特高压交流输电线路电磁场三维计算模型与屏蔽措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了在更大范围内实现能源优化配置、缓解电力供需紧张状况、减少建设成本、提高输电效率,我国发展特高压电网势在必行。但是,随着公众环保意识的增强,电磁环境问题成为制约特高压交流输电工程发展的一个重要因素。在建设“资源节约型、环境友好型”特高压工程的思想指导下,根据我国国情,正确预测和评估特高压交流线路电磁场强度,提出线路优化设计方案,是工程前期必须深入研究的关键问题。而较之高压、超高压输电线路,特高压在电压等级、线路结构、导线类型、运行环境等方面都有较大差异,原有的一些电磁场计算模型不足以准确评估特高压交流输电线路电磁环境。
     在这一背景下,本论文以特高压交流输电线路下方工频电场和工频磁场、输电线表面工频电场、电晕辐射电磁场为研究对象,优化模型、改进算法,快速而准确地计算特高压交流输电线路电磁场强度并分析其分布规律和特点,对比研究特高压交流输电线路电磁场的影响因素和屏蔽方案,旨在以本论文研究结果为特高压交流输电线路的优化设计提供建议和参考,以技术数据支撑消除公众对特高压交流输电线电磁污染的误解和恐惧。
     主要研究成果如下:
     ①基于架空悬链导线特性建立了特高压输电线三维工频电场计算模型,将模拟电荷法和矩量法相结合进行电场数值计算。研究表明三维模型较之传统二维模型能够更准确地反映空间电场分布。对比分析了各种线路结构和导线类型条件下的电场强度,首次定量探讨了档距长度、气象因素对电场的影响。
     ②由传输线理论计算输电线路电流,根据Biot-Savart定律推导出计及弧垂的特高压输电线下三维工频磁场数学模型。通过对各种影响因素,如气象条件、线路结构参数、导线类型的研究,提出了控制工频磁场的输电线路结构优化设计建议。
     ③结合模拟电荷法、矩量法和逐步镜像法求解思想,提出了计及弧垂的特高压输电线表面电场计算优化模型,采用模拟电荷位置寻优算法,提高计算精度。本模型能够精细反映各分裂子导线表面电场的分布规律。通过对比讨论线路结构参数、导线类型、气象条件等因素对表面电场的影响,提出抑制电晕的输电线路结构优化设计建议。
     ④基于电晕电流脉冲特性,根据传输线理论和天线辐射理论,推导出特高压交流线路电晕放电瞬态电磁场计算式,初步研究了电晕辐射场的动态时变特性。定义电晕辐射干扰水平,讨论了辐射干扰水平的影响因素。
     ⑤以架设屏蔽线实现对输电线工频电场的防护,讨论了屏蔽线数目和排列方式对屏蔽效果的影响。以设置金属屏蔽板实现对输电线工频磁场的防护,推导出有限宽平板屏蔽区域磁场计算式,从而能够快速评估屏蔽材料的屏蔽效能;仿真研究了屏蔽系统中金属平板自身物理特性、几何尺寸、输电线路结构与屏蔽效能之间的关系。
The development of ultra-high voltage (UHV) electric power grid in China is imperative because it is an effective way to achieve energy distribution optimization in more extensive geographical regions, relieve tense contradiction between electric power supply and demand,reduce construction cost and raise transmission efficiency. However, with the enhancement of public awareness of environmental protection, the electromagnetic environment problem has become a critical restriction for UHV AC transmission project. In order to develop a resource-saving and environment-friendly UHV project based on our own actual national conditions, these are key issues in the prophase of the project to exactly forecast and evaluate the electromagnetic field intensity produced by UHV transmission lines, and propose the transmission lines optimization design. However, some previous methods for calculating the electromagnetic field of transmission lines are not appropriate for UHV any more, because there are distinct differences in the voltage level, the structure, the conductor type and the geographical and meteorological circumstances between extra- and ultra- high voltage transmission lines.
     This thesis focuses on developing theoretical models and arithmetics to study the power frequency electric field (PFEF) and the power frequency magnetic field (PFMF) under UHV transmission lines, the surface PFEF around bundled conductors and the radiated electromagnetic field of corona discharge. Moreover, the influence factors and protective measures of the electromagnetic field are explored with the aim to provide theoretical basis and reference for UHV transmission lines optimization design and eliminate the public worries.
     The main contributions of the thesis are as follows:
     ①3D model for calculating the PFEF under UHV transmission lines is proposed on the basis of the character of overhead catenary. The analytical expressions are then derived by combining with charge simulation method (CSM) and the moment method (MOM). The results of simulating and measuring show that the 3D model improves the accuracy with respect of conventional 2D model. The influence of transmission lines’structural parameters and conductor types on the PEFE are analyzed and compared. Especially, the quantitative relationship between the length of span, the meteorological parameters and the electric field intensity are firstly founded.
     ②The line currents which cause the PFMF under transmission lines are determined by using the transmission line theory. Based on Biot-Savart law, the 3D model for the PFMF under UHV transmission lines with sag are established. The influence factors, such as meteorological conditions, configuration parameters, conductor types, etc, are systematically researched. The results are helpful for lower the PFMF.
     ③Motivated by the main ideas of charge simulation method, the moment method and the successive image method, a modified model is established to calculate the surface PFEF around UHV bundled conductors with sag. The optimum location algorithm for simulating charges is adopted to improve the accuracy. The proposed method can truly describe the electric field intensity and its spatial distribution on the surface of each of the bundled conductors. The study results about the influence factors, such as meteorological conditions, configuration parameters, conductor types, etc, on the surface electric field would be used as reference for the UHV transmission lines optimization design to prevent the corona discharge.
     ④A novel model for the corona radiated electromagnetic field is proposed by taking account of the time varying corona current pulses. Then approximately analytical expressions for the radiated electromagnetic field are derived based on antenna radiation model and uniform transmission line theory. The technique can be used analyze the transient process of the radiated electromagnetic field. The concept of radiated electromagnetic interference (EMI) level is defined and its influence factors also discussed and compared.
     ⑤The shielding lines are effective to weaken the electric field intensity. The thesis analyzes the influence of the number of shielding lines and their position with respect to the transmission lines on the shielding effectiveness. On the other hand, the metal plane is usually used as shield for the PFMF. The algorithm for calculation the PFMF shielded by a finite width plate is presented. The simulation results show that the shielding effectiveness is dependent upon not only the physical properties and the dimension of finite width plate shields, but also the structure of the shields and transmission lines.
引文
[1]业界要闻-中国电力装机总容量规划到2010年达8.4亿千瓦[Z].电器工业,2007(2):1.
    [2]刘开俊,王怡萍.中国城市电网发展现状与规划探讨[J].电气工业,2006,6-9.
    [3]刘振亚.特高压电网[M].北京:中国经济出版社,2005.
    [4]舒印彪,刘泽洪,袁骏,等.2005年国家电网公司特高压输电论证工作综述[J].电网技术,2006,30(5):1-12.
    [5]张运洲.对我国特高压输电规划中几个问题的探讨[J].电网技术,2005,29(19):11-14.
    [6] Korobkova V.P,Morozov Y.A..Influence of eleetric field in 500 and 750kV switchyards on maintenance staff and means for its protection[M].Intemational Conference on Large High Voltage Electric System(CIGRE),Paris,Franee,1972:23-06.
    [7] Wertheimer N,Leeper E.Electrical wiring configurations and childhood cancer[J].Am J Epidemiol,1979,109(3):273-284.
    [8] Bailey W.H.,Su S.H.,Bracken T.D.,et al.Summary and evaluation of guidelines for occupational exposure to power frequency electric and magnetic fields[J].Health Phys.,1997,73:433-453.
    [9] Savitz DA,Cai J,Van Wijingaarden E,et al.Case-cohort analysis of brain cancer and leukemia in electric utility workers using a refined magnetic field job-exposure matrix[J].Am Ind Med,2000,38:417-425.
    [10] Feychting M,Floderus B,Ahlbom A.Parental occupational exposure to magnetic fields and childhood cancer (Sweden)[J].Cancer Causes Control,2000,11:151-156.
    [11] Davis S,Mirick D.K.,Stevens R.G..Residential magnetic fields and the risk of breast cancer[J].Am J Epodemiol,2002,155:446-454.
    [12]国际大电网会议第36.01工作组.输电系统产生的电场和磁场[M].邵方殷等译.北京:水利电力出版社,1984.
    [13]阮江军,夏斐,陈志楠,等.近30年的工频磁场生物效应研究—没有定论[J].高电压技术,1999,25(2):92-95.
    [14]董华,张学林,谢怀江.极低频电磁场的生物效应[J].中国工业医学杂志,2003,16(3):173-176.
    [15] Comber M.G,Nigbor R.J.Audible noise performance of regular and asymmetric bundles and effect of conductor aging on project UHV's three-phase test line[J].IEEE Transactions on Power Apparatus and Systems,1979,98(2):561-572.
    [16] Comber M G,Chartier V L,Janischewskyj W.A field comparison of RI and TVIinstrumentation[J].IEEE Transactions on Power Apparatus and Systems,1977,96(3):863-875.
    [17] Juette G W,Charbonneau H,Dobson H I.CIGRE/IEEE survey on extra high voltage transmission line radio noise[R].IEEE Winter Meeting,,New York,America,1972:192-198.
    [18]刘启明.拨开电磁“污染”的迷雾——《电磁“污染”真相调查》系列报道[EB/01].http://www.cqep.com.cn/7.htm.
    [19]小区建变电站安全吗[EB/01].http://house.21cn.com/topic/biandianzhanshijian/index.shtml.
    [20]胡毅,刘庭.输电线路建设和运行中的制约与技术创新[J].高电压技术,2008,34(11):2262-2269.
    [21]关志成,王国利.中国特高压输电工程及相关的关键技术[J].南方电网技术研究,2005,1(6):12-18.
    [22]吴桂芳,李光范,崔鼎新.1000kV级输变电工程对区域生态环境影响的研究[R].北京:中国电力科学研究院,2005.
    [23] International Commission on Non-Ionizing Radiation Protection (ICNIRP).Guidelines for limiting exposure to time varying electric, magnetic and electromagnetic fields (up to 300 GHz) [J].Health Physics,1998,74(4):494-522.
    [24] The European Parliament,The Council of the European Union.Directive 2004/40/EC of the europcan parliament and of the council of 29 april 2004 on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields)[J].Official Journal of the European Union,2004,24(5):1-9.
    [25] American Conference of Goverrnmental Industrial Hygienists . Documentation of the threshold limit values and biological exposure indicss[M].Cincinnati:American Conference of Governmental,2001.
    [26] IEEE C95.6.Standard for safety levels with respect to human exposure to electromagnetic fields,0-3 kHz[S].2002.
    [27] National Radiological Protection Board.Advice on limiting exposure to electromagnetic fields ( 0- 300 GHz ) [J].Documents of the NRPB,2004,15( 2):5- 35.
    [28] Radiation Health Series No. 30.Interim guidelines on limits of exposure to 50/60 electric and magnetic fields[S],1989.
    [29]惠建峰,关志成,刘瑛岩.各国工频电磁场的限值及其确定的依据[J].高电压技术,2006,32(4):51-54.
    [30]国家环境保护总局.500kV超高压送变电工程电磁辐射环境影响评价技术规范[S].北京:中国环境科学研究院,1999.
    [31] The Swedish National Board of Occupational Safety and Health.Low-frequency electricaland magnetic fields[R].The precautionary principle for national authorities,Solna,Swedish,1996.
    [32] Rogers L.E.BPA 1000kV transmission system development-Environmental studies[J].IEEE Transactions on Power Apparatus and Systems,1979,98(6):1958-1967.
    [33] Cerretelli P.1000kV project:Research on the biological effect of 50Hz electric fields in Italy[C].The 18th Annual Hanford Life Science Symposium,Richland, Washington,1978:128-132.
    [34] Vladimirsky L.L.Selection of insulator strings for 1150kV ac lines under pollution conditions[C].Proceedings of international workshop of UHVAC transmission technology,Beijing, China,2005:67-74.
    [35] Conti R,Pigini A,Giorgi A.Evaluation of possible impacts of the new limits for human exposure to magnetic fields under consideration in Italy[C].International Conference on Large High Voltage Electric System (CIGRE),Paris,France,2005:1-12.
    [36]中国电工技术学会特高压技术考察团.俄罗斯、乌克兰超、特高压输变电技术发展近况[J].电力设备,2003,4(2):49-56.
    [37]陆宠惠,万启发,谷定燮,等.日本1000kV特高压输电技术[J].高电压技术,1998,24(2):47-47.
    [38]牛林.特高压交流输电线路电磁环境参数预测研究[D].山东:山东大学,2008.
    [39]电力部武汉高压研究所.国务院重大技术装备八五攻关项目一特高压输电线路对环境的影响[R].武汉:武汉高压研究所,1995.
    [40]武汉高压研究所.在试验线段上对特高压线路的无线电干扰及其预估的研究[R].武汉:武汉高压研究所,2001.
    [41]武汉高压研究所.交流特高压输电电晕噪声、风噪声水平及其解决方法和措施[R].武汉:武汉高压研究所,2001.
    [42]武汉高压研究所.特高压输电线下的工频场强限值研究[R].武汉:武汉高压研究所,2001.
    [43]武汉高压研究所.特高压输电线路对电视信号影响的计算分析[R].武汉:武汉高压研究所,2001.
    [44]邬雄,万保权,路遥.1000kV级交流输电线路电磁环境的研究[J].高电压技术,2006,32(12): 29-32.
    [45]邵方殷.我国特高压输电线路的相导线布置和工频电磁环境[J].电网技术,2005,29(8):1-7.
    [46] Robert.G.Olsen.Power-Transmission Electromagnetics[J].IEEE Antennasa nd Propagation Magazine, 1994,36(6):7-16.
    [47] Barbara Florkowska,Andrzej Jackowicz-Korczynski,Mieczyslaw Timler.Analysis of electric field distribution around the high-voltage overhead transmission lines with an ADSS fiber-optic cable [J].IEEE Transactions on Power Delivery.2004,19(3):1183-1189.
    [48]胡白雪.超高压及特高压输电线路的电磁环境研究[D].浙江:浙江大学,2006.
    [49]吴高强.高压输电线路环境评价模拟类比研究[D].武汉:中国地质大学,2007.
    [50]刘华麟.高压输电线、变电站电磁场环境测量方法研究[D].重庆:重庆大学,2005.
    [51]曾庆禹.特高压输电线路地面最大工频电场强度和导线最大弧垂特性[J].电网技术,2008,32(6):1-7.
    [52]宗伟,孙才华,隋吉生,等.多路供电系统高压输电线考虑弧垂的场强计算模型[J].现代电力,2005,22(6):18-21.
    [53]张家利,姜震,王德忠.高压架空输电线下工频电场的数学模型[J].高电压技术,2001,27(6):20-21.
    [54]彭迎,阮江军.模拟电荷法计算特高压架空线路3维工频电场[J].高电压技术,2006,32(12):69-73.
    [55] Gomollon Jesus A,Palau Roberto.Steady state 3-D-field calculations in three-phase systems with surface charge method[J]. IEEE Trans on Power Delivery,2005,20(2):919-924.
    [56]文武;彭磊;张小武,等.特高压大跨越架空线路三维工频电场计算[J].高电压技术,2008,34(9):1821-1825.
    [57]封滟彦.超高压输电线路电磁场的仿真研究[D].重庆:重庆大学,2004.
    [58]邵天晓.架空送电线路的电线力学计算[M].北京:中国电力出版社,2003:65-87.
    [59]孟遂民,李光辉.架空输电线路设计[M].北京:中国三峡出版社,2000:27-87.
    [60]许建安.35~110kV输电线路设计[M].北京:中国水利水电出版社2003:13-51.
    [61] K. Hameyer,R.Mertens,R. Belmans.Numerical methods to evaluate the electromagnetic fields below overhead transmission lines and their measurement[C].Proceedings of the first IEEE International Caracas Conference on Devices and Circuits,1995:32–36.
    [62] B. Florkowska,A. J. Korczynski,M. Timler.Analysis of electric field distribution around the high-voltage overhead transmission lines with an ADSS fiber-optic cable[J] . IEEE Transactions on Power Delivery,2004,19(3):1183–1189.
    [63]王海峰,徐建源,李贵胜.有限元一模拟电荷混合法在静电场数值分析中的应用[J].沈阳工业大学学报,2000,22(6):494-497.
    [64]苏国政,黄道春,余世峰,等.特高压紧凑型输电线路工频电场强度计算[J].武汉大学学报(工学版) ,2007,40(3):99-102.
    [65] M. A. Elhirbawy,T. T. Nguyen,L. Jennings,et al.Calculation of electromagnetic fields established by power transmission line using finite difference techniques[C].Proceedings ofthe IEEE Canadian Conference on Electrical Computer Engineering,2002:311–316.
    [66] IEEE Corona and Field Subcommittee Report.A survey of methods for calculating transmission line conductor surface voltage gradients[R].IEEE Transactions on Power Apparatus and System,1979,PAS-98(6):1996–2014.
    [67]黄道春,阮江军,文武,等.特高压交流输电线路电磁环境研究[J].电网技术,2007,31(1):6-11.
    [68] Malik N.H..A review of the charge simulation method and its application[J].IEEE Transactions on Dielectrics and Electrical Insulation,1989,24(1):3–20.
    [69]杨文翰,吕英华.用模拟电荷法求解高压输电线附近电磁场[J].电网技术,2008,32(2):47-50.
    [70]程勇,曹伟.高压输电线附近电场强度的矩量法分析[J].南京邮电学院学报,2004,24(4):86-91.
    [71]张波,崔翔,卢铁兵,等.超高压输电线路铁塔附近三维电场的数值计算[J].电网技术,2003,27(7):5-8.
    [72]倪光正,杨仕友,钱秀英,等.工程电磁场数值计算(M).北京,机械工业出版社,2004.
    [73]盛剑霓.工程电磁场数值分析(第1版) (M).西安,西安交通大学出版社,1991.
    [74] R.F.哈林登著,王尔杰等译.计算电磁场的矩量法(第1版) (M).北京,国防工业出版社,1981.
    [75]冯慈璋,马西奎.工程电磁场导论[M].北京:高等教育出版社,2000.
    [76]柴旭峥,梁曦东,曾嵘,等.我国紧凑型输电线路的电气参数特性分析[J].电网技术,2007,31(1):16-19.
    [77]汪亚平,韩丰,黄宝莹,等.提高输电线路导线悬挂高度的经济性分析[J].电力技术经济,2008,20(6):39:42.
    [78]郭日彩,许子智,李喜来,等.110~500kV输电线路典型设计[J].电网技术,2007,31(1):56-64.
    [79] Magnetic field mitigation to reduce VDU inference[R].Electric supply association of Australia limited,1996,(7):22-25.
    [80] The IEEE Magnetic Fields Task Force.Magnetic Fields from Electric Power Lines,Theory and Comparison to Measurements[R].IEEE Transactions on Power Delivery,1988,3(4):2127-2135.
    [81] Govindarajan B. Iyyuni , Stephen A. Sebo . Study of transmission line Magnetic fields[J].Power Symposium, Proceedings of the Twenty-Second Annual North American, Oct. 1990: 222 - 231.
    [82] Maria A. Stuchly, Shengkai Zhao.Magnetic field-induced currents in the human body inproximity of power lines[J].IEEE Transactions on Power Delivery, 1966, 11(1):102-108.
    [83] Hanafy Mahmoud Ismail.Effect of tower displacement of parallel transmission lines on the magnetic field distribution[J].IEEE Transactions on Power Delivery, 2008, 23(4): 1705 - 1712.
    [84] Mamishev A.V,Nevels R.D,Russell B.D.Effects of conductor sag on spatial distribution of power line magnetic field[J].IEEE Transactions on Power Delivery,1996,11(3):1571-1576.
    [85]喻明舟,李咸善,戴亚.三相输电线路磁场的矩量法分析[J].电力科学与技术学报,2007,22(2):53-57.
    [86]许杨.高压输电线路工频电磁效应研究[D].北京交通大学,2007.
    [87]易辉,纪建民.交流架空线路新型输电技术[M].北京:中国电力出版社,2006.
    [88]周守昌.电路原理(下)[M].北京:中国高等教育出版社,2007.
    [89]郑钏,蔡金锭.输电线路工频参数影响因素的量化研究[J].高电压技术,2008,34(4):813-815.
    [90]安德生J.G著,电力工业部武汉高压研究所译.345千伏及以上超高压输电线路设计参考手册[M].北京:电力工业出版社,1981.
    [91] Britten A,Konkel E C H.Radio interference, corona losses, audible noise and power frequency electric field as factors in the design of eskom’s 765 kV line[C].Proceeding of the Open Conference on EHV Transmission System,1987.
    [92] CIGRE WG38.04.Ultra high voltage technology[C].CIGRE,Paris,1994.
    [93]李澍森,陈晓燕.试验线段电晕测量技术及结果[J].高电压技术,2006,32(12):33-39.
    [94]万启发,陈勇,谷莉莉,等.特高压交流输电工程导线截面及分裂形式研究[J].高电压技术,2008,34(3):432-437.
    [95]张殿生.电力工程高压送电线路设计手册[M].2版.北京:中国电力出版社,2003.
    [96] IEEE Corona and Field Effects Subcommittee Report,Radio Noise Working Group.A survey of methods for calculating transmission line conductor surface voltage gradients[C].IEEE PES Winter Meeting,New York,1979,PAS-98(6):1996-2007.
    [97]孙才华,宗伟,李世琼,等.一种较准确的分裂导线表面场强计算方法[J].电网技术,2006,30(4):92-96.
    [98] Peek.F.W.Dielectric Phenomena in High Voltage Engineering(3rd edition)[M] .New York:Wiely,1929.
    [99]孙才新,司马文霞.大气环境与电气外绝缘[M].北京:中国电力出版社,2002.
    [100] Trichel G W.The mechanism of the negative point to plane corona onset [J].Physical Review,1938,54:1078.
    [101] Sarma.P,Maruvada.Corona Performance of High Voltage Transmission Lines[M].England:Research Studied Press Ltd.,2000.
    [102] Nayak.S.K,Thomas.M.Joy.Computation of EMI Fields Generated due to Corona on High Voltage over Head Power Transmission Lines[J].Proceedings of INCEMIC,2001-2002:15-19.
    [103] Fred P Venditti.Electromagnetic radiation from corona discharge[R].Denver, USA:University of Denver,1977.
    [104]原青云,刘尚合,胡小锋,等.电晕放电辐射信号特征研究[J].电气应用,2008,27(2):65-68.
    [105]梁曦东.高电压工程[M].北京:清华大学出版社,2003.
    [106]原青云,刘尚合,张希军,等.电晕电流及其辐射信号特性的研究[J].高电压技术,2008,34(8):1547-1551.
    [107]郑重,谈克雄,高凯.局部放电脉冲波形特性分析[J].高电压技术,1999,25(4):15-17.
    [108]杨津基.气体放电[M].北京:科学出版社,1981.
    [109] Liu Yunpeng, You Shaohua, Wan Qifa, et al.UHV test line initialization corona characteristic research based on optical fiber current measurement technology[J].Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), 2008:1265- 1268.
    [110] BS5049-3.Radio interference characteristics of overhead power lines and high-voltage equipment-part 3[S].
    [111] DL/T 691-1999.高压架空送电线路无线电干扰计算方法[S].北京:中国电力出版社,2000.
    [112] Olsen R G,Schennum S D,Chartier V L.Comparison of several methods for calculating power line electromagnetic interference levels and calibration with long term data[J].IEEE Transactions on Power Delivery,1992,7(2):903-913.
    [113]庄池杰,曾嵘,龚有军,等.交流输电线路的无线电干扰计算方法[J].电网技术,2008,32(2):56-60.
    [114]潘仲英.电磁波、天线与电波传播[M].北京:机械工业出版社,2003.
    [115]周力行,李卫国.利用辐射UHF信号反演局部放电脉冲电流[J].电力系统自动化,2006,30(8):75-79.
    [116]杨光,吕英华.交流特高压输电线路无线电干扰特性[J].电网技术,2008,32(2):26-28.
    [117] Nayak S.K.,Thomas M. Joy.An integro-differential equation technique for the computation of radiated EMI due to corona on HV power transmission Lines[J].IEEE Transactions on Power Delivery,2005,20(1):488-493.
    [118]蒋虹,焦景慧,林志和,等.超高压线路工频电场超限值对策的研究[J].高电压技术,2006,32(8):56-58.
    [119]孟毓.采用屏蔽线降低架空线线下场强的研究[J].电力建设,2008,29(5):30-33.
    [120]路遥,邬雄,张小武.交流特高压输电线路线下电场强度改善措施研究[J].电网与水力发电进展,2008,24(2):9-14.
    [121]陈仕姜.500kV超高压输电线工频电场分布及控制研究[D].福建:福州大学,2006.
    [122] Lennart Hasselgren,Jorma Luomi.Geometrical aspects of magnetic shielding at extremely low frequencies[J] . IEEE Transactions on IEEE Transactions on Electromagnetic Compatibility 1995,37(3):409-420.
    [123] Handbook shielding principles for power system magnetic fields[S] . EPRI Report TR-103630,EPRI Palo Alto,CA,1994.
    [124] Du Yaping,Cheng T. C.,Farag A. S..Principles of power-frequency magnetic field shielding with flat sheets in a source of long conductors[J].IEEE Transactions on Electromagnetic Compatibility,1996,38(3):450-459.
    [125] Olsen R.G.,Istenic M..The effect of frequency on the accuracy of simple methods for calculating magnetic shielding of infinite planar shields[J] . 2003 IEEE International Symposium on IEEE Transactions on Electromagnetic Compatibility,2003:565-568.
    [126] Schulz R.B.,Plantz V.C.,Brush D.R..Shielding theory and practice[J].IEEE Transactions on Electromagnetic Compatibility,1988,30(5):187-201.
    [127] Moreno P.,Olsen R.G..A simple theory for optimizing finite width ELF magnetic field shields for minimum dependence on source orientation[J] . IEEE Transactions on Electromagnetic Compatibility,1997,39(4):340-347.
    [128] Binns K.J.,Lawrenson P.J..Analysis on computation of electric and magnetic field problems[M].New York:Pergamon, 1973.
    [129] Marko I.,Robert G O..A simple hybrid method for ELF shielding by imperfect finite planar shields[J].IEEE Transactions on Electromagnetic Compatibility,2004,46(2):199-207.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700