具有抗肿瘤活性的新型香豆素衍生物合成和活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
香豆素类衍生物具有抗心律失常、抗骨质疏松、抗凝血、抗氧化、镇痛、降压、平喘、光敏以及抗HIV、抗肿瘤、抗菌等多方面的生物学活性,具有潜在的药用价值。因而,本文以香豆素为母体结构,基于活性亚结构拼接的原理,引入二硫代氨基甲酸酯、磺酰胺、硫醚、哌嗪等活性亚结构单元,设计合成了两类共计51个新型香豆素衍生物。所有目标化合物均通过1HNMR、MS和元素分析等手段进行了结构表征。
     (1)含DTC与硫醚单元的香豆素芳基磺酰胺衍生物。通过将溴乙基引入7-磺酰胺基香豆素的N原子上,并进一步与DTC及巯基杂环等活性基团结合,合成出了一系列磺酰胺类香豆素结构,得到共计17个化合物,并用MTT法对肺癌A549细胞株进行了抗增殖活性的测试。结果表明:该系列目标物中大多化合物并未表现出明显的细胞毒性,仅三个化合物Y11190、Y11192、Y11199在10.0μM左右表现出一定的细胞毒性,细胞存活率分别为68.42%、53.00%、51.15%;构效关系表明,含吡咯烷或者甲基噻二唑结构单元的化合物表现出较高的细胞毒性。
     (2)含DTC与哌嗪结构单元的香豆素衍生物。通过将DTC与哌嗪环引入香豆素的4-位,构建了一类DTC-哌嗪香豆素化合物库,共得到34个化合物,并用MTT法对其进行了细胞毒性的测试。结果表明:香豆素的6-位取代基对目标化合物的生物活性具有一定的影响,我们可以看到,当香豆素6-位无取代或为吸电子作用的氯、氟取代时,目标物并未表现出特别优异的抑制效果,仅有几个化合物表现出了较好的细胞毒性,如Y11208, Y12129-Y12132, IC50<10.0μM;当6-位为给电子的甲基和甲氧基取代时,化合物的细胞毒性发生显著提升,尤其是甲基取代时表现出极好的诱导凋亡的效果,具有特殊代表性的是化合物Y12123、 Y12126, IC50在0.1μM~1.0μM浓度区间内。
Coumarin derivatives that possess the activity of anti-arrhythmic, anti-clotting, antiosteoporosis, anti-oxidant, analgesic, anti-hypertensive, and asthma, photosensitive and anti-HIV, antitumor, and other biological activities, have great potential Med. value. Thus, We incorporated some different bioactive units, such as dithiocarbamate (DTC), sulfonamide, thioether, piperazine and other active substructure unit into the coumarin framework based on the connecting principle of actively biological groups. There were two types of coumarin derivatives been designed and synthesized. All the target compounds were characterized by1HNMR, MS and elemental analysis.
     (1) DTC and arylsulfonamide coumarin derivatives. By modifying the N atom of7-(N-coumarin) arylsulfonamides with bromoethyl and introducing dithiocarbamate unit or heterocycle unit into the substituted coumarin ring, we got17novel compounds, which were then tested for their cytotoxic activity against A549cell line by MTT assay. The results indicated that most of the target compounds were found to be weakly cytotoxic against A549cell line, and only compounds Y11190、Y11192、Y11199exhibited some cytotoxic activity, with the cell livability being68.42%,53.00%and51.15%when the concentration increased to10.0μM, respectively. These compounds with the piperidine ring or methyl-1,3,4-thiadiazole showed a certain degree of cytotoxicity on the tumor cell.
     (2) DTC and piperazine coumarin derivatives. A set of novel Aryl4-(2-oxo-2H-chromen-4-yl)piperazine-l-carbodithioate derivatives were synthesized by introducing DTC and piperazine units to benzopyran-2-one nucleus at C-4position, and we got34novel compounds. The cytotoxic activity test showed that this series of compounds highlighted the substituents on C-6positions, which had some effects on their cytotoxic activity. When the coumarin ring was without any substituents or was replaced by some electron-withdrawing groups such as chlorine or flurine on its C-6positions, these compounds showed good rather than excellent cytoxic activityies, eg. compounds Y11208, Y12129-Y12132, with their IC50、10.0μM. When the coumarin ring was replaced by some electron-donating groups such as methyl or methoxyl on its C-6positions, their cytoxic activity against A549cell line were significantly increased, the cell apoptosis induced by the derivatives was especially significant when the substituent was a methyl group, with the representive compounds Y12123and Y12126showed their IC50ranging from0.1μM to1.0μM.
引文
[1]刘滔.类黄酮CDKs抑制剂的设计、合成和构效关系研究[D].浙江大学药物分析,2005.
    [2]郑峰.含哌嗪的均三唑衍生物的合成及其生物活性研究[D].河南大学中药学,2008.
    [3]张少宁.靶向抗肿瘤药物Dasatinib的合成工艺及其类似物的设计合成与活性研究[D].东南大学制药工程,2010.
    [4]Neidle S. Cancer drug design and discovery[M]. Acad. Pr,2008.
    [5]苗艳.新型香豆素衍生物的合成与抗增殖活性研究[D].华中师范大学有机化学,2009.
    [6]杜崇民,刘春宇.黄酮类化合物抗肿瘤研究进展[J].中国野生植物资源,2007,26(3),4-7.
    [7]汤建国.生理活性黄酮类化合物的合成与提取新方法研究[D].湖南大学硕士论文,2004.
    [8]应华洲.含氮姜黄素和类黄酮衍生物的设计,合成和抗肿瘤活性研究[D].浙江大学,2008.
    [9]Lopez-Lazaro M. Flavonoids as anticancer agents:structure-activity relationship study[J]. Cur. Med.Chem.-Anti-Cancer Agents,2002,2(6),691-714.
    [10]Huang H, Zha X. Development in research of antitumor effect of flavones compounds[J]. Chin J New Clin Rein,2002,21(7),428-433.
    [11]Bauvois B, Puiffe M L, Bongui J B, et al. Synthesis and biological evaluation of novel flavone-8-acetic acid derivatives as reversible inhibitors of aminopeptidase N/CD13[J]. J. Med. Chem.,2003,46(18),3900-3913.
    [12]Dauzonne D, Folleas B, Martinez L, et al. Synthesis and in vitro cytotoxicity of a series of 3-aminoflavones[J]. Eur. J. Med. Chem.,1997,32(1),71-82.
    [13]Chen Y C, Shen S C, Lee W R, et al. Wogonin and fisetin induction of apoptosis through activation of caspase 3 cascade and alternative expression of p21 protein in hepatocellular carcinoma cells SK-HEP-1[J]. Arch. Toxicol.,2002,76(5),351-359.
    [14]Gobbi S, Cavalli A, Rampa A, et al. Lead optimization providing a series of flavone derivatives as potent nonsteroidal inhibitors of the cytochrome P450 aromatase enzyme[J]. J. Med. Chem.,2006,49(15),4777-4780.
    [15]Recanatini M, Bisi A, Cavalli A, et al. A new class of nonsteroidal aromatase inhibitors:design and synthesis of chromone and xanthone derivatives and inhibition of the P450 enzymes aromatase and 17α-hydroxylase/C17,20-lyase[J]. J. Med. Chem.,2001,44(5),672-680.
    [16]Leonetti F, Favia A, Rao A, et al. Design, synthesis, and 3D QSAR of novel potent and selective aromatase inhibitors [J]. J. Med. Chem.,2004,47(27),6792-6803.
    [17]Blankson H, Grotter(?)d E M, Seglen P O. Prevention of toxin-induced cytoskeletal disruption and apoptotic liver cell death by the grapefruit flavonoid, naringin.[J]. Cell death and differentiation,2000,7(8):739.
    [18]朱述钧,王春梅,沈寿国,等.香豆素类化合物在农业上的应用[J].江西农业学报,2006,18(002),97-100.
    [19]Thornes R D, Edlow D W, Wood Jr S. Inhibition of locomotion of cancer cells in vivo by anticoagulant therapy. Ⅰ. Effects of sodium warfarin on V2 cancer cells, granulocytes, lymphocytes and macrophages in rabbits.[J]. The Johns Hopkins medical journal,1968,123(6),305.
    [20]Lahey F N, MacLeod J K. The coumarins of Geijera parviflora Lindl[J]. Aust. J. Chem.,1967,20(9),1943-1955.
    [21]Miglietta A, Bocca C, Gadoni E, et al. Interaction of geiparvarin and related compounds with purified microtubular protein[J]. Anti-Cancer Drug Des.,1996,11(1), 35-48.
    [22]Miglietta A, Bocca C, Rampa A, et al. Geiparvarin and derivatives in combination with taxol:effect on microtubular organization in 3T3 fibroblasts[J]. Anti-Cancer Drug Des,1997,12(8),607-620.
    [23]Borris R P, Cordell G A, Farnsworth N R. Isofraxidin, a cytotoxic coumarin from Micrandra elata (Euphorbiaceae)[J]. J. Nat. Prod.,1980,43(5),641-643.
    [24]Noguchi M, Kitagawa H, Miyazaki I, et al. Influence of Esculetin on Incidence, Proliferation, and Cell Kinetics of Mammary Carcinomas Induced by 7,12-Dimethylbenz [α] anthracene in Rats on Highand Low-fat Diets [J]. Cancer Sci., 1993,84(10),1010-1014.
    [25]Kaneko T, Tahara S, Takabayashi F. Inhibitory effect of natural coumarin compounds, esculetin and esculin, on oxidative DNA damage and formation of aberrant crypt foci and tumors induced by 1,2-dimethylhydrazine in rat colons. [J]. Biol. Pharm. Bull.,2007,30(11),2052.
    [26]王晶.秦皮甲素对人肺癌细胞H125体外增殖的影响[J].时珍国医国药,2011,22(002),507-509.
    [27]Chu C Y, Tsai Y Y, Wang C J, et al. Induction of apoptosis by esculetin in human leukemia cells[J]. Eur. J. Pharmacol.,2001,416(1-2),25-32.
    [28]Wang C J, Hsieh Y J, Chu C Y, et al. Inhibition of cell cycle progression in human leukemia HL-60 cells by esculetin[J]. Cancer lett.,2002,183(2),163-168.
    [29]Kuo H C, Lee H J, Hu C C, et al. Enhancement of esculetin on Taxol-induced apoptosis in human hepatoma HepG2 cells [J]. Toxicol. Appl. Pharmacol.,2006, 210(1-2),55-62.
    [30]Yang J Y, Della-Fera M A, Hartzell D L, et al. Esculetin Induces Apoptosis and Inhibits Adipoge- nesis in 3T3-L1 Cells & ast[J]. Obesity,2006,14(10),1691-1699.
    [31]Lee S H, Park C, Jin C Y, et al. Involvement of extracellular signal-related kinase signaling in esculetin induced Gl arrest of human leukemia U937 cells[J]. Biomed. Pharm.,2008,62(10),723-729.
    [32]Jia S H, Ji Y B. Study of Esculetin-Induced Apoptosis in Human Gastric Carcinoma SGC-7901 Cells[J]. Adv. Mater. Res.,2011,183,2336-2339.
    [33]Fijioka T, Fummi K, Fujii H. Antiproliferative constituents from umbrelliferae plants. V. A new furanocoumarin and falcarindiol furanocoumarin ethers from the root of Angelica japonica[J]. Chem. Pharm. Bull.,1999,47(1),96-100.
    [34]Evan G I, Vousden K H. Proliferation, cell cycle and apoptosis in cancer[J]. Nature, 2001,411 (6835),342-348.
    [35]徐小嫚.蛇床子素对肺癌A549细胞系增殖、凋亡、侵袭的影响及其机制的研究[D].中国医科大学内科学,2011.
    [36]陈月江.蛇床子素对耐阿霉素人乳腺癌细胞多药耐药性的逆转[D].南昌大学,2007.
    [37]Hung C M, Kuo D H, Chou C H, et al. Osthole suppresses HGF-induced epithelial-mesenchymal transition via repressing c-Met/Akt/mTOR pathway in human breast cancer cells[J]. J. Agric. Food. Chem.,2011,59(17),9683-9690.
    [38]Ruiz Marcial C, Chilpa R R, Estrada E, et al. Antiproliferative, cytotoxic and antitumour activity of coumarins isolated from Calophyllum brasiliense[J]. J. Pharm. Pharmacol.,2007,59(5),719-725.
    [39]Du L, Mahdi F, Jekabsons M B, et al. Mammea E/BB, an Isoprenylated Dihydroxycoumarin Protonophore That Potently Uncouples Mitochondrial Electron Transport, Disrupts Hypoxic Signaling in Tumor Cells[J]. J. Nat. Prod.,2010, 73(11),1868-1872.
    [40]Dall'Acqua S, Linardi M A, Maggi F, et al. Natural daucane sesquiterpenes with antiproliferative and proapoptotic activity against human tumor cells[J]. Bioorg. Med.Chem.,2011,19(19),5876-5885.
    [41]Wu J Z, Situ Z Q, Wang W, et al. Antitumor activity of psoralen on mucoepidermoid carcinoma cell line MEC-1.[J]. Chin. med.J.,1992,105(11),913.
    [42]Wu S, Zhang Z, Zhao J. An experimental study on antitumor activity of psoralen on mammary cancer cell line EMT6 in vitro and in vivo].[J]. Chin. J. Chin. mater.med., 1998,23(5),303.
    [43]Guo J, Wu H, Weng X, et al. Studies on extraction and isolation of active constituents from Psoralen corylifolia L. and the antitumor effect of the constituents in vitro].[J]. J. Chin. Med. Mater.,2003,26(3),185.
    [44]杨易灿.中药光敏成分呋喃香豆精抗癌研究进展[J].陕西医学杂志,1988,12(2),55-57.
    [45]Yi W, Chengtao H, Chenguang Z, et al. Screening antitumor compounds psoralen and isopsoralen from Psoralea corylifolia L. seeds[J]. Evidence-Based Complemen-tary and Alternative Medicine,2011,2011,1-7.
    [46]陈楠楠,黄世林,张德杰等.补骨脂素加长波紫外线对人白血病细胞株NB4, HL-60, K562作用的研究[J].中国中医急症,2007,16(4),444-446.
    [47]陆泽华,杨易灿.补骨脂素加紫外光照对人白血病细胞株的抑制作用[J].中国药理学报,1993,(A00),28-30.
    [48]沈丽霞,董晓华,李炜等.槲皮素,补骨脂素对乳腺癌细胞株MCF-7增殖的影响[J].中国药理学通报,2009,25(005),601-605.
    [49]蔡宇.补骨脂素逆转人乳腺癌细胞多药耐药性的研究[J].肿瘤,2004,24(3),240-241.
    [50]Cai T, Cai Y, Yu S, et al. Effects of Psoralen on ADR Multidrug Resistance and Ca(2+) Concentration in MCF-7/ADR Cells [J]. Space Medicine & Medical Engineering, 2007,5,313-316.
    [51]赵益业,蔡宇.补骨脂素逆转人乳腺癌耐药细胞株MCF-7多药耐药性研究[J].中华中医药杂志,2006,21(006),370-371.
    [52]蔡宇,蔡天革,唐凤德等.补骨脂素逆转K562/ADM多药耐药细胞系耐药性研究[J].中国肿瘤临床,2004,31(3),146-148.
    [53]蔡宇,余绍蕾,徐炎等.补骨脂素对HL60/HT耐药细胞逆转及对细胞内Ca2+浓度影响研究[J].中国药学杂志,2006,41(12),905.
    [54]Keane T E, Petros J A, Velimirovich B, et al. Methoxypsoralen phototherapy oftransitional cell carcinoma[J]. Urology,1994,44(6),842-846.
    [55]Lee Y M, Wu T H, Chen S F, et al. Effect of 5-methoxypsoralen (5-MOP) on cell apoptosis and cell cycle in human hepatocellular carcinoma cell line[J]. Toxicology in vitro,2003,17(3),279-287.
    [56]Salvador A, Dall'Acqua S, Sardo M S, et al. Erythroid Induction of Chronic Myelogenous Leukemia K562 Cells Following Treatment with a Photoproduct Derived from the UV-A Irradiation of 5-Methoxypsoralen[J]. J. Med. Chem.,2010, 5(9),1506-1512.
    [57]Wu S B, Pang F, Wen Y, et al. Antiproliferative and Apoptotic Activities of Linear Furocoumarins from Notopterygium incisum on Cancer Cell Lines [J]. Planta med., 2010,76(1),82-85.
    [58]Sousa C, Maziere C, Melo T, et al.8-Methoxypsoralen potentiates the photocytotoxic effect of Photofrin Ⅱ towards EMT-6 murine tumor cells[J]. Cancer lett.,1998, 128(2),177-182.
    [59]Kim Y K, Kim Y S, Ryu S Y. Antiproliferative effect of furanocoumarins from the root of Angelica dahurica on cultured human tumor cell lines[J]. Phytotherapy Res., 2007,21(3),288-290.
    [60]Adams M, Mahringer A, Bauer R, et al. In vitro cytotoxicity and P-glycoprotein modulating effects of geranylated furocoumarins from Tetradium daniellii[J]. Planta Medica-Natural Products and Med. Plant Research,2007,73(14),1475-1477.
    [61]Itoigawa M, Ito C, Tan H T W, et al. Cancer chemopreventive agents, 4-phenylcoumarins from Calophyllum inophyllum[J]. Cancer Lett.,169,15-19
    [62]Ito C, Itoigawa M, Mishina Y, et al. Chemical constituents of Calophyllum brasiliense.2. Structure of three new coumarins and cancer chemopreventive activity of 4-substituted coumarins[J]. J. Nat. Prod,2003,66(3),368-371.
    [63]Chaturvedula V S P, Schilling J K, Kingston D G I. New Cytotoxic Coumarins and Prenylated Benzophenone Derivatives from the Bark of Ochrocarpos punctatus from the Madagascar Rainforest[J]. J. Nat. Prod.,2002,65(7),965-972.
    [64]L6pez-Perez J L, Olmedo D A, Del Olmo E, et al. Cytotoxic 4-Phenylcoumarins from the Leaves of Marila p luricostata[J]. J. Nat. Prod.,2005,68(3),369-373.
    [65]Su C R, Yeh S F, Liu C M, et al. Anti-HBV and cytotoxic activities of pyrano-coumarin derivatives [J]. Bioorg. Med. Chem.,2009,17(16),6137-6143.
    [66]Simoni D, Manfredini S, Tabrizi M A, et al. Geiparvarin analogs. II. Synthesis and cytostatic activity of 5-(4-arylbutadienyl)-3(2H)-furanones and of N-substituted 3-(4-oxo-2-furanyl)-2-buten-2-yl carbamates[J]. J. Med. Chem.,1991,34(11),3172-3176.
    [67]Valenti P, Rampa A, Recanatini M, et al. Synthesis, cytotoxicity and SAR of simple geiparvarin analogues.[J]. Anti-cancer drug des,1997,12(6),443.
    [68]Baraldi P G, Manfredini S, Simoni D, et al. Geiparvarin Analogs.3. Synthesis and cytostatic activity of 3 (2H)-furanone and 4,5-dihydro-3 (2H)-furanone congeners of geiparvarin, containing a geraniol-like fragment in the side chain.[J]. J. Med. Chem., 1992,35(10),1877-1882.
    [69]Manfredini S, Baraldi P G, Bazzanini R, et al. Geiparvarin Analogs.4.1. Synthesis and Cytostatic Activity of Geiparvarin Analogs Bearing a Carbamate Moiety or a Furocoumarin Fragment on the Alkenyl Side Chain[J]. J. Med. Chem.,1994,37(15), 2401-2405.
    [70]Chen Y L, Wang T C, Tzeng C C, et al. Geiparvarin Analogues:Synthesis and Anticancer Evaluation of a-Methylidene-y-butyrolactone-Bearing Coumarins [J]. Helvetica chimica acta,1999,82(2),191-197.
    [71]Chen Y L, Lu C M, Lee S J, et al. Synthesis, antiproliferative, and vasorelaxing evaluations of coumarin α-methylene-y-butyrolactones[J]. Bioorg. Med. Chem.,2005, 13(20),5710-5716.
    [72]Chimichi S, Boccalini M, Cosimelli B, et al. New geiparvarin analogues from 7-(2-oxoethoxy) coumarins as efficient in vitro antitumoral agents[J]. Tetrahedron lett.,2002,43(42),7473-7476.
    [73]Viola G, Vedaldi D, Basso G, et al. Synthesis, cytotoxicity, and apoptosis induction in human tumor cells by geiparvarin analogues [J]. Chemistry & biodiversity,2004, 1(9),1265-1280.
    [74]Chimichi S, Boccalini M, Salvador A, et al. Synthesis and Biological Evaluation of New Geiparvarin Derivatives[J]. Chem. Med. Chem.,2009,4(5),769-779.
    [75]Le Bras G, Radanyi C, Peyrat J F, et al. New novobiocin analogues as antiproliferative agents in breast cancer cells and potential inhibitors of heat shock protein 90[J]. J. Med. Chem.,2007,50(24),6189-6200.
    [76]Radanyi C, Le Bras G, Messaoudi S, et al. Synthesis and biological activity of simplified denoviose- coumarins related to novobiocin as potent inhibitors of heat-shock protein 90 (hsp90)[J]. Bioorg. Med. Chem. lett.,2008,18(7),2495-2498.
    [77]Kusuma B R, Duerfeldt A S, Blagg B S J. Synthesis and biological evaluation of arylated novobiocin analogs as Hsp90 inhibitors[J]. Bioorg. Med. Chem.,2011,21, 7170-7174.
    [78]Zhao H, Reddy Kusuma B, Blagg B S J. Synthesis and evaluation of noviose replacements on novobiocin that manifest antiproliferative activity[J]. J. Med. Chem. lett.,2010,1(7),311-315.
    [79]Zhao H, Yan B, Peterson L B, et al.3-Arylcoumarin derivatives manifest anti-proliferative activity through Hsp90 inhibition[J]. ACS Med.Chem. Lett.,2012, 3(4),327-331.
    [80]Zhao H, Donnelly A C, Kusuma B R, et al. Engineering an antibiotic to fight cancer: optimization of the novobiocin scaffold to produce anti-proliferative agents[J]. J. Med. Chem.,2011,54 (11),3839-3853.
    [81]Yu X M, Shen G, Neckers L, et al. Hsp90 inhibitors identified from a library of novobiocin analogues[J]. J. Am. Chem. Soc.,2005,127(37),12778-12779.
    [82]Burlison J A, Neckers L, Smith A B, et al. Novobiocin:redesigning a DNA gyrase inhibitor for selective inhibition of hsp90[J]. J. Am. Chem. Soc.,2006,128(48), 15529-15536.
    [83]Burlison J A, Blagg B S J. Synthesis and evaluation of coumermycin A1 analogues that inhibit the Hsp90 protein folding machinery[J]. Org. Lett.,2006,8(21),4855-4858.
    [84]Burlison J A, Avila C, Vielhauer G, et al. Development of novobiocin analogues that manifest anti-proliferative activity against several cancer cell lines [J]. J. org. Chem., 2008,73(6),2130-2137.
    [85]Peterson L B, Blagg B S J. ClickChem. to probe Hsp90:Synthesis and evaluation of a series of triazole-containing novobiocin analogues[J]. Bioorg. Med. Chem. lett., 2010,20(13),3957-3960.
    [86]Donnelly A C, Mays J R, Burlison J A, et al. The design, synthesis, and evaluation of coumarin ring derivatives of the novobiocin scaffold that exhibit antiproliferative activity[J]. J. org. Chem.,2008,73(22),8901-8920.
    [87]Dalla Via L, Gia O, Magno S M, et al. New tetracyclic analogues of photochemotherapeutic drugs 5-MOP and 8-MOP:synthesis, DNA interaction, and antiproliferative activity[J]. J. Med. Chem.,1999,42(21),4405-4413.
    [88]Dalla Via L, Uriarte E, Quezada E, et al. Novel pyrone side tetracyclic psoralen derivatives:synthesis and photobiological evaluation[J]. J. Med. Chem.,2003,46(18), 3800-3810.
    [89]Dalla Via L, Gia O, Marciani Magno S, et al. Pyridazinopsoralens of wide chemo-therapeutic interest[J]. Bioorg. Med. Chem.,2010,18(15),5708-5714.
    [90]Dalla Via L, Gonzalez-Gomez J C, Perez-Montoto L G, et al. A new psoralen derivative with enlarged antiproliferative properties [J]. Bioorg. Med. Chem. lett., 2009,19(10),2874-2876.
    [91]Dalla Via L, Mammi S, Uriarte E, et al. New furan side tetracyclic allopsoralen derivatives:synthesis and photobiological evaluation[J]. J. Med. Chem.,2006,9(14), 4317-4326.
    [92]Gia O, Marciani Magno S, Gonzalez-Diaz H, et al. Design, synthesis and photo-biological properties of 3,4-cyclopentenepsoralens[J]. Bioorg. Med. Chem.,2005, 13(3),809-817.
    [93]Dalla Via L, Uriarte E, Santana L, et al. Methyl derivatives of tetracyclic psoralen analogues:antiproliferative activity and interaction with DNA[J]. Arkivoc,2004,131, 146.
    [94]Bailly C, Bal C, Barbier P, et al. Synthesis and biological evaluation of 4-aryl-coumarin analogues of combretastatins[J]. J. Med. Chem.,2003,46(25),5437-5444.
    [95]Ganina O G, Daras E, Bourgarel-Rey V, et al. Synthesis and biological evaluation of polymethoxylated 4-heteroarylcoumarins as tubulin assembly inhibitor [J]. Bioorg. Med. Chem.,2008,16(19),8806-8812.
    [96]Combes S, Barbier P, Douillard S, et al. Synthesis and Biological Evaluation of 4-Arylcoumarin Analogues of Combretastatins. Part 2[J]. J. Med. Chem.,2011, 54(9),3153-3162.
    [97]Jacquot Y, Laios I, Cleeren A, et al. Synthesis, structure, and estrogenic activity of 4-amino-3-(2-methylbenzyl) coumarins on human breast carcinoma cells[J]. Bioorg. Med. Chem.,2007,15 (6),2269-2282.
    [98]Mao W, Wang T, Zeng H, et al. Synthesis and evaluation of novel substituted 5-hydroxycoumarin and pyranocoumarin derivatives exhibiting significant anti-proliferative activity against breast cancer cell lines[J]. Bioorg. Med. Chem. lett., 2009,19(16),4570-4573.
    [99]徐嵩,徐世平,李兰敏.4-,6-或7-位取代苯基亚胺次甲基香豆素的合成及其抗癌活性[J].药学学报,2002,37(2),113-116.
    [100]Belluti F, Fontana G, Bo L D, et al. Design, synthesis and anticancer activities of stilbene-coumarin hybrid compounds:Identification of novel proapoptotic agents[J]. Bioorg. Med. Chem.,2010,18(10),3543-3550.
    [101]Goldstein B D, Rozen M G, Quintavalla J C, et al. Decrease in mouse lung and liver glutathione peroxidase activity and potentiation of the lethal effects of ozone and paraquat by the superoxide dismutase inhibitor diethyldithiocarbamate[J]. Biochem. Pharmacol.,1979,28(1),27-30.
    [102]Bodenner D L, Dedon P C, Keng P C, et al. Selective protection against cis-diamminedichloro-platinum (Ⅱ)-induced toxicity in kidney, gut, and bone marrow by diethyldithiocarbamate[J]. Cancer Res.,1986,46 (6),2751.
    [103]Berry J M, Jacobs C, Sikic B, et al. Modification of cisplatin toxicity with diethyldithiocarbamate [J]. J. Clin. Oncol.,1990,8(9),1585.
    [104]Borch R F, Katz J C, Lieder P H, et al. Effect of diethyldithiocarbamate rescue on tumor response to cis-platinum in a rat model[J]. Proc. Nat. Acad. Sci.,1980,77(9), 5441.
    [105]Moellering D, McAndrew J, Jo H, et al. Effects of pyrrolidine dithiocarbamate on endothelial cells:protection against oxidative stress[J]. Free Radical Biol. Med.,1999, 26(9-10),1138-1145.
    [106]雷瑚仪,赵谢兰,肖希斌.PDTC加强柔红霉素对多药耐药白血病细胞增殖的抑制作用[J].中国实验血液学杂志,2005,13(3),503-504.
    [107]张磊.抗氧化剂吡咯烷二硫代氨基甲酸(PDTC)对卵巢癌细胞HO8910增殖,凋亡 的影响及机制的研究[D].扬州大学,2007.
    [108]吴静,闫亚妮,张颖等.抗氧化剂PDTC对卡铂诱导宫颈癌HeLa细胞增殖和凋亡的影响[J].肿瘤,2010,30(11),908-912.
    [109]单玉喜,林大春,颜纯海.肿瘤坏死因子α及吡咯烷二硫代氨基甲酸酯诱导雄激素非依赖性前列腺癌细胞凋亡的观察[J].江苏医药,2003,29(12),902-904.
    [110]Gerhauser C, You M, Liu J, et al. Cancer chemopreventive potential of sulforamate, a novel analogue of sulforaphane that induces phase Ⅱ drug-metabolizing enzymes[J]. Cancer Res.,1997,57(2),272.
    [111]Guzel O, Salman A. Synthesis, antimycobacterial and antitumor activities of new (1, 1-dioxido-3-oxo-1,2-benzisothiazol-2(3H)-yl)methyl N, N-disubstituted dithiocar-bamate O-alkyldithiocarbonate derivatives [J]. Bioorg. Med. Chem.,2006,14(23), 7804-7815.
    [112]Zahran M A H, Salem T A R, Samaka R M, et al. Design, synthesis and antitumor evaluation of novel thalidomide dithiocarbamate and dithioate analogs against Ehrlich ascites carcinoma- induced solid tumor in Swiss albino mice[J]. Bioorg. Med. Chem.,2008,16(22),9708-9718.
    [113]Scozzafava A, Supuran C T. Carbonic anhydrase inhibitors:synthesis of N-morpholylthiocarbonyl-sulfenylaminoaromatic/heterocyclic sulfonamides and their interaction with isozymes Ⅰ,Ⅱ and Ⅳ[J]. Bioorg. Med. Chem. lett.,2000,10(10), 1117-1120.
    [114]Supuran C T, Briganti F, Tilli S, et al. Carbonic anhydrase inhibitors:Sulfonamides as antitumor agents?[J]. Bioorg. Med. Chem.,2001,9(3),703-714.
    [115]Cao S L, Feng Y P, Jiang Y Y, et al. Synthesis and in vitro antitumor activity of 4(3H)-quinazolinone derivatives with dithiocarbamate side chains[J]. Bioorg. Med. Chem. lett.,2005,15(7),1915-1917.
    [116]Hou X, Ge Z, Wang T, et al. Dithiocarbamic acid esters as anticancer agent. Part 1: 4-Substituted- piperazine-1-carbodithioic acid 3-cyano-3,3-diphenyl-propyl esters [J]. Bioorg. Med.Chem. lett.,2006,16(16),4214-4219.
    [117]Hou X, Ge Z, Wang T, et al. Synthesis and Structure-Activity Relationships of A Novel Class of Dithiocarbamic Acid Esters as Anticancer Agent[J]. Arch. Pharm., 2011,344(5),320-332.
    [118]Jiang X, Ling X, Han F, et al. Studies on the metabolism of 4-methyl-piperazine- 1-carbodithioc acid 3-cyano-3,3-diphenylpropyl ester hydrochloride in rats by high-performance liquid chromatography electrospray ionization tandem mass spectrometry[J]. J. Pharm. Biomed. Anal.,2007,44(5),1127-1132.
    [119]Tripathi R P, Tewari N, Dwivedi N, et al. Fighting tuberculosis:an old disease with new challenges[J]. Med. Res. Rev.,2005,25(1),93-131.
    [120]Li R D, Zhang X, Li Q Y, et al. Novel EGFR inhibitors prepared by combination of dithiocarbamic acid esters and 4-anilinoquinazolines[J]. Bioorg. Med. Chem. lett., 2011,21(12),15,3637-3640.
    [121]Huang W, Ding Y, Miao Y, et al. Synthesis and antitumor activity of novel dithiocarbamate substituted chromones[J]. Eur. J. Med. Chem,2009,44(9),3687-3696.
    [122]黄伟.新型类黄酮衍生物的设计、合成及抗肿瘤活性研究[D].华中师范大学有机化学,2008.
    [123]Lin P S, Kwock L, Goodchild N T. Copper chelator enhancement of bleomycin cytotoxicity[J]. Cancer,1980,46(11),2360-2364.
    [124]Ujjani B, Lyman S, Winkelmann D, et al. Enhancement of cytotoxicity of bleomyein by dithiocarbamates:Formation of bis(dithiocarbamato) Cu (II)[J]. J. Inorg. Biochem., 1990,38(1),81-93.
    [125]Alverdi V, Giovagnini L, Marzano C, et al. Characterization studies and cytotoxicity assays of Pt (II) and Pd (II) dithiocarbamate complexes by means of FT-IR, NMR spectroscopy and mass spectrometry[J]. J. Inorg. Biochem.,2004,98(6),1117-1128.
    [126]Giovagnini L, Marzano C, Bettio F, et al. Mixed complexes of Pt (II) and Pd (II) with ethylsarcosine-dithiocarbamate and 2-/3-picoline as antitumor agents [J]. J. Inorg. Biochem.,2005,99(11),2139-2150.
    [127]Daniel K G, Chen D, Orlu S, et al. Clioquinol and pyrrolidine dithiocarbamate complex with copper to form proteasome inhibitors and apoptosis inducers in human breast cancer cells[J]. Breast Cancer Res.,2005,7(6),897-908.
    [128]Chen D, Cui Q C, Yang H, et al. Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity[J]. Cancer Res.,2006,66(21), 10425.
    [129]Chen D, Dou Q P. New uses for old copper-binding drugs:converting the pro-angiogenic copper to a specific cancer cell death inducer[J]. Expert Opinion on Therapeutic Targets,2008,12,739-748
    [130]Giovagnini L, Sitran S, Montopoli M, et al. Chemical and biological profiles of novel copper (Ⅱ) complexes containing S-donor ligands for the treatment of cancer[J]. Inorg. Chem.,2008,47(14),6336-6343.
    [131]Li H, Lai C S, Wu J, et al. Cytotoxicity, Qualitative Structure-Activity Relationship (QSAR), and anti-tumor activity of bismuth dithiocarbamate complexes[J]. J. Inorg. biochem.,2007,101(5),809-816.
    [132]Giovagnini L, Ronconi L, Aldinucci D, et al. Synthesis, characterization, and comparative in vitro cytotoxicity studies of platinum (Ⅱ), palladium (Ⅱ), and gold (Ⅲ) methylsarcosinedithio-carbamate complexes[J]. J. Med. Chem,2005,48(5),1588-1595.
    [133]Ronconi L, Giovagnini L, Marzano C, et al. Gold dithiocarbamate derivatives as potential antineoplastic agents:design, spectroscopic properties, and in vitro antitumor activity[J].Inorg. Chem.,2005,44(6),1867-1881.
    [134]Milacic V, Chen D, Ronconi L, et al. A novel anticancer gold (III) dithiocarbamate compound inhibits the activity of a purified 20S proteasome and 26S proteasome in human breast cancer cell cultures and xenografts[J]. Cancer Res.,2006,66(21), 10478.
    [135]Yoshino H, Ueda N, Niijima J, et al. Novel sulfonamides as potential, systemically active antitumor agents[J]. J. Med. Chem.,1992,35(13),2496-2497.
    [136]Owa T, Yoshino H, Okauchi T, et al. Synthesis and biological evaluation of N-(7-indolyl)-3-pyridinesulfonamide derivatives as potent antitumor agents[J]. Bioorg. Med. Chem.lett.,2002,12(16),2097-2100.
    [137]Owa T, Yokoi A, Yamazaki K, et al. Array-based structure and gene expression relationship study of antitumor sulfonamides including N-[2-[(4-hydroxyphenyl) amino]-3-pyridinyl]-4-methoxybenzene- sulfonamide and N-(3-chloro-7-indolyl)-1, 4-benzenedisulfonamide[J]. J. Med. Chem.,2002,45(22),4913-4922.
    [138]Owa T, Yoshino H, Okauchi T, et al. Discovery of novel antitumor sulfonamides targeting G1 phase of the cell cycle[J]. J. Med. Chem.,1999,42(19),3789-3799.
    [139]Chang J Y, Hsieh H P, Chang C Y, et al.7-Aroyl-aminoindoline-1-sulfonamides as a novel class of potent antitubulin agents[J]. J. Med. Chem,2006,49(23),6656-6659.
    [140]]Bouissane L, El Kazzouli S, Leonce S, et al. Synthesis and biological evaluation of N-(7-indazolyl) benzenesulfonamide derivatives as potent cell cycle inhibitors[J]. Bioorg. Med. Chem.,2006,14(4),1078-1088.
    [141]Medina J C, Roche D, Shan B, et al. Novel halogenated sulfonamides inhibit the growth of multidrug resistant MCF-7/ADR cancer cells[J]. Bioorg. Med. Chem. lett., 1999,9(13),1843-1846.
    [142]Medina J C, Shan B, Beckmann H, et al. Novel antineoplastic agents with efficacy against multidrug resistant tumor cells[J]. Bioorg. Med. Chem. lett.,1998,8(19), 2653-2656.
    [143]Hu L, Li Z, Wang Y, et al. Novel pyridinyl and pyrimidinylcarbazole sulfonamides as anti- proliferative agents[J]. Bioorg. Med. Chem. lett.,2007,17(5),1193-1196.
    [144]Hu L, Li Z, Li Y, et al. Synthesis and structure-activity relationships of carbazole sulfonamides as a novel class of antimitotic agents against solid tumors[J]. J. Med. Chem.,2006,49(21),6273-6282.
    [145]Gobbini M, Armaroli S, Banfi L, et al. Design, synthesis, and quantitative structure-activity relationship of cytotoxic gamma-carboline derivatives.[J]. Bioorg. Med. Chem.,2010,18(10),6351-6359.
    [146]陈静.咔啉及其类似物的设计、合成及抗肿瘤活性研究[D].浙江大学药物化学,2009.
    [147]Chen J, Dong X, Liu T, et al. Design, synthesis, and quantitative structure-activity relationship of cytotoxic γ-carboline derivatives[J]. Bioorg. Med. Chem.,2009,17(9), 3324-3331.
    [148]Pochet L, Doucet C, Dive G, et al. Coumarinic derivatives as mechanism-based inhibitors of [alpha]-chymotrypsin and human leukocyte elastase[J]. Bioorg. Med. Chem.,2000,8(6),1489-1501.
    [149]Burlison J A, Avila C, Vielhauer G, et al. Development of novobiocin analogues that manifest anti-proliferative activity against several cancer cell lines[J]. The Journal of organicChem.,2008,73(6),2130-2137.
    [150]Reddy N S, Mallireddigari M R, Cosenza S, et al. Synthesis of new coumarin 3-(N-aryl) sulfonamides and their anticancer activity[J]. Bioorg. Med. Chem. lett., 2004,14(15),4093-4097.
    [151]Al-Rashood S T, Aboldahab I A, Nagi M N, et al. Synthesis, dihydrofolate reductase inhibition, antitumor testing, and molecular modeling study of some new 4 (3H)-quinazolinone analogs[J]. Bioorg. Med. Chem.,2006,14(24),8608-8621.
    [152]Abouzid K, Shouman S. Design, synthesis and in vitro antitumor activity of 4-aminoquinoline and 4-aminoquinazoline derivatives targeting EGFR tyrosine kinase[J]. Bioorg. Med. Chem.,2008,16(16),7543-7551.
    [153]Jia Z, Zhang H, Huang J. Synthesis of poly (Ethylene glycol) with sulfadiazine and chlorambucil end groups and investigation of its antitumor activity [J]. Bioorg. Med. Chem. lett.,2003,13(15),2531-2534.
    [154]Gawin R, De Clercq E, Naesens L, et al. Synthesis and antiviral evaluation of acyclic azanucleosides developed from sulfanilamide as a lead structure[J]. Bioorg. Med. Chem.,2008,16(18),8379-8389.
    [155]1-H-Pyrazolo(3,4B) pyrimidine derivatives and their use as modulators of mitotic kinases[Z]. WO Patent WO/2008/094,575,2008.
    [156]Bissell E R, Mitchell A R, Smith R E. Synthesis andChem. of 7-amino-4-(trifluoromethyl) coumarin and its amino acid and peptide derivatives [J]. J. Org. Chem.,1980,45(12),2283-2287.
    [157]Atkins R L, Bliss D E. Substituted coumarins and azacoumarins. Synthesis and fluorescent properties [J]. The Journal of OrganicChem.,1978,43(10),1975-1980.
    [158]Mizukami S, Nagano T, Urano Y, et al. A fluorescent anion sensor that works in neutral aqueous solution for bioanalytical application[J]. J. Am. Chem. Soc.,2002, 124(15),3920-3925.
    [159]李润涛,葛泽梅,程铁明,等.氨基二硫代甲酸酯类化合物的合成新方法[J].高等学校化学学报,1999,20(12),1897-1902.
    [160]Wilson E, Tishler M. Nitrogen Mustards[J]. J. Am. Chem. Soc.,1951,73(8), 3635-3641.
    [161]Graczyk J, Pakulska W, Groszkowski S, et al. Antineoplastic activity in mice of 4, 4'-(2-methyl-1,4-piperazinodiyl) bis-(4-oxo)-propenyl-1-carboxylic-1 acid diethyl ester].[J]. Acta poloniae pharmaceutica,1980,37(2),249.
    [162]郭保国,葛泽梅,程铁明等.1,4-二[3-(氨基硫代甲酰硫基)丙酰基]哌嗪类化合物的合成及其抗肿瘤活性[J].北京大学药学院.
    [163]Kesten S R, Heffner T G, Johnson S J, et al. Design, synthesis, and evaluation of chromen-2-ones as potent and selective human dopamine D4 antagonists[J]. J. Med. Chem,1999,42(18),3718-3725.
    [164]Roma G, Braccio M D, Carrieri A, et al. Coumarin, chromone, and 4 (3H)-pyrimidinone novel bicyclic and tricyclic derivatives as antiplatelet agents: synthesis, biological evaluation, and comparative molecular field analysis[J]. Bioorg. Med. Chem.,2003,11(1),123-138.
    [165]Di Braccio M, Grossi G, Roma G, et al. Synthesis and in vitro inhibitory activity on human platelet aggregation of novel properly substituted 4-(1-piperazinyl) coumarins[J]. Eur. J. Med. Chem,2004,39(5),397-409.
    [166]Cinone N, Di Braccio M, Grossi G, et al. Synthesis, antiplatelet activity and comparative molecular field analysis of substituted 2-amino-4H-pyrido [1,2-a] pyrimidin-4-ones, their congeners and isosteric analogues[J]. Bioorg. Med. Chem., 2000,8(4),751-768.
    [167]Heinrich T, Bottcher H, Schiemann K, et al. Dual 5-HT1A agonists and 5-HT re-uptake inhibitors by combination of indole-butyl-amine and chromenonyl-piperazine structural elements in a single molecular entity [J]. Bioorg. Med. Chem., 2004,12(18),4843-4852.
    [168]Ferte J, Kuhnel J M, Chapuis G, et al. Flavonoid-related modulators of multidrug resistance:Synthesis, pharmacological activity, and structure-activity relationships [J]. J. Med. Chem.,1999,42(3),478-489.
    [169]Hadjeri M, Barbier M, Ronot X, et al. Modulation of P-glycoprotein-mediated multidrug resistance by flavonoid derivatives and analogues [J]. J. Med. Chem.,2003, 46(11),2125-2131.
    [170]Griffin R J, Fontana G, Golding B T, et al. Selective benzopyranone and pyrimido [2, 1-a] isoquinolin-4-one inhibitors of DNA-dependent protein kinase:synthesis, structure-activity studies, and radiosensitization of a human tumor cell line in vitro [J]. J. Med. Chem.,2005,48(2),569-585.
    [171]Ishar M, Singh G, Singh S, et al. Design, synthesis, and evaluation of novel 6-chloro-/fluorochromone derivatives as potential topoisomerase inhibitor anticancer agents[J]. Bioorg. Med. Chem. lett.,2006,16(5),1366-1370.
    [172]Liu T, Xu Z, He Q, et al. Nitrogen-containing flavonoids as CDK1/Cyclin B inhibitors:Design, synthesis, and biological evaluation[J]. Bioorg. Med. Chem. lett., 2007,17(1),278-281.
    [173]郑梅花,甘莹,谢松强等.8-黄酮哌嗪衍生物的合成及生理活性研究[J].有机化学,2009,29(9),1445-1449.
    [174]崔世怡,刘玉欣,杨更亮等.新化合物(Z)-7-氟-6-甲基-3(哌嗪-1-亚甲基)硫色满-4-酮体外抗肿瘤作用[J].中国药师,2010,(005),612-614.
    [175]Hall B J, Chebib M, Hanrahan J R, et al.6-Methylflavanone, a more efficacious positive allosteric modulator of [gamma]-aminobutyric acid (GABA) action at human recombinant α2β2γ2L than at α1β2γ2L and α2β2 GABAA receptors expressed in Xenopus oocytes[J]. Eur. J. Pharm.,2005,512(2-3),97-104.
    [176]Jung J C, Jung Y J, Park O S. A convenient one-pot synthesis of 4-hydrouxy-coumarin,4-hydroxy-thiocoumarin, and 4-hydrouxyquinolin-2-(1H)-one [J]. Synth. Commun.,2001,31(8),1195-1200.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700