成熟柑桔形状特征提取与空间定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子技术和计算机技术的发展,智能机器人已在许多领域得到日益广泛的应用。中国是农业大国,为了提高劳动生产率、改善农民生产条件使得新概念农业机械——农业机器人的开发具有了巨大经济效益和广阔的市场前景。
     试验采用彩色双目立体视觉系统,从原始图像中提取出柑桔区域,对其进行处理得到其形状特征(中心、周长、面积等)。对两个摄像机分别进行标定,同时对立体视觉系统进行标定,以标定后的内外参数为基准来得到柑桔的空间位置坐标,为实现机器人采摘成熟柑桔做好前期准备工作。
     研究内容如下:
     1.对自然环境下的柑桔图像进行分析,采用Ostu自动取阈值方法对柑桔图像进行二值化处理,对传统的区域标记法进行改进,减小了图像预处理所耗时间,采用设定面积阈值的方法去除图像上非柑桔区域,防止由于开运算和闭运算对柑桔形状的破坏,同时还可以去除无法由开运算和闭运算去除的非目标小区域,最后采用四邻域判断法提取柑桔区域的边界。
     2.采用圆形Hough变换提取柑桔形状特征时,耗时较长,同时消耗大量的存储空间。由于柑桔的真实形状接近椭圆,采用圆形来描述的柑桔形状时会出现虚假目标,柑桔形心发生偏移。为此采用遗传算法进行椭圆拟合,对椭圆的长轴、短轴、中心横坐标、中心纵坐标、角度五个参数进行二进制编码,得到遗传基因,自定义了一个导向函数来进行基因选取,遗传操作可以得到更为准确的柑桔形状特征,耗时减少一半以上。
     3.分析了各种标定方法适用条件。根据实际需求,由两个摄像头分别拍摄25幅标定板图像,对图像进行分析、标定块中心坐标提取、内外对应排序得到标定数据。以摄像机针孔模型为基础,根据空间坐标系、摄像机坐标系、图像坐标系之间的几何关系建立标定方程,采用最小二乘法得到摄像头的内外参数,依据文献中提出的畸变模型对所得内外参数进行校正,为下一步的柑桔空间定位提供了准确的参数。
     4.对双目立体视觉测距方法进行分析,前期研究要求摄像机平行放置,影响了定位精度。本文根据空间点一定在光心与像点的空间连线上这一成像的基本原理,通过计算两条空间直线的交点来计算柑桔的空间坐标。与传统方法比较,该方法试验设备简单,对环境要求低,不要求摄像机绝对平行放置。实验结果表明本文所提出的柑桔形状特征提取与空间定位方法,在1m左右的检测距离,误差在±5.5mm以内,满足实际工作需要。
With the development of electronic and computer technology, intelligent robot has been widely used in many fields. China is a big agricultural country, to increase labor productivity and improve production conditions of farmers, it is very necessary to develop agriculture robot.
     In this paper the color binocular stereo vision system is used,we extracte citrus region from the original image, process the image for getting the shape of citrus, calibrate two cameras ,and use the calibration results to calculate the citrus space coordinates . All works we do here is a part of the project of using robot pluck ripe citrus.
     The content and methods:
     1. Natural citrus images that we captured are analyzed first; Ostu threshold segmentation method is used to automatically process the citrus images into binary images. And a new regional marker method is used to mark regionals. The method reduce the time taken for image preprocessing,Area threshold method is used to remove the non-image citrus region, prevent the destruction of citrus shape because of opening and closing operation, meanwhile remove small area regions of non-target that can not be removed from opening and closing operation. Finally, a simple method is used to extract citrus' border.
     2. Analysis of the merits and demerits of citrus' shape feature extraction methods of using traditional circular Hough transform. Traditionally, Hough transform algorithm generally used to describe the round shape of citrus, and it is a better solution to the overlapped problem of citrus, but Hough transform algorithm has the disadvantages of massive storage requirement and high cost of computation. In this paper, genetic algorithm was used to get approximate elliptical parameters of citrus. Every ellipse can be described by 5 parameters which encoded as primitive code through binary coding, the formula of graphics matching rate is given for getting the global optimal solutions through genetic operation and some restrictions were added to fit citrus edge rapidly. The fitting citrus shape more close to the real shape, and the computational time and space is decrease to 1/2 and 1/20 compared with circular Hough transform algorithm.
     3. In this paper we analyze the different calibration methods applicable conditions. Most traditional methods of stereo camera calibration often require expensive calibration apparatuses and elaborate setups, which limits their practicability in many out-door applications. The paper proposes a more flexible method to overcome this drawback; we get the raw data from picture of calibration, and use Zhengyou Zhang's Camera Calibration Technique to get the internal and external parameters. At last correct the parameter through nonlinear model. It does afford more accurate and reliable parameters to locate the citurs.
     4. Analysis of using binocular stereo vision measurement distance methods, traditional method needs two cameras placed absolutely parallel, it is very difficute to implement. Here, we use Three-dimensional geometric method to locate the citrus. Compared with the traditional method, reduce the system demand. Measuring about 1 m, the error is less than±5.5mm; Experimental results show that the proposed citrus identification and positioning technology is feasible.
引文
1. http://newsl.jrj.com.cn/news/2006-11-06/000001760537.html
    2.马颂德,张正友.计算机视觉——计算理论与算法基础[M].北京:科学出版社,1998, 52-94
    3. Schertz. C. E., and G. K. Brown, 1968. Basic considerations in mechanizing citrus harvest. Transactions of the ASAE 11(2): 343-346;
    4. Parrish, E., and A. K. Goksel, 1977. Pictorial pattern recognition applied to fruit harvesting. Transactions of the ASAE 20(5): 822-827;
    5. Rabatel. G., 1988. A vision system for magali, the fruit picking robot. Paper 88293, AGENG88, Int. Conf. Agricultural Engineering, Paris. London, U.K.: Ministry of Agriculture, Fisheries and Food;
    6. A. Dale Whittaker, G. E. Miles, 1987. Fruit location in a partially occluded image. Transactions of the ASAE 30(3): 591-596;
    7. Kassay, L., 1992. Hungarian robotic apple harvester. ASAE Paper No. 92-7042, 1-14. St. Joseph, Mich.: ASAE.
    8. Buemi, F., M.. Massa, and G. Sandini, 1995. Agrobot: A robotic system for greenhouse operations. In 4th Workshop on Robotics in Agriculture, IARP, Tolouse, 172-184;
    9. Ceres, R., J. L. Pons, A. R. Jiménez, J. M. Martin, and L. Calderon, 1998. Design and implementation of an aided fruit harvesting robot(Agribot). Industrial Robot 25(5): 337-346;
    10. D. M. Bulanon, T. Kataoka, Y. Ota, T. Hiroma, 2002. Automatic recognition of Fuji apples at harvest. Biosystems Engineering 83(4): 405-412;
    11. S. Limsiroratana, Y. Lkeda, 2002. On image analysis for harvesting tropical fruits. SICE02-0824: 1336-1341;
    12. Yud-Ren Chen, Kuanglin Chao, Moon S. Kim, 2002. Machine vision technology for agricultural applications. Computer and Electronics in Agriculture 36: 173-191;
    13.杨秀坤,陈晓光等,水果表面缺陷自动检测系统中的人工智能方法研究[J],农业工程学报,1997,13(增刊):242-247;
    14.何东健,杨青等,果实表面颜色计算机视觉分级技术研究,农业工程学报[J],1998,14 (3):202-205;
    15.张书慧,陈晓光等,苹果、桃等农副产品品质检测与分级图像处理系统的研究[J],农业工程学报,1999,15(1):201-204;
    16.蔡健荣,方如明等,利用计算机视觉技术的烟叶质量分选系统研究[J],农业工程学报, 2000,16(3):118-122;
    17.张瑞合,姬长英等,计算机视觉技术在番茄收获中的应用[J],农业机械学报,2001,32(5):50-53;
    18.孙明,凌云,基于计算机视觉的萝卜幼苗自动识别技术[J],农业机械学报,2002,33(5): 75-77;
    19.李长缨,滕光辉等,利用计算机视觉技术实现对温室植物生长的无损监测[J],农业工程学报,2003,19(3):140-143;
    20.毛罕平,徐贵力等,基于计算机视觉的番茄营养元素亏缺的识别[J],农业机械学报,2003, 34(2):73-75;
    21.方如明,蔡健荣等,编著,计算机图像处理技术及其在农业工程中应用[M],北京:清华大学出版社,1999.7;
    22.吴立德,著,计算机视觉[M],上海:复旦大学出版社,1993.12;
    23.徐建华,编著,图像处理与分析[M],北京:科学出版社,1992.1;
    24.谷口庆治,编,数字图像处理-基础篇[M],北京:科学出版社,2002.2;
    25.Sonka M,Hlavac V,Boyle R 著.艾海舟,武勃等译.图像处理、分析与机器视觉[M].北京:人民邮电出版社,2003:159~160
    26.江早,刘晋军,王冬等.一种可交互删改的二值图像快速连通体标识方法[J].东北大学学报(自然科学版),1998;19(3):251~254
    27. Suzuki K, Horiba I, Sugie N.Fast connected- component labeling based on sequential local operations in the course of forward raster scans followed by backward raster scan[C].In: Proceedings of 15th International Conference on Pattern Recognition, Barcelona, 2000: 434~437
    28.张修军,郭霞,金心宇.带标记矫正的二值图象连通域像素标记算法[J].中国图象图形学报,2003;8(2):198~202
    29.张树生.一种基于线的标号传播二值图像连通体快速检测方法[J].计算机研究与发展, 1994;31(10):51~54
    30.王雅琴,高华.自然环境下水果图像分割与定位研究[J].计算机工程,2004,128-129
    31. Yan Rianto. Road Network Detection from Spot Satellite Image Using Hough Transform and Optimal Search. 2002IEEE, Circuits and Systems, APCCAS' 02.2002,2:177-180.
    32. Shih-Hsuan Chiu;Jiun-Jian Liaw.A Proposed Circle/Circular Arc Detection Method Using the Modified Randomized Hough Transform[J]. Journal of the Chinese Institute of Engineers.2006, 533-538
    33.王小平,曹立明.遗传算法- 理论、应用与软件实现[M].西安交通大学出版社,2002,18-92.
    34.毛罕平,徐贵力,李萍萍.基于遗传算法的蔬菜缺素叶片图像特征选择研究[J].江苏大学 学报(自然科学版),2003,24
    35. D W Corne, J D Knowles, M J Oates. The Pareto Envelope Based Selection Algorithm for Multiobjective Optimization [A]. Proc of the Parallel Problem Solving from Nature Ⅵ Conf [C]. 2000. 8392837.
    36. SHANG R,JIAO L, GONG M,et al.Clonal selection algorithm for dynamic multiobjective optimization[R]. CIS'05, Springer-Vedag Berlin Heidelberg 2005.
    37. Deb K, Thiele L, Laumanns M et al.Scalable Multi-Objective Optimization Test Problems[C].In:Congress on Evolutionary Computation (CEC' 2002),2002; 1:825~830
    38.蔡健荣,赵杰文.自然场景下的成熟苹果计算机视觉识别[J].农业机械学报,2005, 36(2):61-64
    39.黄宏华,蔡健荣.利用计算机视觉检测家蚕微粒子病的改进研究[J].江苏大学学报(自然科学版),2003,24(2):43-46.
    40.郑小东,赵杰文,刘木华.基于双目立体视觉的番茄识别与定位技术[J].计算机工程 2004, 155-156
    41.蔡健荣.基于立体视觉的成熟水果识别定位及机器人路径规划[D].江苏大学博士学位论文,2005
    42.蔡健荣,赵杰文.双目立体视觉系统摄像机标定[J].江苏大学学报(自然科学版)2006,27(1)6-9
    43.王俊修,孔斌.双目立体视觉传感器的现场标定技术[J].计算机工程与应用。2004, 189-190
    44.贾云得.机器视觉[M].北京:科学出版社,2000,173-793
    45. Abdel Aziz Y I, Karara H M. Direct linear transformation into objectspace coordinates in close range photogrammetry. In:Proc. Symp. Close Range Photogrammetry.1971.1~18
    46. Tsai R Y. An efficient and accurate camera calibration technique for 3D machine vision. In:Proc. CVPR'86.364~374
    47. Zhengyou Zhang. A Flexible New Technique for Camera Calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334
    48. Faugeras O D, Maybank S. Motion from point matches: multiplicity of solutions. Intl.J.Computer Vision, 1990, 4:225~246
    49. Maybank S J, Faugeras O D. A theory of self calibration of a moving camera. Intl.J. Computer Vision, 1992, 8(2): 123~151
    50. Luong Q T, Deriche R, Faugeras O D. On determining the fundamental matrix: analysis of different methods and experimental results. INRIA Research Report.1993.No.1894
    51. Ma S, Wei G. A self calibration technique for active vision system. In:Proc. ACCV'95.628~ 631
    
    52. K B Atkison Ed. Developments in Close Range Photogrammetry[C]. London, 1980
    
    53. D C Brown. Close-range camera calibration[J]. Photogrammetric Engineering, 1971, 37(8): 855-866
    
    54. R Jain, R Kasturi, B G Schunk. Machine Vision[C]. McGraw-Hill, New York, 1995
    
    55. W Faig. Calibration of close-range photogrammetry systems: Mathematical formulation [J]. Photogrammetric Engineering and Remote Sensing, 1975, 41(12): 1479-1376
    
    56. B Prescott, G F Mclean. Line-based correction of radial lens distortion[J]. Graphical Models and Image Processing, 1997, 59(1): 39-77
    
    57. C C Slama, editor. Manual of Photogrammetry[C]. American Society of Photogrammetry, fourth Edition, 1980
    
    58. J Weng, P Cohen, M Herniou. Camera calibration with distortion models and accuracy evaluation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(10): 965-980
    
    59. Tsai R Y. A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses[J]. IEEE Journal of Robotics and Automation, 1987, RA-3(4): 323-344
    
    60. Tsai R Y. An Efficient and Accurate Camera Calibration Technique for 3D Machine Vision[J]. Proc. Of CVPR'86, 1986, Miami: 364-374
    
    61. D C Brown. Close-range camera calibration[J]. Photogrammetric Engineering, 1971, 37(8): 855-866
    
    62. J Weng, P Cohen, M Herniou. Camera calibration with distortion models and accuracy evaluation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(10): 965-980
    
    63. G Wei, S Ma. Implicit and explicit camera calibration: Theory and experiments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(5): 469-370
    
    64. W H Press, S A Teukolsky, W T Vetterling, et al. Numerical Recipes in C, The Art of Scientific Computing, and Edition[C]. New York, Cambridge University Press, 1992, 681-688
    
    65. Richard Hartley Andrew Zisserman. Multiple view geometry in computer vision[M]. New York, Cambridge University Press, 2001, 158-189

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700