Ibisate M, et al. Some new developments in the synthesis functionalization and utilization of monodisperse colloidal spheres. Adv. Funct. Mater., 2005, 15: 1907-1921.
    [28] Vlasov Y A, Yao N, Norris D J. Synthesis of photonic crystals for optical wavelengths from semiconductor quantum dots. Adv. Mater., 1999, 11: 165-169.
    [29] Norris D J, Vlasov Y A. Chemical approaches to three-dimensional semiconductor photonic crystals. Adv. Mater., 2001, 13: 371-376.
    [30] P. V. Braun, P. Wiltzius, Electrochemical fabrication of 3D microperiodic porous materials. Adv. Mater., 2001, 13: 482-485.
    [31] Tétreault N, Míguez H, Ozin G A. Silicon inverse opal - a platform for photonic bandgap research. Adv. Mater., 2004, 16: 1471-1476.
    [32] Juárez B H, García P D, Golmayo D, et al. ZnO inverse opals by chemical vapor deposition. Adv. Mater., 2005, 17: 2761-2765.
    [33] Schroden R C, Al-Daous M, Blanford C F, et al. Optical properties of inverse opal photonic crystals. Chem. Mater., 2002, 14: 3305-3315.
    [34] Velev O D, Lenhoff A M. Colloidal crystals as templates for porous materials. Curr. Opin. Colloid Interface Sci., 2000, 5: 56-63.
    [35] Holland B T, Blanford C F, Stein A. Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science, 1998, 281: 538-540.
    [36] Wijnhoven J E G J, Vos W L. Preparation of photonic crystals made of air spheres in titania. Science, 1998, 281: 802-804.
    [37] Braun P V, Wiltzius P. Electrochemically grown photonic crystals. Nature, 1999, 402: 603-604.
    [38] Blanco A, Chomski E, Grabtchak S, et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature, 2000, 405: 437-440.
    [39] Xia Y N, Gates B, Yin Y D, et al. Monodispersed colloidal spheres old materials with new applications. Adv. Mater., 2000, 12: 693-713.
    [40] Pan G, Kesavamoorthy R, Asher S A. Nanosecond switchable polymerized crystalline colloidal array Bragg diffracting materials. J. Am. Chem. Soc., 1998, 120: 6525-6530.
    [41] Reese C E, Baltusavich M E, Keim J P, et al. Development of an intelligent polymerized crystalline colloidal array colorimetric reagent. Anal. Chem., 2001, 73: 5038-5042.
    [42] Reese C E, Asher S A. Emulsifier-free emulsion polymerization produces highly charged, monodisperse particles for near infrared photonic crystals. J. Colloid. Interface. Sci., 2002, 248: 41-46.
    [43] Deckman H W, Dunsmuir J H. Natural lithography. Appl. Phys. Lett., 1982, 41: 377-379.
    [44] Roxio C B, Deckman H W, Gland J, et al. Edge surfaces in lithographically textured molybdenum disulfide. Science, 1987, 235: 1629-1631.
    [45] Fang H, Zeller R, Stiles P J. Fabrication of quasi-zero-dimensional submicron dot array and capacitance spectroscopy in a GaAs/AlGaAs heterostructure. Appl. Phys. Lett., 1989, 55: 1433-1435.
    [46] Green M, Garcia-Parajo M, Khaleque F. Quantum pillar structures on n+ gallium arsenide fabricated using natural lithography. Appl. Phys. Lett., 1993, 62: 264-266.
    [47] Kosiorek A, Kandulski W, Chudzinski P, et al. Shadow nanosphere lithography simulation and experiment. Nano Lett., 2004, 4: 1359-1363.
    [48] Vossen D L J, Fific D, Penninkhof J, et al. Combined optical tweezers-ion beam technique to tune colloidal masks for nanolithography. Nano Lett., 2005, 5: 1175-1179.
    [49] Fuhrmann B, Leipner H S, H?che H, et al. Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy. Nano Lett., 2005, 5: 2524-2527.
    [50] Liu D F, Xiang Y J, Wu X C, et al. Periodic ZnO nanorod arrays defined by polystyrene microsphere self-assembled monolayers. Nano Lett., 2006, 6: 2375-2378.
    [51]王果庭.胶体稳定性.北京:科学出版社, 1990.
    [52]胡纪华,杨兆禧,郑忠.胶体与界面化学.广州:华南理工大学出版社, 1997.
    [53] Míguez H, Meseguer F, Lopéz C, et al. Evidence of fcc crystallization of SiO2 nanospheres. Langmuir, 1997, 13: 6009-6011.
    [54] Mayoral R, Requena J, Moya J S, et al. 3D Long-range ordering in ein SiO2 submicrometer-sphere sintered superstructure. Adv. Mater., 1997, 9: 257-260.
    [55] Mei D B, Liu H G, Cheng B Y, et al. Visible and near-infrared silica colloidal crystals and photonic gaps. Phys. Rev. B, 1998, 58: 35-38.
    [56] Iler R K. The Chemistry of Silica. New York: Jon Wiley & Sons, 1979.
    [57] Trau M, Saville D A, Aksay I A. Field-induced layering of colloidal crystals. Science, 1996, 272: 706-709.
    [58] B?hmer M. In situ observation of 2-dimensional clustering during electrophoretic deposition. Langmuir, 1996, 12: 5747-5750.
    [59] Rogach A L, Kotov N A, Koktysh D S, et al. Electrophoretic deposition of latex-based 3D colloidal photonic crystals a technique for rapid production of high-quality opals. Chem. Mater., 2000, 12: 2721-2726.
    [60] Gong T Y, Wu D T, Marr D W M. Electric field-reversible three-dimensional colloidal crystals. Langmuir, 2003, 19: 5967-5970.
    [61] Zhang K Q, Liu X Y. In situ observation of colloidal monolayer nucleation driven by an alternatIng electric field. Nature, 2004, 429: 739-743.
    [62] Sher L D, Kresch E, Schwan H P. On the possibility of nonthermal biological effects of pulsed electromagnetic radiation. Biophys. J., 1970, 10: 970-979.
    [63] Takashima S, Schwan H P. Alignment of microscopic particles in electric fields and its biological implications. Biophys. J., 1985, 47: 513-518.
    [64] Fraden S, Hurd A J, Meyer R B. Electric-field-induced association of colloidal particles. Phys. Rev. Lett., 1989, 63: 2373-2376.
    [65] Giersig M, Mulvaney P. Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir, 1993, 9: 3408-3413.
    [66] Trau M, Saville D A, Aksay I A. Assembly of colloidal crystals at electrode interfaces. Langmuir, 1997, 13: 6375-6381.
    [67] Solomentsev Y, B?hmer M, Anderson J. Particle clustering and pattern formation during electrophoretic deposition a hydrodynamic model. Langmuir, 1997, 13: 6058-6068.
    [68] Yeh S, Seul M, Shraiman B I. Assembly of ordered colloidal aggregrates by electric-field-induced fluid flow. Nature, 1997, 386: 57-59.
    [69] Dushkin C, Miwa T, Nagayama K. Gravity effect on the electric field deposition of two-dimensional particle arrays. Chem. Phys. Lett., 1998, 285: 259-265.
    [70] Solomentsev Y, Guelcher S A, Bevan M, et al. Aggregation dynamics for two particles during electrophoretic deposition under steady fields. Langmuir, 2000, 16: 9208-9216.
    [71] Sides P J. Electrohydrodynamic particle aggregation on an electrode driven by an alternating electric field normal to it. Langmuir, 2001, 17: 5791-5800.
    [72] Nadal F, Argoul F, Hanusse P, et al. Electrically induced interactions between colloidal particles in the vicinity of a conducting plane. Phys. Rev. E, 2002, 65: 061409.
    [73] Fagan J A, Sides P J, Prieve D C. Vertical motion of a charged colloidal particle near an ac polarized electrode with a nonuniform potential distribution: theory and experimental evidence. Langmuir, 2004, 20: 4823-4834.
    [74] Ristenpart W D, Aksay I A, Saville D A. Assembly of colloidal aggregates by electrohydrodynamic flow Kinetic experiments and scaling analysis. Phys. Rev. E, 2004, 69: 021405.
    [75] Santana-Solano J, Wu D T, Marr D W M. Direct measurement of colloidal particle rotation and field dependence in alternating current electrohydrodynamic flows. Langmuir, 2006, 22: 5932-5936.
    [76] Lumsdon S O, Kaler E W, Williams J P, et al. Dielectrophoretic assembly of oriented and switchable two-dimensional photonic crystals. Appl. Phys. Lett., 2003, 82: 949-951.
    [77] Lumsdon S O, Kaler E W, Velev O D. Two-dimensional crystallization of microspheres by a coplanar ac electric field. Langmuir, 2004, 20: 2108-2116.
    [78] Helseth L E. Self-assembly of colloidal pyramids in magnetic fields. Langmuir, 2005, 21: 7276-7279.
    [79] Miao Y H, Geng D L, Helseth L E. Order-disorder transition in a quasi-two-dimensional colloidal system. Langmuir, 2006, 22: 5572-5574.
    [80] Sacanna S, Philipse A P. Preparation and properties of monodisperse latex spheres with controlled magnetic moment for field-induced colloidal crystallization and dipolar chain formation. Langmuir, 2006, 22: 10209-10216.
    [81] Yoshimura H, Endo S, Matsumoto M, et al. Hexagonal structure of two-dimensional crystals of theα3β3 complex of thermophilic ATP synthase. J. Biochem., 1989, 106: 958-960.
    [82] Yoshimura H, Endo S, Matsumoto M, et al. Two-dimensional crystallization of proteins on mercury. Ultramicroscopy, 1990, 32: 265-274.
    [83] Haggerty L, Watson B A, Barteau M A, et al. Ordered arrays of proteins on graphite observed by scanning tunneling microscopy. J. Vac. Sci. Technol. B, 1991, 9: 1219-1222.
    [84] Hayashi S, Kumamoto Y, Suzuki T, et al. Imaging by polystyrene latex particles. J. Colloid Interface Sci., 1991, 144: 538-547.
    [85] Denkov N D, Velev O D, Kralchevsky P A, et al. Mechanism of formation of two-dimensional crystals from latex particles on substrates. Langmuir, 1992, 8: 3183-3190.
    [86] Adachi E, Dimitrov A S, Nagayama K. Stripe patterns formed on a glass surface during droplet evaporation. Langmuir, 1995, 11: 1057-1060.
    [87] Li H L, Dong W T, Bongard H, et al. Improved controllability of opal film growth using capillaries for the deposition process. J. Phys. Chem. B, 2005, 109: 9939-9945.
    [88] Yan Q F, Zhou Z C, Zhao X S. Inward-growing self-assembly of colloidal crystal films on horizontal substrates. Langmuir, 2005, 21: 3158-3164.
    [89] Juillerat F, Bowen P, Hofmann H. Formation and drying of colloidal crystals using nanosized silica particles. Langmuir, 2006, 22: 2249-2257.
    [90] Cong H L, Cao W X. Colloidal crystallization induced by capillary force. Langmuir, 2003, 19: 8177-8181.
    [91] Meng L L, Wei H, Nagel A, et al. The Role of Thickness Transitions in Convective Assembly. Nano Lett., 2006, 6: 2249-2253.
    [92] Dimitrov A S, Nagayama K. Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces. Langmuir, 1996, 12: 1303-1311.
    [93] Gu Z Z, Fujishima A, Sato O. Fabrication of high-quality opal films with controllable thickness. Chem. Mater., 2002, 14: 760-765.
    [94] Goldenberg L M, Wagner J, Stumpe J, et al. Ordered arrays of large latex particles organized by vertical deposition. Langmuir, 2002, 18: 3319-3323.
    [95] Szekeres M, Kamalin O, Schoonherdt R A, et al. Ordering and optical properties of monolayers and multilayers of silica spheres deposited by the Langmuir-Blodgett method. J. Mater. Chem., 2002, 12: 3268-3274.
    [96] Wong S, Kitaev V, Ozin G A. Colloidal crystal films advances in universality and perfection. J. Am. Chem. Soc., 2003, 125: 15589-15598.
    [97] Marquez M, Grady B P. The use of surface tension to predict the formation of 2D arrays of latex spheres formed via the Langmuir-Blodgett-like technique. Langmuir, 2004, 20: 10998-11004.
    [98] Zhou Z C, Zhao X S. Opal and inverse opal fabricated with a flow-controlled vertical deposition method. Langmuir, 2005, 21: 4717-4723.
    [99] MasséP, Ravaine S. The Langmuir-Blodgett technique: A powerful tool to elaborate multilayer colloidal crystals. Colloids Surf. A: Physicochem. Eng. Aspects, 2005, 270-271: 148-152.
    [100] Kim M H, Im S H, Park O O. Rapid fabrication of two- and three-dimensional colloidal crystal films via confined convective assembly. Adv. Funct. Mater., 2005, 15: 1329-1335.
    [101] Jiang P, McFarland M J. Large-Scale fabrication of wafer-size colloidal crystals macroporous polymers and nanocomposites by spin-coating. J. Am. Chem. Soc., 2004, 126: 13778-13786.
    [102] Jiang P. Wafer-scale fabrication of periodic polymer attolitre microvial arrays. Chem. Commun., 2005, 1699-1671.
    [103] Jiang P. Large-scale fabrication of periodic nanostructured materials by using hexagonal non-close-packed colloidal crystals as templates. Langmuir, 2006, 22: 3955-3958.
    [104] Jiang P, Prasad T, McFarland M J, et al. Two-dimensional nonclose-packed colloidal crystals formed by spincoating. Appl. Phys. Lett., 2006, 89: 011908.
    [105] Mihi A, Oca?a M, Míguez H. Oriented colloidal-crystal thin films by spin-coating microspheres dispersed in volatile media. Adv. Mater., 2006, 18: 2244-2249.
    [106] Hurd A J, Schaefer D W. Diffusion-limited aggregation in two dimensions. Phys. Rev. Lett., 1985, 54: 1043-1046.
    [107] Horvolgyi Z, Mate M, Zrinyi M, et al. On the universal growth of two-dimensional aggregates of hydrophobed glass beads formed at the (aqueous solution of electrolyte)-air interfaces. Colloids Surf. A: Physicochem. Eng. Aspects, 1994, 84: 207-216.
    [108] Wickman H H, Korley J N. Colloid crystal self-organization and dynamics at the air/water interface. Nature, 1998, 393: 445-447.
    [109] Kondo M, Shinozaki K, Bergstrom L, et al. Preparation of colloidal monolayers of alkoxylated silica particles at the air-liquid interface. Langmuir, 1995, 11: 394-397.
    [110] Im S H, Lim Y T, Sun D J, et al. Three-dimensional self-assembly of colloids at a water-air interface-a novel technique for the fabrication of photonic bandgap crystals. Adv. Mater., 2002, 14: 1367-1369.
    [111] Takeda S, Wiltzius P. Growth of highly ordered colloidal crystals using self-assembly at liquid-liquid interfaces. Chem. Mater., 2006, 18: 5643-5645.
    [112] Pan F, Zhang J Y, Cai C, et al. Rapid fabrication of large-area colloidal crystal monolayers by a vortical surface method. Langmuir, 2006, 22: 7101-7104.
    [113] Kim E, Xia Y N, Whitesides G M. Micromolding in capillaries applications in materials. J. Am. Chem. Soc., 1996, 118: 5722-5731.
    [114] van Blaaderen A, Ruel R, Wiltzius P. Template-directed colloidal crystallization. Nature, 1997, 385: 321-324.
    [115] Yang S M, Ozin G A. Opal chips vectorial growth of colloidal crystal patterns inside silicon wafers. Chem. Commun., 2000, 2507-2508.
    [116] Ozin G A, Yang S M, The race for the photonic chip Colloidal crystal assembly in silicon wafers. Adv. Funct. Mater., 2001, 11: 95-104.
    [117] Yang S M, Míguez H, Ozin G A. Opal circuits of light - planarized microphotonic crystal chips. Adv. Funct. Mater., 2002, 12: 425-431.
    [118] Míguez H, Yang S M, Ozin G A. Optical properties of colloidal photonic crystals confined in rectangular microchannels. Langmuir, 2003, 19: 3479-3485.
    [119] Yin Y D, Lu Y, Gates B, et al. Template-assisted self-assembly a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. J. Am. Chem. Soc., 2001, 123: 8718-8729.
    [120] Xia Y N, Yin Y D, Lu Y, et al. Template-assisted self-assembly of spherical colloids into complex and controllable structures. Adv. Funct. Mater., 2003, 13: 907-918.
    [121] Lee H, Zheng H P, Rubner M F, et al. Controlled cluster size in patterned particle arrays via directed adsorption on confined surfaces. Adv. Mater., 2002, 14: 572-577.
    [122] Allard M, Sargent E H, Lewis P C, et al. Colloidal crystals grown on patterned surfaces. Adv. Mater., 2004, 16: 1360-1364.
    [123] Ye Y H, Badilescu S, Truong V, et al. Self-assembly of colloidal spheres on patterned substrates. Appl. Phys. Lett., 2001, 79: 872-874.
    [124] Yi D K, Seo E M, Kim D Y. Surface-modulation-controlled three-dimensional colloidal crystals. Appl. Phys. Lett., 2002, 80: 225-227.
    [125] Zhang J, Alsayed A, Lin K H, et al. Template-directed convective assembly of three-dimensional face-centered-cubic colloidal crystals. Appl. Phys. Lett., 2002, 81: 3176-3178.
    [126] Yin Y D, Li Z Y, Xia Y N. Template-directed growth of (100)-oriented colloidal crystals. Langmuir, 2003, 19: 622-631.
    [127] Schaak R E, Cable R E, Leonard B M, et al. Colloidal crystal microarrays and two-dimensional superstructures: a versatile approach for patterned surface assembly. Langmuir, 2004, 20: 7293-7297.
    [128] Grego S, Jarvis T W, Stoner B R, et al. Template-directed assembly on an ordered microsphere array. Langmuir, 2005, 21: 4971-4975.
    [129] Yan Q F, Zhao X S, Teng J H, et al. Colloidal woodpile structure three-dimensional photonic crystal with a dual periodicity. Langmuir, 2006, 22: 7001-7006.
    [130] Celio H, Barton E, Stevenson K J. Patterned assembly of colloidal particles by confined dewetting lithography. Langmuir, 2006, 22: 11426-11435.
    [131] Varghese B, Cheong F C, Sindhu S, et al. Size selective assembly of colloidal particles on a template by directed self-assembly technique. Langmuir, 2006, 22: 8248-8252.
    [132] Hoogenboom J P, Rétif C, de Bres E, et al. Template-induced growth of close-packed and non-close-packed colloidal crystals during solvent evaporation. Nano Lett., 2004, 4: 205-208.
    [133] Jin C J, McLachlan M A, McComb D W, et al. Template-assisted growth of nominally cubic (100)-oriented three-dimensional crack-free photonic crystals. Nano Lett., 2005, 5: 2646-2650.
    [134] Masuda Y, Tomimoto K, Koumoto K. Two-dimensional self-assembly of spherical particles using a liquid mold and its drying process. Langmuir, 2003, 19: 5179-5183.
    [135] Fustin C, Glasser G, Spiess H W, et al. Site-selective growth of colloidal crystals with photonic properties on chemically patterned surfaces. Adv. Mater., 2003, 15: 1025-1028.
    [136] Maury P, Escalante M, Reinhoudt D N, et al. Directed assembly of nanoparticles onto polymer-imprinted or chemically patterned templates fabricated by nanoimprint lithography. Adv. Mater., 2005, 17: 2718-2723.
    [137] Ackerson B J, Clark N A. Shear-induced melting. Phys. Rev. Lett., 1981, 46: 123-126.
    [138] Amos R M, Rarity J G, Tapster P R, et al. Fabrication of large-area face-centered-cubic hard-sphere colloidal crystals by shear alignment. Phys. Rev. E, 2000, 61: 2929-2935.
    [139] Vassileva N D, van den Ende D, Mugele F, et al. Restructuring and break-up of two-dimensional aggregates in shear flow. Langmuir, 2006, 22: 4959-4967.
    [140] Nikolaides M G, Bausch A R, Hsu M F, et al. Electric-field-induced capillary particles at liquid interfaces. Nature, 2002, 420: 299-301.
    [141] Sanders J V, Murray M J. Ordered arrangements of spheres of two different sizes in opal. Nature, 1978, 275: 201-203.
    [142] Sanders J V. Close-packed structures of spheres of two different sizes I. Observations on natural opal. Philos. Mag. A, 1980, 42: 705-720.
    [143] Sanders J V. Close-packed structures of spheres of two different sizes II. The packing densities of likely arrangements. Philos. Mag. A, 1980, 42: 721-740.
    [144] Hachisu S, Yoshimura S. Optical demonstration of crystalline superstructures in binary mixtures of latex globules. Nature, 1980, 283: 188-189.
    [145] Yoshimura S, Hachisu S. Order formation in binary mixtures of monodisperse latices I. Observation of ordered structures. Prog. Colloid. Polym. Sci., 1983, 68: 59-70.
    [146] Bartlett P. A model for the freezing of binary colloidal hard spheres. J. Phys.: Condens. Matter, 1990, 2: 4979-4989.
    [147] Bartlett P, Ottewill R H, Pusey P N. Superlattice formation in binary mixtures of hard-sphere colloids. Phys. Rev. Lett., 1992, 68: 3801-3804.
    [148] Eldridge M D, Madden P A, Frenkel D. Entropy-driven formation of a superlattice in a hard-sphere binary mixture. Nature, 1993, 365: 35-37.
    [149] Eldridge M D, Madden P A, Frenkel D. The stability of the AB13 crystal in a binary hard sphere system. Molec. Phys., 1993, 79: 105-120.
    [150] Eldridge M D, Madden P A, Frenkel D. A computer simulation investigation into the stability of the AB2 superlattice in a binary hard sphere system. Molec. Phys., 1993, 80: 987-995.
    [151] Kaplan P D, Rouke J L, Yodh A G, et al. Entropically driven surface phase separation in binary colloidal mixtures. Phys. Rev. Lett., 1994, 72: 582-585.
    [152] Eldridge M D, Madden P A, Pusey P N, et al. Binary hard-sphere mixtures: a comparison between computer simulation and experiment. Molec. Phys., 1995, 84: 395-420.
    [153] Trizac E, Eldridge M D, Madden P A. Stability of the AB crystal for asymmetric binary hard sphere mixtures. Molec. Phys., 1997, 90: 675-678.
    [154] Rabideau B D, Bonnecaze R T. Computational study of the self-organization of bidisperse nanoparticles. Langmuir, 2004, 20: 9408-9414.
    [155] Martin S, Bryant G, van Megen W. Crystallization kinetics of polydisperse colloidal hard spheres. II. Binary mixtures. Phys. Rev. E, 2005, 71: 021404.
    [156] Schofield A B, Pusey P N, Radcliffe P. Stability of the binary colloidal crystals AB2 and AB13. Phys. Rev. E 2005, 72: 031407.
    [157] Velikov K P, Christova C G, Dullens R P A, et al. Layer-by-layer growth of binary colloidal crystals. Science, 2002, 296: 106-109.
    [158] Hachisu S, Kose A, Kobayashi Y, et al. Segregation phenomena in monodisperse colloids. J. Colloid Interface Sci., 1976, 55: 499-509.
    [159] Scott D G. Radial distribution of the random close packing of equal spheres. Nature, 1962, 194: 956-957.
    [160] Paulin S E, Ackerson B J. Observation of a phase transition in the sedimentation velocity of hard spheres. Phys. Rev. Lett., 1990, 64: 2663-2666.
    [161] Hynninen A, Thijssen J H J, Vermolen E C M, et al. Self-assembly route for photonic crystals with a bandgap in the visible region. Nature Mater., 2007, 6: 202-205.
    [162] Wang D Y, M?hwald H. Rapid fabrication of binary colloidal crystals by stepwise spin-coating. Adv. Mater., 2004, 15: 244-247.
    [163] Kim M H, Im S H, Park O O. Fabrication and structural analysis of binary colloidal crystals with two-dimensional superlattices. Adv. Mater., 2005, 17: 2501-2505.
    [164] Li W, Yang B, Wang D Y. Fabrication of colloidal crystals with defined and complex structures via layer-by-layer transfer. Langmuir, 2008, 24: 13772-13775.
    [165] Tan K W, Li G, Koh Y K, et al. Layer-by-layer growth of attractive binary colloidal particles. Langmuir, 2008, 24: 9273-9278.
    [166] Kitaev V, Ozin G A. Self-assembled surface patterns of binary colloidal crystals. Adv. Mater., 2003, 15: 75-78.
    [167] Wang J J, Li Q, Knoll W, et al. Preparation of multilayered trimodal colloid crystals and binary inverse opals. J. Am. Chem. Soc., 2006, 128: 15606-15607.
    [168] Wang J J, Ahl S, Li Q, et al. Structural and optical characterization of 3D binary colloidal crystal and inverse opal films prepared by direct co-deposition. J. Mater. Chem., 2008, 18: 981-988.
    [169] Cong H L, Cao W X. Array patterns of binary colloidal crystals. J. Phys. Chem. B, 2005, 108: 1695-1698.
    [170] Leunissen M E, Christova C G, Hynninen A, et al. Ionic colloidal crystals of oppositely charged particles. Nature, 2005, 437: 235-240.
    [171] García-Santamaría F, Miyazaki H T, Urquía A, et al. Nanorobotic manipulation of microspheres for on-chip diamond architectures. Adv. Mater., 2002, 14: 1144-1147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700