光子带隙结构调制下发光体中的能量传递研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子带隙结构(或称光子晶体)不仅产生出一大批新型材料和器件,也能够提供一种特殊的物理环境——具有波长尺度的介电周期场,利用这种特殊的物理环境可以调制发光材料的光学性质及之间的能量传递,而这种调制行为可以通过发光学实验进行研究。本论文拟在设计具有不同结构的光子晶体,研究三维光子带隙(赝带隙)对发光材料的光学性质及其之间能量传递的影响。
     通过垂直沉积法制备了荧光染料掺杂的蛋白石光子晶体,采用稳态荧光光谱和时间分辨荧光光谱研究了光子带隙对染料之间的能量传递的调制。结果发现:当给体荧光素的发射峰和蛋白石光子晶体的光子带隙重叠时,在光子带隙的调制作用下,给体通过自发辐射传播释放光子的过程受到抑制,而通过与受体实现能量传递的过程成为给体从激发态回到基态的主要方式,光子带隙能增强荧光染料之间的能量传递,从而增强受体的荧光。
     采用加速蒸发诱导共沉积法和溶胶-凝胶法制备了Tb1-XEuXPO4(X=0, 0.001, 0.0025)反蛋白石光子晶体,实验上首次研究了发光体基反蛋白石光子晶体中的能量传递。研究发现:当Tb3+的发射峰和反蛋白石的光子带隙重叠时,反蛋白石光子晶体的光子带隙增强了稀土离子之间的能量传递。同时,制备了具有(100)和(111)两种取向的TbPO4反蛋白石光子晶体,并首次研究了反蛋白石光子晶体(100)和(111)两种取向的光学性质。研究发现:(100)取向区域的光子带隙和(111)取向区域的光子带隙相比发生了蓝移;且反蛋白石光子晶体的(111)取向区域的光子带隙和Tb3+的发射峰重叠,由于光子带隙作用Tb3+的发光受到抑制。
     采用离子交换方法制备了由聚苯乙烯微球构成的结晶化胶体阵列,并研究了结晶化胶体阵列中荧光染料之间的能量传递。证明了结晶化胶体阵列的光子带隙可以增强染料之间的能量传递效率。同时,在实验上首次研究了光子带隙和给体发射峰重叠程度不一样时,光子带隙对染料之间能量传递调制的差异;研究证实:给体的发射峰和光子带隙重叠越好,染料之间的能量传递受光子带隙的增强越强。采用原位聚合方法制备了荧光素掺杂的聚合结晶化胶体阵列,研究了聚合结晶化胶体阵列的发光性质。实验发现:聚合结晶化胶体阵列的光子带隙抑制了荧光素的发光。
The presence of the photonic band gap structure (referred as photonic crystals) not only leads to appearances of lots of new materials and devices but also creates a specific physical environment, i.e. a periodically dielectric field on the wave length scale.The optical property and energy transfer of photoelectric materials may be modulated by the periodically dielectric field on the wave length scale. In this paper, the photonic crystals with different structures have been designed and prepared, and the influences of the three dimensional photonic gap (pseudo-gap) on the optical behavior and energy transfer of the luminophors have been analyzed.
     The dye-doped opal photonic crystal was prepared by the vertical deposition method. The energy transfer from Fluorescein to Rhodamine B was investigated through both stable fluorescence spectroscopy and time-resolved spectroscopy. The results show that when the emission peak of the donor Fluorescein overlaps the photonic band gap of the opal photonic crystals, the spontaneous emission of the donor is inhibited. The inhibition of the spontaneous emission of the donor results in a fact that the excitation state donor could returns to the ground state more easily by the energy transfer. That is, the energy transfer of dyes in the photonic crystals can be enhanced.
     The Tb1-XEuXPO4 (X=0, 0.001, 0.0025) inverse opal photonic crystals were prepared by the accelerated evaporation induced self-assembly technique in combination with a sol-gel method. The photoluminescence of inverse opal was studied by fluorescence microscope. The energy transfer enhancement between rare earth ions was first observed experimentally in the inverse opal photonic crystals. Inverse opal photonic crystals of TbPO4 with coexistence of the (100) and (111) orientations were prepared. Optical and photoluminescence properties of the (100) and (111) orientations regions were investigated in TbPO4 inverse opals. It was found that the photonic bandgap of (100) orientation shifted to shorter wavelengths compared with that of (111) orientation in the inverse opals. The effect of the photonic bandgap on the spontaneous emission of the 5D4→7Fn transitions of Tb3+ was observed in the TbPO4 inverse opals with coexistence of the (100) and (111) orientations. Significant suppression of the emission was detected in the (111) orientation regions.
     The ions exchange method was used to prepare crystalline colloidal arrays, in which the non-radiative energy transfer between fluorescence dyes was investigated. It has been verified that the energy transfer between fluorescence dyes can be enhanced by the photonic band gap of the crystalline colloidal arrays. Meanwhile, the energy transfer enhancement difference was first investigated when the overlaps between the photonic band gap and the donor’s emission peak was different. It has been revealed that the energy transfer and the radiative emission are related to the overlap between donor emission band and photonic band gap. The more overlapping between donor emission band and photonic band gap is, the more difficult the radiative emission is, contrarily, the stronger the energy transfer is.
     The polymerized crystalline colloidal arrays were prepared by situ polymerization method. The influence of photonic band gap on photoluminescence of dyes was investigated. Suppression of the emission was observed if the photonic bandgap overlapped with the dyes emission band in the polymerized crystalline colloidal arrays.
引文
[1] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett,1987, 58:2059-2062.
    [2] John. S. Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett, 1987, 58: 2486-2489.
    [3] Piers A, William L. B. F?rster energy transfer in an optical microcavity. Science, 2000, 290(27):785-788.
    [4] Lutkouskaya K. Calzaferri G. Transfer of electronic excitation energy between randomly mixed dye molecules in the channels of zeolite L. J Phys Chem B, 2006, 110(11): 5633-5638.
    [5] Hopmeier M, Guss W, Deussen M, et al. Enhanced dipole-Dipole interaction in a polymer microcavity. Phys Rev Lett, 1999, 82: 4118-4121.
    [6] Girish S A, S. Dutta G.Microcavity-induced modification of the dipole-dipole interaction. Phys Rev A, 1998, 57: 667 - 670.
    [7] Kumar C V, Chaudhari A, Rosenthal G L. Enhanced energy transfer between aromatic chromophores bound to hydrophobically modified layered zirconium phosphate suspensions. J Am Chem Soc, 1994, 116(1): 403-404.
    [8] Takayoshi K, Zheng Q B, Takashi S. Resonant dipole-dipole interaction in a cavity. Phys Rev A, 1995, 52: 2835-2846.
    [9] Finlayson C E, D. Ginger S, Greenham N C. Enhanced Forster energy transfer in organic/inorganic bilayer optical microcavities. Chem Phys Lett, 2001, 338 (2-3): 83-87.
    [10] Feng J, Okamoto T, Naraoka R, et al. Enhancement of surface plasmon-mediated radiative energy transfer through a corrugated metal cathode in organic light-emitting devices. Appl Phys Lett, 2008, 93 (5):051106-051108.
    [11] Nakamura T, Fujii M, Miura S, et al. Enhancement and suppression of energy transfer from Si nanocrystals to Er ions through a control of the photonic mode density. Phys Rev B, 2006, 74(4): 045302-045307.
    [12] Blanco A, Chomski E, Grabtchak S, et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature, 2000, 405: 437-440.
    [13] Notomi M. Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap. Phys Rev B, 2000, 62:10696-10705.
    [14] Wu L J, Mazilu M, Karle T, et al. Superprism Phenomena in Planar Photonic Crystals. J Quan Elect, 2002, 38: 915-918.
    [15] Z C, Qiu M, Sanshui Xiao S S, et al. Coupling between plane waves and Bloch waves in photonic crystals with negative refraction. Phys Rev B, 2005, 71: 04511.
    [16] Kosaka H, Kawashima T, Tomita A et al. Superprism phenomena in photonic crystals. Phys Rev B, 1998, 58:10096-10099.
    [17] Kosaka H, Kawashima T, Tomita A, et al. Self-collimating phenomena in photonic crystals, Appl Phys Lett, 1999, 74: 1212-1214.
    [18] Lin S Y, Hietala V M, Wang L et al. Highly dispersive photonic band-gap prism, Opt Lett. 1996, 21:1771-1773.
    [19] Sanders J V. Diffraction of light by opals. Acta Crystallogr A, 1968, 24:427-434.
    [20] Parker A R, Welch V L, Driver D, et al. Structural colour - Opal analogue discovered in a weevil, Nature, 2003, 426(6968):786-787.
    [21] Velev O D, Lenhoff A M. Colloidal crystals as templates for porous materials. Curr Opin Colloid In, 2000 5:56-63.
    [22] Miguez H, Meseguer F, Lopez C, et al. Evidence of FCC crystallization of SiO2 nanospheres. Langmuir, 1997, 13: 6009-6011.
    [23] Xu X L, Friedman G, Humfeld K D, et al. Synthesis and utilization of monodisperse superparamagnetic colloidal particles for magnetically controllable photonic crystals. Chem Mater, 2002, 14: 1249-1256.
    [24] Holgado M, García-Santamaría F, Blanco A, et al. Electrophoretic deposition to control artificial opal growth. Langmuir, 1999, 15:4701-4704.
    [25] Hayward R C, Saville D A, Aksay I A. Electrophoretic assembly of colloidal crystals with optically tunable micropatterns. Nature, 2000, 404: 56-59.
    [26] Yi G R, Moon J H, Yang S M. Macrocrystalline colloidal assemblies in an electric field. Adv Mater, 2001, 13: 1185-1188.
    [27] Trau M, Saville D A, Aksay I A. Assembly of colloidal crystals at electrode interfaces. Langmuir, 1997, 13: 6375-6381.
    [28] Gu Z Z, Fujishima A, Sato O. Fabrication of high-quality opal films with controllable thickness. Chem Mater, 2002, 14: 760-765.
    [29] Vlasov Y A, Bo X Z, Sturm J C, et al. On-chip natural assembly of silicon photonic bandgap crystals. Nature, 2001, 414: 289-293.
    [30] Waterhouse G I N, Waterland M R. Opal and inverse opal photonic crystals: Fabrication and characterization. Polyhedron, 2007, 26: 356-368.
    [31] Shimmin R G, DiMauro A J, Braun P V. Slow vertical deposition of colloidal crystals: A Langmuir-Blodgett process, Langmuir, 2006, 22: 6507-6513.
    [32] Zhou Z C, Li Q, Zhao X S. Evolution of interparticle capillary forces during drying of colloidal crystals. Langmuir, 2006, 22: 3692-3697.
    [33] Li H L, Marlow F. Solvent effects in colloidal crystal deposition. Chem Mater, 2006,18: 1803-1810.
    [34] Zhou Z C, Zhao X S. Opal and inverse opal fabricated with a flow-controlled vertical deposition method. Langmuir, 2005, 21: 4717-4723.
    [35] Tan Y, Yang K J, Cao Y X, et al. Fabrication of polystyrene and its sensing application to a photonic structure. Acta Chim Sinica, 2004, 62: 2089-2092.
    [36] Kuai S L, Hu X F, Hache A, et al. High-quality colloidal photonic crystals obtained by optimizing growth parameters in a vertical deposition technique. J Cryst Growth, 2004, 267: 317-324.
    [37] Jing D, Gao J N, Tang F Q. Fabrication of colloidal crystal array by self-assembly methods. Prog Chem, 2004, 16: 321-326.
    [38] Ye Y H, LeBlanc F, Hache A, et al. Self-assembling three-dimensional colloidal photonic crystal structure with high crystalline quality. Appl Phys Lett, 2001, 78: 52-54.
    [39] Norris D J, Arlinghaus E G, Meng L L, et al. Opaline photonic crystals: How does self-assembly work. Adv Mater, 2004, 16: 1393-1399.
    [40] Zhou Z C, Zhao X S. Flow-controlled vertical deposition method for the fabrication of photonic crystals. Langmuir, 2004, 20: 1524-1526.
    [41] Velev O D, Lenhoff A M. Colloidal crystals as templates for porous materials. Curr Opin Colloid, 2000, 5:56-63.
    [42] Velev O D, Jede T A, Lobo R F, et al. Porous silica via colloidal crystallization. Nature, 1997, 389:447-448.
    [43] Imhof A, Pine D J. Ordered macroporous materials by emulsion templating. Nature, 1997, 389: 948-951.
    [44] Wijnhoven J E G J, Vos W L. Preparation of photonic crystals made of air spheres in titania. Science, 1998, 281:802-804.
    [45] Gundiah G, Rao C N R. Macroporous oxide materials with three- dimensionally interconnected pores. Solid State Sci, 2000, 2: 877-882.
    [46] Lei Z B, Li J M, Zhang Y G, et al. Fabrication and characterization of highly-ordered periodic macroporous barium titanate by the sol–gel method. J Mater Chem, 2000, 10: 2629-2631.
    [47] Li B, Zhou J, Li Q, et al. Synthesis of (Pb,La)(Zr,Ti)O3 inverse opal photonic crystals. J Am Ceram Soc, 2003, 86:867-869.
    [48] Li B, Zhou J, Hao L F, et al. Photonic band gap in (Pb,La)(Zr,Ti)O3 inverse opals. Appl Phys Lett, 2003, 82:3617-3619.
    [49] Li B, Zhou J, Li L T, et al. Ferroelectric inverse opals with electrically tunable photonic band gap. Appl Phys Lett, 2003, 83:4704-4706.
    [50] Yang Z W, Huang X G, Yang G, et al. Preparation and photonic band gap properties of lead lanthanum titanate inverse opal photonic crystals. J Alloy Compd, 2009, 468: 295-298.
    [51] Yang Z W, Huang X G, Xie Q, Li B, Zhou J, Li L T. Preparation and photonic bandgap properties of Na1/2Bi1/2TiO3 inverse opal photonic crystals. J Alloy Compd. 2009, 471: 241-243.
    [52] Huang X G, Yang Z W, Sun L, et al. Synthesis and Characterization of Potassium Bismuth Titanate Inverse Opal Photonic Crystals by Sol-gel Technique. Mater Chem Phys, 2009, 114: 23-25.
    [53] Li B, Wang J, Fu M, et al. Fabrication of barium strontium titanate inverse opals by the sol-gel process, J Am Ceram Soc, 2007, 90(12): 4062-4065.
    [54] Vlasov Y A, Yao N, Norris D J. Synthesis of photonic crystals for optical wavelengths from semiconductor quantum dots. Adv Mater, 1999, 11:165-169.
    [55] Velev O D, Tessier P M, Lenhoff A M, et al. A class of porous metallic nanostructures. Nature, 1999, 401:548.
    [56] Tessier P M, Velev O D, Kalambur A T, et al. Assembly of gold nanostructured films templated by colloidal crystals and use in surface-enhanced Raman spectroscopy. J Am Chem Soc, 2000, 122: 9554-9555.
    [57] Tessier P M, Velev O D, Kalambur A T, et al. Structured metallic films for optical and spectroscopic applications via colloidal crystal templating. Adv Mater, 2001, 13:396–400.
    [58] Blanco A, Chomski E, Grabtchak S, et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature, 2000, 405: 437-440.
    [59] Miguez H, Chomski E, Garcia-Santamaria F, et al. Photonic bandgap engineering in germanium inverse opals by chemical vapor deposition. Adv Mater, 2001, 13: 1634-1637.
    [60] Piret F, Singh M, Takoudis C G, et al. Optical properties in the UV range of a Ta2O5 inverse opal photonic crystal designed by MOCVD, Chem Phys Lett, 2008, 453( 1-3): 87-91.
    [61] Sechrist Z A, Schwartz B T, Lee J H, et al. Modification of opal photonic crystals using Al2O3 atomic layer deposition. Chem Mater, 2006, 18(15):3562-3570.
    [62] Braun P V, Wiltzius P. Microporous materials-Electrochemically grown photonic crystals. Nature, 1999, 402:603-604.
    [63] Fu M, Zhou J, Zong R L, et al. Preparation and characterization of ordered macroporous ZnO films for photonic application, Key Engineering Mater, 2005, 280-283 (1-2): 569-572.
    [64] King B H, Gramada A, Link J R, et al. Internally referenced ammonia sensor based on an electrochemically prepared porous SiO2 photonic crystal. Adv Mater, 2007, 19(22): 4044-4408.
    [65] Braun P V, Wiltzius P. Macroporous materials - electrochemically grown photonic crystals, Curr Opin Colloid Int, 2002, 7(1-2): 116-123.
    [66] Wehrspohn R B, Schilling J. Electrochemically prepared pore arrays for photonic-crystal applications. Mrs Bull, 2001 26(8): 623-626.
    [67] Jiang P, Cizeron J, Bertone J F, et al. Preparation of macro-porous metal films from colloidal crystals. J Am Chem Soc, 1999, 121:7957-7958.
    [68]黄学光,杨正文,孙丽,等.可调光子带隙的结晶化胶体阵列的制备.科学通报,2008, 21: 2587-2591.
    [69] Li H Y, Meng B, Di Y W, et al. Self-assembled colloidal crystalline arrays using hollow colloidal spheres. Syn Met, 2005, 149(2-3): 225-230.
    [70] Rundquist P A, Photins P, Jagannathan S, et al. Dynamical Bragg-fiffraction form crystalline colloidal arrays. J Chem Phys, 1989, 91 ( 8): 4932-4941.
    [71] Nakamura H, Ishii M. Effects of compression and shearing on the microstructure of polymer-immobilized non-close-packed colloidal crystalline arrays. Langmuir, 2005, 21(25): 11578-11581.
    [72] Pan G S, Tse A S, Kesavamoorthy R, et al. Synthesis of highly fluorinated monodisperse colloids for low refractive index crystalline colloidal arrays. J Am Chem Soc, 1998. 120(26): 6518-6524.
    [73] Asher S A, Weissman J M, Tikhonov A, et al. Diffraction in crystalline colloidal-array photonic crystals. Phys Rev E, 2004 69 (6): 066619.
    [74] Kim S H, Jeon S J, Yang S M. Optofluidic encapsulation of crystalline colloidal arrays into spherical membrane. J Am Chem Soc, 2008, 130(18): 6040-6046.
    [75] Braun P V, Rinne S A, Garcia-Santamaria F. Introducing defects in 3D photonic crystals: State of the art. Adv Mater, 2006, 18: 2665-2678.
    [76] Tetreault N, Arsenault A C, Mihi A, et al. Building tunable planar defects into photonic crystals using polyelectrolyte multilayers. Adv Mater, 2005, 17: 1912-1916.
    [77] Lee W M, Pruzinsky S A, Braun P V. Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals. Adv Mater, 2002, 14: 271-274.
    [78] Knight J C. Photonic crystal fibres. Nature, 2003, 424: 847-851.
    [79] Noda S, Chutinan A, Imada M. Trapping and emission of photons by a single defect in a photonic bandgap structure. Nature, 2000, 407: 608-610.
    [80] Benabid F, Knight J C, Antonopoulos G, et al. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science, 2002, 298: 399-402.
    [81] Ouzounov D G, Ahmad F R, Muller D, et al. Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science, 2003, 301: 1702-1704.
    [82] Cregan R F, Mangan B J, Knight J C, et al. Single-mode photonic band gap guidance of light in air. Science, 1999, 285: 1537-1539.
    [83] Knight J C, Broeng J, Birks T A, et al. Photonic band cap guidance in optical fibers. Science, 1998, 282: 1476-1478.
    [84] Rigby P. Optics - A photonic crystal fibre. Nature, 1998, 396: 415-416.
    [85] Russell P. Photonic crystal fibers. Science, 2003, 299: 358-362.
    [86] Painter O, Lee R K, Scherer A, et al. Two-dimensional photonic band-gap defect mode laser. Science, 1999, 284: 1819-1821.
    [87] Park H G, Kim S H, Kwon S H, et al. Electrically driven single-cell photonic crystal laser. Science, 2004, 305: 1444-1447.
    [88] Noda S. Seeking the ultimate nanolaser. Science, 2006, 314: 260-261.
    [89] Colombelli R, Srinivasan K, Troccoli M, et al. Quantum cascade surface-emitting photonic crystal laser. Science, 2003, 302: 1374-1377.
    [90] Noda S, Yokoyama M, Imada M, et al. Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design. Science, 2001, 293: 1123-1125.
    [91] Lawrence J R, Ying Y R, Jiang P, et al. Dynamic tuning of organic lasers with colloidal crystals. Adv Mater, 2006, 18: 300-303.
    [92] Zhou W D, Sabarinathan J, Kochman B, et al. Electrically injected single-defect photon bandgap surface-emitting laser at room temperature. Electron Lett, 2000, 36:1541-1542.
    [93] Hu X B, Li G T, Zhang D, et al. Construction of self-reporting specific chemical sensors with high sensitivity, Adv Mater, 2007, 19: 4327– 4332.
    [94] Foresi J S, Villeneuve P R, Ferrera J, et al. Photonic-bandgap microcavities in optical waveguides. Nature, 1997, 390: 143-145.
    [95] Shen C, Michielsen K, De Raedt H. Spontaneous-emission rate in microcavities: Application to two-dimensional photonic crystals. Phys Rev Lett, 2006, 96: 120401.
    [96] Yoshie T, Scherer A, Hendrickson J, et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature, 2004, 432: 200-203.
    [97] Qi M H, Lidorikis E, Rakich P T, et al. A three-dimensional optical photonic crystal with designed point defects. Nature, 2004, 429: 538-542.
    [98] Vahala K J. Optical microcavities. Nature, 2003, 424: 839-846.
    [99] Sauvan C, Lalanne P, Hugonin J P. Photonics-Tuning holes in photonic-crystal nanocavities. Nature, 2004, 429 (6988): 1.
    [100] Kosaka H, Kawashima T, Tomita A, et al. Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering, Appl. Phys. Lett.1999, 74: 1370-1372.
    [101] Weissman J M, Sunkara H B, Tse A S, et al. Thermally switchable periodicities and diffraction from mesoscopically ordered materials. Science, 1996, 274: 959-960.
    [102] Reese C E, Asher S A. Emulsifier-free emulsion polymerization produces highly charged, monodisperse particles for near infrared photonic crystals. J Colloid Interface Sci, 2002, 248: 41-46.
    [103] Lin S Y, Hietala V M, Wang L,et al. Highly dispersive photonic band-gap prism, Opt Lett. 1996, 21:1771-1773.
    [104] Ichikawa H, Baba T. Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal. Appl Phys Lett, 2004, 84: 457-459.
    [105] Florescu M, Lee H, Stimpson A J, et al. Thermal emission and absorption of radiation in finite inverted-opal photonic crystals. Phys Rev A, 2005,72: 033821.
    [106] Petrov E P, Bogomolov V N, Kalosha I I, et al. Spontaneous emission of organic molecules embedded in a photonic crystal. Phys Rev Lett, 1998, 81 (1): 77-80.
    [107] Saveliy F K, Nelli F K, Dmitry A K, et al. Electroluminescent three- dimensional photonic crystals based on opal–phosphor composites. Appl Phys Lett, 2005, 86: 071108-0711010.
    [108] Vlasov Y A, Luterova K, Pelant I, et al. Enhancement of optical gain of semiconductors embedded in three-dimensional photonic crystals. Appl Phys Lett, 1997, 71: 1616-1618.
    [109] Xu X S, Yamada T, Ueda R, et al. Dynamics of spontaneous emission from SiN with two-dimensional photonic crystals. Opt Lett, 2008, 33(15): 1768-1770.
    [110] Gaponenko S V, Bogomolov V N, Petrov E P, et al.Spontaneous emission of dye molecules, semiconductor nanocrystals, and rare-earth ions in opal-based photonic crystals. J Lightwave Technol, 1999, 17 (11): 2128-2137.
    [111] Yoshino K, Lee S B, Tatsuhara S, et al. Observation of inhibited spontaneous emission and stimulated emission of rhodamine 6G in polymer replica of synthetic opal. Appl Phys Lett, 1998, 73(24): 3506-3508
    [112] Megens M, Wijnhoven J E G J, Lagendijk A, et al. Light sources inside photonic crystals. J Opt Soc Am B, 1999, 16:1403-1408.
    [113] Zhou J, Zhou Y, Buddhudu S, et al. Photoluminescence of of ZnS:Mn embedded in three-dimensional photonic crystal of submicron polymer spheres. Appl Phys Lett, 2000, 76:3513-3515.
    [114] Solovyev V G, Romanov S G, Torres C M S, et al. Modification of the spontaneous emission of CdTe nanocrystals in TiO2 inverted opals. J Appl Phys, 2003, 94:1205-1210.
    [115] Lin Y, Zhang J, Sargent EH, et al. Photonic pseudo-gap-based modification of photoluminescence from CdS nanocrystal satellites around polymer microspheres in a photonic crystal. Appl Phys Lett, 2002, 81:3134-3136.
    [116] Arsenault A C, Clark J, Fretnann G V, et al. From colour fingerprinting to the control of Photoluminescence in elastic photonic crystals, Nature Mater, 2006, 5:179-184.
    [117] Noda S, Chutinan A, Imada M, et al. Trapping and emission of photons by a single defect in a photonic bandgap structure. Nature, 2000, 407: 608-610.
    [118] Yang Z W, Zhou J, Huang X G, et al. Photonic band gap and photoluminescence properties of LaPO4:Tb inverse opal. Chem Phys Lett, 2008, 445(1-3): 55-58.
    [119] Satoshi I, Yasuhiko A, Akiko G. Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature. Appl Phys Lett, 2007, 91: 211104-211106.
    [120] Li B, Zhou J, Zong RL, et al. Strong Suppression and Enhancement of Photoluminescence in Zn2SiO4:Mn2+Inverse Opal Photonic Crystals. J Am Ceram Soc, 2006, 89: 2308–2310.
    [121] Long C M, Giannopoulos A V, Choquette K D. Modified spontaneous emission from laterally injected photonic crystal emitter. Electron Lett, 2009, 45 (4): 227-228.
    [122] Ogawa S, Ishizaki K, Furukawa T, et al. Spontaneous emission control by 17 layers of three-dimensional photonic crystals. Electron Lett, 2008, 44 (5): 377-378.
    [123] Jin F, Song Y, Dong X Z, et al. Amplified spontaneous emission from dye-doped polymer film sandwiched by two opal photonic crystals. Appl Phys Lett, 2007, 91 (3) 031109.
    [124] Wang X H, Gu BY, Wang R Z, et al. Decay kinetic properties of atoms in photonic crystals with absolute gaps. Phys Rev Lett, 2003, 91(11): 113904.
    [125] John S, Busch K, Resonant nonlinear dielectric response in a photonic bandgap materials. Phys Rev Lett, 1996,76: 2484-2487.
    [126] Wang X H, Wang R Z, Gu B Y, et al. Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps. Phys Rev Lett, 2002 88(9): 093902.
    [127] Przemyslaw P. Markowicz, Hanifi T, et al. Dramatic enhancement of third-harmonic generation in three-dimensional photonic crystals. Phys Rev Lett, 2004, 92: 083903.
    [128] Fedyanin A A, Aktsipetrov O A, Kobayashi D,et al. Enhanced Faraday and nonlinear magneto-optical Kerr effects in magnetophotonic crystals. J Magn Magn Mater, 2004, 282: 256-259.
    [129] Zhao L M, Gu B Y, Yang G Z. Enhancement of second harmonic generation in one-dimensional ferroelectric-metallic photonic crystals. Modern Phys Lett B, 2007, 21 (24): 1599-1604.
    [130] Coquillat D, Vecchi G, Comaschi C, et al. Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal. Appl Phys Lett, 2005, 87(10): 101106.
    [131] Roussey M, Bernal M P, Courjal N, et al. Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons. Appl Phys Lett, 2006, 89: 241110.
    [132] Arnout I, Willem L. V, Rudolf S, et al. Large dispersive effects near the band edges of photonic crystals. Phys Rev Lett, 1999, 83: 2942-2945.
    [133] Suzushi N, Neal A, Bradley A. L, et al. Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals. J Am Chem Soc, 2003, 125: 6306-6310.
    [134] Colodrero S, Mihi A, Haggman L, et al. Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells. Adv Mater, 2009, 21 (7): 764-770.
    [135] Zhang Y Z, Wang J X, Zhao Y, et al. Photonic crystal concentrator for efficient output of dye-sensitized solar cells. J Mater Chem, 2008, 18, (23): 2650- 2652.
    [136] Mihi A, Lopez-Alcaraz F J, Miguez, H. Full spectrum enhancement of the light harvesting efficiency of dye sensitized solar cells by including colloidal photonic crystal multilayers. Appl Phys Lett, 2006, 88(19):193110.
    [137] Colodrero S, Mihi A, Anta J A, et al. Experimental Demonstration of the Mechanism of Light Harvesting Enhancement in Photonic-Crystal-Based Dye-Sensitized Solar Cells. J Phys Chem C, 2009, 113(4):1150-1154.
    [138] Halaoui L I, Abrams N M, Mallouk T E. Increasing the conversion efficiency of dye-sensitized TiO2 photoelectrochemical cells by coupling to photonic crystals. J Phys Chem B, 2005,109 (13): 6334-6342.
    [139] Mihi A, Calvo M E, Anta J A, et al. Spectral response of opal-based dye-sensitized solar cells. J Phys Chem C, 2008, 112(1): 13-17.
    [140] Jennifer I, L Chen, Georg von F, et al. Amplified photochemistry with slow photons. Adv Mater, 2006, 18: 1915–1919.
    [141] Jennifer I, L. Chen, Georg von F, et al. Effect of disorder on the optically amplified photocatalytic efficiency of titania inverse opals. J Am Chem Soc, 2007, 129:1196-1202.
    [142] Li Y Z, Kunitake T, Fujikawa S. Efficient fabrication and enhanced photocatalytic activities of 3D-ordered films of titania hollow spheres. J Phys Chem B, 2006, 110: 13000-13004.
    [143] Li Q, Shang J K. Inverse opal structure of nitrogen-doped titanium oxide with enhanced visible-light photocatalytic activity. J Am Ceram Soc, 2008, 91 (2): 660–663.
    [144] McMillan J F, Yang X D, Panoiu N C, et al. Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides. Opt Lett, 2006, 31(9): 1235-1237.
    [145] McMillan J F, Yu M B, Kwong D L, et al. Observation of spontaneous Raman scattering in silicon slow-light photonic crystal waveguides. Appl Phys Lett, 2008, 93: 251105.
    [146] Gorelik V S, Kudryavtseva A D, Tcherniega N V. Stimulated Raman scattering in three-dimensional photonic crystals. J Russian Laser Research, 2008, 29(6):551-557.
    [147]樊美公,等.光化学基本原理与光子学材料科学:北京,科学出版社, 2001.
    [148] John S, Quang T. Photon-hopping conduction and collectively induced transparency in a photonic band gap. Phys Rev A, 1995, 52(5): 4083-4088.
    [149] Bay S, Lambropoulos P, Molmer K. Atom-atom interaction at the edge of a photonic band gap,Opt Commun, 1996, 132 (3-4): 257-262.
    [150]谢卫东,刘念华.光子晶体中偶极-偶极共振与光子跳跃传导.南昌大学学报, 2001,25(1):50-55.
    [151] Xie S Y, Yang Y P, Chen H. Atom-atom interaction in an anisotropic photonic crystal. J Modern Opt, 2003, 50 (1): 83-112.
    [152]刘震东,杨正文,李勃,等.光子带隙结构调制下发光体中的能量传递过程.发光学报,2009, 30(2):157-160.
    [153] Kiyoshi S, Hiroshi K, Akira T, et al. Enhancement of electronic excitation energy transfer in the colloidal crystals of colloidal silica suspensions doped with fluorescent dyes, Colloid Polym Sci. 2006, 285:127–133.
    [154] Kolaric B, Baert K, Auweraer M V, et al. Controlling the fluorescence resonant energy transfer by photonic crystal band gap engineering. Chem Mater, 2007, 19: 5547-5552.
    [155] Li M Z, Liao Q, Zhang J P, et al. Energy transfer boosted by photonic crystals with metal film patterns. Appl Phys Lett, 2007, 91 (20): 203516.
    [156] Challa V K, Anita C. Probing the donor and acceptor dye assemblies at the galleries of a-zirconium phosphate. Micropor Mesopor Mater, 2000, 41: 307-318.
    [157] Skushwaha P R, Pant D D. Energy-transfer from Fluorescein to Rhodamine. Indian J Pure Appl Phys, 1985, 23. 442, 442-446.
    [158]曹艳玲.反蛋白石及TiO2空心微球非密堆积FCC结构光子晶体的制备及其带隙研究: [博士学位论文].长春:吉林大学,2008.
    [159] Woodcock L V. Entropy difference between the face-centred cubic and hexagonal close-packed crystal structures. Nature, 1997, 385(6612): 141-143.
    [160] Vallée R A L, Baert K, Kolaric B, et al. Nonexponential decay of spontaneous emission from an ensemble of molecules in photonic crystals. Phys Rev B, 2007: 76: 045113.
    [161] Marie A, Sri S, Mahalingam V, et al. Significant suppression of spontaneous emission in SiO2 photonic crystals made with Tb3+-doped LaF3 nanoparticles. J Phys Chem C, 2007, 111: 4047-4051.
    [162] Velev O D, Jede T A, Lobo R F, et al. Porous silica via colloidal crystallization. Nature, 1997, 389 (6650): 447-448.
    [163] Jin J C, McLachlan A M, McComb D W, et al. Template-assisted growth of nominally cubic (100)-oriented three-dimensional crack-free photonic crystals. Nano Lett, 2005, 5 (12):2646-2650.
    [164]康凯,黄世华,侯延冰,等. Rhodamine 6G在光子晶体中的光致发光及聚集态生长.科学通报, 2009, 54(1): 115 ~ 118.
    [165] Jin C J, Li Z Y, McLachlan A M, et al. Optical properties of tetragonal photonic crystal synthesized via template-assisted self-assembly. J Appl Phys, 2006, 99(11): 1161091.
    [166] Dushkin C D, Lazarov G S, Kotsev S N, et al. Effect of growth conditions on the structure of two-dimensional latex crystals: experiment. Colloid Polym Sci, 1999, 277:914-930.
    [167] Cong H L, Cao W X. Colloidal crystallization induced by capillary Force. Langmuir, 2003, 19: 8177-8181.
    [168] Kitaev V, Ozin G A. Self-assembled surface patterns of binary colloidal crystals. Adv Mater, 2003, 15(1):75-78.
    [169]董红军,常树岚,刘波.Eu3+、Tb3+掺杂Zn4B6O13光致发光材料的研究.延边大学学报(自然科学版), 2005,31(2): 108-110.
    [170] Vlasov Y A, Bo X Z, Sturm J C, et al. On-chip natural assembly of silicon photonic bandgap crystals. Nature, 2001, 414 (15): 289-93.
    [171] Joannopoulos J D, Johnson S G, Winn J N, et al. Photonic Crystals: molding the flow of light, New Jersey, 2nd ed, 2008.
    [172]杨南如.无机非金属材料测试方法,武汉:武汉工业大学出版社. 1999.
    [173] Asher A S, Holtz J, Liu L, et al. Self-assembly motif for creating submicron periodic materials, polymerized crystalline colloidal arrays. J Am Chem Soc, 1994, 116(11):4997-4998.
    [174] Xu X L, Goponenko V A, Asher A S. Polymerized polyhema photonic crystals: pH and ethanol ensor materials. J Am Chem Soc, 2008,130(10): 3113-3119.
    [175] Lee K, Asher A S. Photonic crystal chemical sensors: pH and ionic strength, J Am Chem Soc, 2000, 122(39): 9534-9537.
    [176] Ben-Moshe M, Alexeev L V, Asher A S. Fast responsive crystalline colloidal array photonic crystal glucose sensors. Anal Chem, 2006, 78(14):149-5157.
    [177] Reese E, Alexeev L V, Asher A S. Photonic crystal optrode sensor for detection of Pb2+ in high ionic strength environments. Anal Chem, 2003, 75(15): 3915-3918.
    [178]李芬,李湛勇,关英,等.基于生物素-亲和素相互作用的胶体晶体阵列的构筑与特性.高分子学报,2008,7:673-678.
    [179] Asher A S, Kimble W K, Walker P J. Enabling thermoreversible pysically cross-linked polymerized colloidal array photonic crystals, Chem. Mater. 2008, 20(24): 7501–7509.
    [180]王建颖,周谧,高建平.化学响应性光子晶体.高分子通报,2006, 11:45-51.
    [181] Foulger H S, Kotha S, Sweryda-Krawiec B, et al. Robust polymer colloidal crystal photonic bandgap structures. Opt Lett, 2000, 25(17): 1300-1302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700