激光水下成像的图像复原及超分辨率重建算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光水下目标成像被广泛应用于海洋、江河及湖泊探测等领域,但是由于存在水体对激光的吸收散射等衰减效应、成像系统的衍射极限、像差畸变以及水下湍流等因素,水下图像存在严重的降质,主要表现在噪声、模糊及低分辨率等方面。近年来已有学者从图像增强、复原入手,改善图像退化,提高图像的清晰度,但效果仍需改进,且分辨率得不到提高,有些算法甚至会降低分辨率。分辨率是评价图像的重要参数,提高水下成像的图像质量,特别是在人眼视觉方面,很大程度上决定于分辨率的提高。因此本论文从图像处理的各个环节入手,研究、提出并实验了大量的图像复原及超分辨率重建算法。
     本论文首先介绍了水下距离选通激光成像实验系统,给出了详细的实验框图、设备和实验结果;回顾了经典的点扩散模型,分析了异同点并确定建模需求;通过计算到达探测器的三种光分量,考虑距离选通门、光学镜头衍射极限、传感器畸变及水体湍流等因素,建立了基于本课题实验系统的水下成像模型,并计算得到了成像系统的调制传递函数和点扩散函数。
     为了有效去除噪声对水下图像处理的影响,本论文分析了水下成像过程中引入噪声的各种因素,基于噪声的统计特性提出了基于边缘检测的分块混合滤波图像去噪法,并进行了实验验证了去噪预处理的有效性;分析了使用客观指标评价图像质量的必要性,根据图像复原和超分辨率重建算法的特性,分别给出了相应的客观评价参数,并在后面章节作为图像处理结果的评判标准;建立了图像处理评估系统框图,展示了本论文所有图像处理方法的关系枢纽。
     在改进图像复原方法的方面,本论文根据成像系统的调制传递函数和点扩散函数,提出了基于建模及边界控制约束的半盲图像复原方法,以线结构光探测实验系统作为平台验证了将该方法的有效性和可行性;作了大量实验将水下距离选通成像图像进行了基于调制传递函数的频率域图像复原以及基于点扩散函数的空间域图像复原,并以客观评价标准来评判复原结果;实验结果验证了预处理去噪对于复原方法的有效性,基于本论文建立的水下距离选通成像模型得到的点扩散函数的半盲图像复原法取得了较好的复原效果。
     为了提高水下成像图像的分辨率,本论文提出了将超分辨率重建引入水下,从单帧和多帧处理出发,将水下距离选通成像图像序列进行了传统超分辨率重建实验,使用相应的客观评价标准评判重建结果:实验结果验证了预处理去噪对于超分辨率重建方法的有效性,及超分辨率重建引入水下的可行性;根据基于建模的复原方法,提出了基于建模的超分辨率重建方法并作了大量实验,结果表明,基于本论文建立模型得到的点扩散函数的凸集投影超分辨率重建方法取得了较好的复原效果。
     由于基于成像系统点扩散函数的最佳图像复原和超分辨率重建方法都已实验得到,本论文在贝叶斯框架下,利用图像复原和超分辨率重建的优势及特长,将基于建模的复原和超分辨率重建方法有机结合在一起,并实验验证了混合算法的优越性;通过边缘提取,验证了本论文所提出方法能有效提高水下距离选通成像图像的质量,最后总结并提出了水下成像图像处理的后续工作展望。
Underwater imaging is widely used in ocean, river and lake exploration, but it is affected by properties of water and the optics including lenses and sensors. Image restoration methods can help to eliminate the blur caused by absorption and scattering; however, the resolution is still limited or even degraded, and the restoration methods are needed to be improved. Considering all the aspects of image formation, this dissertation studies and proposes various image restoration and super-resolution reconstruction methods.
     The dissertation introduces the underwater range-gated laser imaging system, gives a detailed block diagram of the experimental equipment and experimental results; reviews and analyzes the similarities and differences of several classic point-spread models which determine the needs of modeling. By calculating the three components of light irradiance reaching the detector, based on linear transmission theory, an underwater imaging model suitable for the range-gated imaging system considering the gated time was established in this study including laser beam propagation affected by absorption and scattering, the effects of underwater turbulence and the diffraction limit of sensors. The model-derived modulation transfer function (MTF) and point spread function (PSF) are applied for the theoretical basis of underwater image processing.
     The dissertation proposes and tests an edge based hybrid block denoising method and applies it as the preprocessing module before the restoration and super-resolution reconstruction. As there exists no ideal or reference image for underwater imaging system, blind, objective quality metrics are chosen for evaluating the performance of the PSF-based restoration and reconstruction methods respectively.
     Based on the MTF and PSF derived by the imaging model, PSF-based semi-blind restoration is verified by its performance in a structured light detection system. MTF-based restoration methods in frequency domain and PSF-based restoration methods in time domain are tested by their performance in our underwater range-gated imaging system. Super-resolution reconstruction methods operated by single and multiple frames are introduced in the underwater range-gated imaging system, performances of which show adequate accuracy and feasibility. The PSF-based reconstruction methods in time domain are also tested by their performance in our underwater range-gated imaging system.
     In order to process the experimental imagery to a best possible level, image restoration and super-resolution reconstruction techniques are combined with the point spread function (PSF) of underwater range-gated imaging system under the maximum a posteriori (MAP) framework, performance of which shows superiority compared to other methods. Edge detection are performed and proved that the restoration and super-resolution reconstruction methods proposed by this dissertation can effectively enhance the resolution and quality of underwater range-gated imaging.
引文
[1]郑贵斌.海洋资源开发集成战略与海洋经济可持续创新发展.理论学刊,2006,148(6):37-39
    [2]曹峰梅,金伟其,黄有为等.水下光电成像技术与装备研究进展(上)——水下激光距离选通技术.红外技术,2011,33(2):63-69
    [3]L. Zhishen, Y. Yifan, Z. Kailin, et al. Underwater image transmission and blurred image restoration. Optical Engineering,2001,40(6):1125-1131
    [4]W. Hou, D. J. Gray, A. D. Weidemann, et al. Automated underwater image restoration and retrieval of related optical properties.2007 IEEE International Geoscience and Remote Sensing Symposium,2007.1889-1892
    [5]W. Hou, A. D. Weidemann, D. J. Gray, et al. Imagery-derived modulation transfer function and its applications for underwater imaging. Applications of Digital Image Processing,2007.669662
    [6]M.H.North. Point spread function modeling using small angle scattering theory. CIS Selected Papers:Laser Remote Sensing of Natural Waters:From Theory to Practice, 1996.164-176.
    [7]张祥光.图像超分辨率重构算法及其在水下图像中的应用:[博士学位论文].青岛:中国海洋大学,2009
    [8]L. R. Marshall. Blue-green lasers plumb the mysteries of the deep. Laser Focus World, 1993,29(4):185-185
    [9]廖又明.载人深潜器HOV在海洋开发中的运用及现状——海洋考察中的HOV特征、用途、能力及作用.海洋开发应用,2002,19(5):38-42
    [10]顾洁,郑国星,袁均毅.新型激光扫描水下三维视觉传感系统.光电工程,1991,18(5):11-18
    [11]G. R. Fournier, D. Bonnier, J. L. Forand, et al. LUCIE-laser enhanced underwater camera. Sea Technology,1994,35(12):55-59
    [12]A. Weidemann, G. R. Fournier, L. Forand, et al. In harbor underwater threat detection/identification using active imaging. Photonics for Port and Harbor Security, 2005.59-70
    [13]Fournier.G.R, Forand.J.LMathieu.P, Range-Gated Active Underwater Imaging: Evolution, performance and Perspectives. Proc.Ocean Sciences Meeting's Presentation, 2008.1-29
    [14]B. A. Swartz. Laser range gate underwater imaging advances. Proceedings of OCEANS'94,1994.722-727
    [15]C. S. Tan, A. Sluzek, G. G. L. Seet, et al. Range gated imaging system for underwater robotic vehicle. OCEANS 2006-Asia Pacific,2007.4393938
    [16]H. M. Tulldahl, P. Andersson, A. Olsson, et al. Experimental evaluation of underwater range-gated viewing in natural waters. Electro-Optical and Infrared Systems: Technology and Applications III,2006.639506-639501
    [17]W. Jin, F. Cao, X. Wang, et al. Range-gated underwater laser imaging system based on intensified gate imaging technology. International Symposium on Photoelectronic Detection and Imaging,2007.66210-66211
    [18]S. Q. Duntley. Underwater lighting by submerged lasers and incandescent sources: [Ph.D paper]. University of California:San Diego,1971
    [19]M.H.North. Point spread function modeling using small angle scattering theory. CIS Selected Papers:Laser Remote Sensing of Natural Waters:From Theory to Practice, 1996.164-176.
    [20]F. Fan, Y. Kecheng, F. Bo, et al. Application of Blind Deconvolution Approach with Image Quality Metric in Underwater Image Restoration.2010 International Conference on Image Analysis and Signal Processing,2010.236-239
    [21]K. J. Voss. Simple empirical model of the oceanic point spread function. Applied Optics,1991,30(18):2647-2651
    [22]J. S. Jaffe. Computer modeling and the design of optimal underwater imaging systems. IEEE Journal of Oceanic Engineering,1990,15(2):101-111
    [23]M.R.Banham. Digital Image Restoration. IEEE Signal Processing Magazine,1977, 14(2):24-41
    [24]A. N. Tikhonov, A. V. Goncharskii, V. V. Stepanov, et al. Ill-posed image processing problems. Soviet Physics-Doklady,1987,32(6):456-458
    [25]D. GemanY. Chengda. Nonlinear image recovery with half-quadratic regularization. IEEE Transactions on Image Processing,1995,4(7):932-946
    [26]L. I. Rudin, S. OsherE. Fatemi. Nonlinear total variation based noise removal algorithms. Experimental Mathematics:Computational Issues in Nonlinear Science, 1992.259-268
    [27]S. M. JefferiesJ. C. Christou. Restoration of astronomical images by iterative blind deconvolution. Astrophysical Journal,1993,415(2):862-874
    [28]T. J. Schulz, B. E. StriblingJ. J. Miller. Multiframe blind deconvolution with real data: imagery of the Hubble Space Telescope. Optics Express,1997,1(11):355-362
    [29]B. R. Frieden. Exact, linear solution to the problem of imaging through turbulence. Optics Communications,1998,150(1-6):15-21
    [30]谢颂华,陈黎,聂晖.基于联合插值——恢复的超分辨率图像盲复原计算机应用,2010,(2):341-343
    [31]A. Duijster, P. ScheundersS. De Backer. Wavelet-based EM algorithm for multispectral-image restoration. IEEE Transactions on Geoscience and Remote Sensing, 2009,47(11):3892-3898
    [32]M. A. T. FigueiredoR. D. Nowak. An EM algorithm for wavelet-based image restoration. IEEE Transactions on Image Processing,2003,12(8):906-916
    [33]R. Neelamani, C. HyeokhoR. Baraniuk. ForWaRD:Fourier-wavelet regularized deconvolution for ill-conditioned systems. IEEE Transactions on Signal Processing, 2004,52(2):418-433
    [34]M. S. Crouse, R. G. BaraniukR. D. Nowak. Signal estimation using wavelet-Markov models.1997 IEEE International Conference on Acoustics,1997.3429-3432
    [35]娄帅,丁振良,袁峰.改进的基于小波域隐Markov树模型的图像复原.仪器仪表学报,2009,30(8):1720-1725
    [36]J. M. Bioucas-Dias. Bayesian wavelet-based image deconvolution:a GEM algorithm exploiting a class of heavy-tailed priors. IEEE Transactions on Image Processing,2006, 15(4):937-951
    [37]鲁晓磊,黄本雄,王芙蓉.基于小波域双层贝叶斯模型的图像复原.红外与激光工程,2008,37(5):929-934
    [38]M. N. DoM. Vetterli. The contourlet transform:an efficient directional multiresolution image representation. IEEE Transactions on Image Processing,2005,14(12):2091- 2106
    [39]Z. F. ZhouP. L. Shui. Contourlet-based image denoising algorithm using directional windows. Electronics Letters,2007,43(2):92-93
    [40]罗谧,基于Contourlet域的维纳滤波的图像复原.第二届仪表、自动化与先进集成技术大会论文集,2008.209-212
    [41]娄帅,丁振良,袁峰.基于Contourlet变换的迭代图像复原算法.光学学报,2009,29(10):2768-2773
    [42]C. Yen-Wei, Z. Nakao, K. Arakaki, et al. Restoration of gray images based on a genetic algorithm with Laplacian constraint. Fuzzy Sets and Systems,1999,103(2):285-293
    [43]T. Hung-HsuY. Pao-Ta. Genetic-based fuzzy hybrid multichannel filters for color image restoration. Fuzzy Sets and Systems,2000,114(2):203-224
    [44]K. Jong BaeK. Hang Joon. Region removal and restoration using a genetic algorithm with isophote constraint. Pattern Recognition Letters,2003,24(9-10):1303-1316
    [45]张煜东,吴乐南.改进免疫算法用于图像复原.光学精密工程,2009,17(2):417-425
    [46]H. Min-Cheol, T. StathakiA. K. Katsaggelos. Iterative regularized least-mean mixed-norm image restoration. Optical Engineering,2002,41(10):2515-2524
    [47]A. W. Lohmann, G. WeigeltB. Wirnitzer. Speckle masking in astronomy:triple correlation theory and applications. APPLIED OPTICS,1983,22(24):4028-4037
    [48]J. C. FontanellaA. Seve. Reconstruction of turbulence-degraded images using the Knox-Thompson algorithm. Journal of the Optical Society of America A (Optics and Image Science),1987,4(3):438-448
    [49]S. D. Ford, B. M. WelshM. C. Roggemann. Constrained least-squares estimation in deconvolution from wave-front sensing. Optics Communications,1998,151(1): 93-100
    [50]P. NisensonR. Barakat. Partial atmospheric correction with adaptive optics. Journal of the Optical Society of America A (Optics and Image Science),1987,4(12):2249-2253
    [51]M. Cannon. Blind deconvolution of spatially invariant image blurs with phase. IEEE Transactions on Acoustics, Speech and Signal Processing,1976, ASSP-24(1):58-63
    [52]R. L. Lagendijk, A. Murat TekalpJ. Biemond. Maximum likelihood image and blur identification:a unifying approach. Optical Engineering,1990,29(5):422-435
    [53]S. J. ReevesR. M. Mersereau. Blur identification by the method of generalized cross-validation. IEEE Transactions on Image Processing,1992,1(3):301-311
    [54]Y. Yitzhaky, I. DrorN. S. Kopelka. Restoration of atmospherically blurred images according to weather-predicted atmospheric modulation transfer functions. Optical Engineering,1997,36(11):3064-3072
    [55]谢盛华,张启衡,宿丁.基于APEX方法的湍流退化图像复原算法.光电工程,2007,34(2):88-92
    [56]A. S. Carasso, D. S. BrightA. E. Vladar. APEX method and real-time blind deconvolution of scanning electron microscope imagery. Optical Engineering,2002, 41(10):2499-2514
    [57]A. S. Carasso. Linear and nonlinear image deblurring:a documented study. SIAM Journal on Numerical Analysis,1999,36(6):1659-1689
    [58]方帅,黄宏华,黄印博.基于大气调制传递函数的大气退化图像复原.红外与激光工程,2008,37(S2):642-645
    [59]荣健,申金娥,丁学科等.采用改进的退化模型恢复湍流降质图像.电子科技大学学报,2008,37(6):890-892
    [60]G. R. Ayers, M. J. NorthcottJ. C. Dainty. Knox-Thompson and triple-correlation imaging through atmospheric turbulence. Journal of the Optical Society of America A (Optics and Image Science),1988,5(7):963-985
    [61]洪汉玉,喻九阳,陈以超等.红外目标湍流退化图像的优化复原算法.应用光学,2006,27(6):510-515
    [62]洪汉玉.复杂背景红外湍流退化图像复原算法研究.激光与红外,2008,38(12):1270-1273
    [63]肖利平,陈安宏,曹炬等.基于飞行参数约束的湍流退化图像快速复原算法红外与激光工程,2008,37(3):538-541
    [64]T.-X. Zhang, H.-Y. Hong, X.-H. Sun, et al. Restoring turbulence-degraded images based on estimation of turbulence point spread function values. Acta Automatica Sinica, 2003,29(4):573-581
    [65]付长军,许东,赵剡.湍流退化图像的最大熵盲目复原方法红外与激光工程, 2008,37(3):542-546
    [66]P. Sung Cheol, P. Min KyuK. Moon Gi. Super-resolution image reconstruction:a technical overview. Signal Processing Magazine, IEEE,2003,20(3):21-36
    [67]HarrisJ.L. Diffaction and Resolving Power. J.O.S.A,1964,54(7):931-936
    [68]P. Sung Cheol, P. Min KyuK. Moon Gi. Super-resolution image reconstruction:a technical overview. IEEE Signal Processing Magazine,2003,20(3):21-36
    [69]N. K. Bose. Recursive reconstruction of images from noisy and blurred multiframes, 1990.319-324
    [70]Bose.N.K.KimH.C. Recursive total least squares algorithm for image reconstruction from noisy, under-sampled multi-frames. Multi dimensional Systems and Signal Proeessing,1993,4(3):253-268
    [71]M. IraniS. Peleg. Improving resolution by image registration. CVGIP:Graphical Models and Image Processing,1991,53(3):231-239
    [72]A. J. Patti, M. I. SezanA. Murat Tekalp. Superresolution video reconstruction with arbitrary sampling lattices and nonzero aperture time. IEEE Transactions on Image Processing,1997,6(8):1064-1076
    [73]J.-H. Shin, J. YoonJ.-K. Paik. Image-fusion-based adaptive regularization for image expansion. Image and Video Communications and Processing,2000.1040-1051
    [74]N. Nguyen, P. MilanfarG. Golub. Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement. Image Processing, IEEE Transactions on,2001,10(9):1299-1308
    [75]K. Hyunwoo, J. Jeong-HunH. Ki-Sang. Edge-enhancing super-resolution using anisotropic diffusion. Image Processing. Proceedings 2001 International Conference on Image Processing,2001.130-133
    [76]M. K. NgN. K. Bose. Mathematical analysis of super-resolution methodology. Signal Processing Magazine, IEEE,2003,20(3):62-74
    [77]E. S. LeeM. G. Kang. Regularized adaptive high-resolution image reconstruction considering inaccurate subpixel registration. IEEE Transactions on Image Processing, 2003,12(7):826-837
    [78]S. LertrattanapanichN. K. Bose. High resolution image formation from low resolution frames using Delaunay triangulation. IEEE Transactions on Image Processing,2002, 11(12):1427-1441
    [79]S. Farsiu, M. D. Robinson, M. Elad, et al. Fast and robust multiframe super resolution. IEEE Transactions on Image Processing,2004,13(10):1327-1344
    [80]D. J. Mudugamuwa, X. J. He, D. M. Wei, et al. Super-Resolution by Prediction Based Sub-pel Motion Estimation.2009 24th International Conference Image and Vision Computing New Zealand,2009.282-287.
    [81]田岩,田金文,柳健.超分辨率技术的实现一种改善的小波插值方法.中国图像图形学报,2003,8(12):1422-1426
    [82]盂庆武.预估计混叠度的MAP超分辨率处理算法.软件学报,2004,15(2):207-214
    [83]赵书斌,张蓬,彭思龙.基于小波域HMT模型的彩色图像超分辨率复原.中国图像图形学报,2004,9(2):172-177
    [84]袁琪荆,树旭.改进的序列图像超分辨率重建方法.计算机应用,2009,29(12):3310-3313
    [85]杨爱萍,侯正信,王成优等.保细节自适应超分辨率融合算法.天津大学学报,2009,42(8):727-732
    [86]H. KnutssonC.-F. Westin. Normalized and differential convolution:methods for interpolation and filtering of incomplete and uncertain data,1993.515-523
    [87]T. Q. Pham, L. J. van VlietK. Schutte. Robust fusion of irregularly sampled data using adaptive normalized convolution. EURASIP Journal on Applied Signal Processing, 2006,2006(10):12
    [88]朱福珍.基于BP神经网络的超分辨率图像重建.系统工程与电子技术,2009,31(7):1746-1749
    [89]喻继业,吴炜,滕奇志等.基于图像类推的遥感图像超分辨率技术.计算机应用,2010,30(1):61-64+67
    [90]A. Hertzmann, C. E. Jacobs, N. Oliver, et al. Image analogies. Proceedings of SIGGRAPH,2001.327-340
    [91]W. Wu, Z. LiuX. H. He. Learning-based super resolution using kernel partial least squares. Image and Vision Computing,2011,29(6):394-406
    [92]Z. B. Niu, Y. ZhouK. Shi. Super resolution reconstruction for infrared dim point target. Journal of Infrared and Millimeter Waves,2011,30(2):137
    [93]范泛.激光水下成像的盲去卷积图像复原技术研究:[博士学位论文].武汉:华中科技大学,2010
    [94]张祥光.图像超分辨率重构算法及其在水下图像中的应用:[博士学位论文].青岛:中国海洋大学,2008
    [95]S. Q. Duntley. Light in the Sea. J. Opt. Soc. Am.,1963,53(2):214-233
    [96]张以谟.应用光学.(第2版).武汉:华中理工大学出版社,1987.20-23
    [97]F. Chilton, D. D. JonesW. K. Talley. Imaging Properties of Light Scattered by the Sea. J. Opt. Soc. Am.,1969,59(8):891-898
    [98]J. R. V. Zaneveld, M. AndradeG. F. Beardsley. Measurements of optical properties at an oceanic front observed near the galapagos islands.1969,74(23):5540-5541
    [99]J. L. ForandG. R. Fournier. Particle distributions and index of refraction estimation for Canadian waters. Airborne and In-Water Underwater Imaging,1999.34-44
    [100]W. M. Balch, D. T. Drapeau, T. L. Cucci, et al. Optical backscattering by calcifying algae:separating the contribution of particulate inorganic and organic carbon fractions. Journal of Geophysical Research,1999,104(C1):1541-1558
    [101]J. S. Jaffe. Computer modeling and design of optimal underwater imaging systems. IEEE J. Ocean. Eng,1990,15(2):101-111
    [102]W. Hou, D. J. Gray, A. D. Weidemann, et al. Comparison and validation of point spread models for imaging in natural waters. Optics Express,2008,16(13):9958-9965
    [103]傅博.水下激光距离选通成像系统设计与研究:[博士学位论文].武汉:华中科技大学,2010
    [104]吕乃光.傅里叶光学.(第1版).武汉:华中理工大学出版社,1987.34-53
    [105]B. L. McGlamery. A computer model for underwater camera systems. Proceedings of the Society of Photo-Optical Instrumentation Engineers,1979.221-231
    [106]J. S. Jaffe. Computer modeling and the design of optimal underwater imaging systems. Oceanic Engineering, IEEE Journal of,1990,15(2):101-111
    [107]Y. YifanL. Fuchen. System of remote-operated-vehicle-based underwater blurred image restoration. Optical Engineering,2007,46(11):116002-116001
    [108]宋正方.应用大气光学基础.北京:气象出版社,1990.34-45
    [109]D. Bonnier, S. Chatigny, Y. Lutz, et al. Modelling of active TV system for surveillance operations. Proceedings of SPIE-The International Society for Optical Engineering, 1999,3698(217):217-228
    [110]H.Lycksam. Digital Holographic Interferometry in a disturbed environment. Speckle06: Speckles, From Grains to Flowers,2006.634111
    [111]H. Weilin. A simple underwater imaging model. Optics Letters,2009,34(17): 2688-2690
    [112]章毓晋.图像工程.(第2版).北京:清华大学出版社,1999.145-170
    [113]F. Fan, K. Yang, B. Fu, et al. Application of blind deconvolution approach with image quality metric in underwater image restoration.2010 International Conference on Image Analysis and Signal Processing,2010.236-239
    [114]王庆友.图像传感器应用技术.北京:电子工业出版社,2003.101-159
    [115]J. W. Goodman. Some fundamental properties of speckle. Journal of the Optical Society of America,1976,66(11):1145-1150
    [116]杨述斌,谢志远.散斑噪声污染的激光水下图像滤波算法.红外与激光工程,2002,31(4):318-321
    [117]卢明波,周军.基于非抽取小波变换贝叶斯估计的水下红外图像去噪.海洋技术,2010,29(1):87-90
    [118]尚政国,赵春晖,冯敏.基于Curvelet变换水下声纳图像去噪研究.应用科技,2007,34(5):11-15
    [119]张恒,雷志辉.一种改进的中值滤波算法.中国图象图形学报,2004,9(4):408-411
    [120]石美红,毛江辉.一种强高斯噪声的图像滤波方法.计算机应用,2007,27(7):1637-1640
    [121]贾永红.数字图像处理.武汉:武汉大学出版社,2003.121-178
    [122]L. S. Davis. A survey of edge detection techniques. Computer Graphics and Image Processing,1975,4(3):248-270
    [123]J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,1986, PAMI-8(6):679-698
    [124]A. Adams. Prewitt edge detection revisited. International Journal of Applied Software Technology,1995,1(1):21-35
    [125]R. A. Kirsch. Computer determination of the constituent structure of biological images. Computers and Biomedical Research,1971,4(3):315-328
    [126]叶俊.基于Canny算子的图像边缘检测与提取的算法.IT技术,2007,34(34):69-70
    [127]王延翔,景晓军.一种针对多噪声的图像滤波算法的研究与实现.中国科技论文在线,2009,5(5):14
    [128]龚曙明.应用统计学.北京:清华大学出版社,2005.57-78
    [129]余成波.数字图像处理及MATLAB实现.重庆:重庆大学出版社,2003.24-56
    [130]R. C, GonzalezR. E. Digital Image Processing. Addison Wesley Publishing Company, 2005.135-189
    [131]S. Winkler. Issues in vision modeling for perceptual video quality assessment. Signal Processing,1999,78(2):231-252
    [132]F. Crete, T. Dolmiere, P. Ladret, et al. The blur effect:perception and estimation with a new no-reference perceptual blur metric. Human Vision and Electronic Imaging XII, 2007.649201-64911
    [133]李奇,戴瑞春.数字图像清晰度评价函数研究.光子学报,2002,31(6):736-738
    [134]H. R. SheikhA. C. Bovik. Image information and visual quality. IEEE Transactions on Image Processing,2006,15(2):430-444
    [135]H. Hongwei, Z. XiaohuiG. Weilong. Performance evaluation of underwater range-gated viewing based on image quality metric,2009.440-441
    [136]M. R. BanhamA. K. Katsaggelos. Digital image restoration. IEEE Signal Processing Magazine,1997,14(2):24-41
    [137]B. R. Hunt. The application of constrained least squares estimation to image restoration by digital computer. IEEE Transactions on Computers,1973, C22(9):805-812
    [138]A. K. Katsaggelos, J. Biemond, R. W. Schafer, et al. A regularized iterative image restoration algorithm. IEEE Transactions on Signal Processing,1991,39(4):914-929
    [139]T. J. HolmesL. Yi-Hwa. Richardson-Lucy/maximum likelihood image restoration algorithm for fluorescence microscopy:further testing. Applied Optics,1989,28(22): 4930-4938
    [140]J. L. Zhang, Q. H. ZhangG. M. He. Blind deconvolution of a noisy degraded image. APPLIED OPTICS,2009,48(12):2350-2355
    [141]Z. F. WangY. D. Tang. Semi-blind image restoration based on Chan-Vese denoising model. Chinese Optics Letters,2008,6(6):405-407
    [142]Y. Yu-LiM. Kaveh. Blind image restoration by anisotropic regularization. IEEE Transactions on Image Processing,1999,8(3):396-407
    [143]范泛.激光水下成像的盲去卷积图像复原技术研究:[博士学位论文].武汉:华中科技大学,2010
    [144]Y. WanR. Nowak. A Bayesian multiscale approach to joint image restoration and edge detection. Wavelet Applications in Signal and Image Processing VII,1999.73-84
    [145]F. Chen, G. M. BrownS. Mumin. Overview of three-dimensional shape measurement using optical methods. Optical Engineering,2000,39(1):10-22
    [146]W. Zhao, H. Sawhney, M. Hansen, et al. Super-fusion:a super-resolution method based on fusion. Proceedings of 16th International Conference on Pattern Recognition,2002. 269-272
    [147]R. R. SchultzR. L. Stevenson. Extraction of high-resolution frames from video sequences. IEEE Transactions on Image Processing,1996,5(6):996-1011
    [148]T. Blu, P. ThevenazM. Unser. Linear interpolation revitalized. IEEE Transactions on Image Processing,2004,13(5):710-719
    [149]D. Keren, S. PelegR. Brada. Image sequence enhancement using sub-pixel displacements,1988.742-746
    [150]刘卫光,崔江涛,周利华.插值和相位相关的图像亚像素配准方法.计算机辅助设计与图形学学报,2005,17(6):1273-1277
    [151]P. Chatterjee, S. Mukherjee, S. Chaudhuri, et al. Application of Papoulis-Gerchberg method in image super-resolution and inpainting. Computer Journal,2009,52(1): 80-89
    [152]谭兵.多帧图像空间分辨率增强技术研究:[博士学位论文].郑州:解放军信息工程大学,2004
    [153]肖杰雄.基于POCS算法的超分辨率图像重建:[硕士学位论文].上海:上海交通大学,2009
    [154]W. H. Richardson. Bayesian-based iterative method of image restoration. Journal of the Optical Society of America,1972,62(1):55-59
    [155]L. Zhang, Q. Yuan, H. Shen, et al. Multiframe image super-resolution adapted with local spatial information. Journal of the Optical Society of America A:Optics and Image Science, and Vision,2011,28(3):381-390
    [156]LiyakathunisaC. N. R. Kumar. A novel super resolution reconstruction of low resolution images progressively using DCT and zonal filter based denoising. International Journal of Computer Science & Information Technology,2011,3(1): 54-72

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700