电气化铁路牵引供电容量优化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的飞速发展,高速铁路成为我国铁路事业的必然发展趋势。目前我国已成为世界高速铁路第一大国,高速铁路里程日益增加,因此,高速铁路牵引供电系统的安全、可靠、经济运行对高速铁路运输极其重要。国内已建和在建的高速铁路,线路均按照远期运量设计,其牵引供电系统采用大容量Vx牵引变电所与2×27.5kV牵引供电方式,可靠性高,并具有较强的负载能力。但是,在高速铁路运行初期,其运量普遍偏小,远未达到设计发车密度,致使供电设备容量严重过剩,影响系统运行的经济性。
     本文从高速电气化铁路负荷特性入手,通过对牵引变电所实测负荷数据进行相关计算,分析了当前高速铁路运行的现状及存在的问题,并提出采用灵活的牵引供电系统运行方式,以期能够使牵引供电系统在开通早期具有较高的经济性,同时又能满足远期运量的要求。
     本文根据高速铁路线路实际参数在Matlab/Simulink中建立了全并联复线AT牵引供电系统的仿真模型,考虑优化方案下不同列车运行数目及位置的多种情况,对作为电力牵引重要约束条件的牵引网供电电压水平进行分析研究,以检验供电能力。其次,利用由系统变化得到的牵引变电所负序电流一般表达式,对不同接线方式牵引变压器情况下的负序电流进行了分析,通过牵引变电所实测数据计算并对比优化前后的负序电流大小,得出了优化方案下牵引变电所的三相电压不平衡度。
     本文通过牵引变压器温升和寿命损失计算方法,根据牵引变电所的实测负荷数据建立了优化前后牵引变压器的温升曲线,并以此为基础计算了变压器寿命损失。讨论分析了当前高速铁路的牵引负荷水平对牵引变压器温升和寿命损失的影响,并以牵引变压器绕组温升和寿命损失为约束条件,对优化运行方案的合理性进行分析。
With the rapid economic development, the high-speed railway becomes the inevitable trend of Chinese railway business development. At present, China has become a superpower of the high-speed railway with the increasing of high-speed railway mileage. Therefore, the security, reliable and economic operation of the high-speed railway traction power supply system is extremely important to the high speed railway transport. The internal high-speed railway been built or building are designed in accordance with the long-term traffic. Its traction power supply system using large capacity Vx traction substation with2×27.5kV traction power supply which has high reliability and strong loading capacity. However, at the beginning of the operation, the high-speed railway capacity is generally small and far from the design grid density so that the power supply equipment capacity is excess affecting the system economy operation.
     On the basis of the high-speed electrified railway's load characteristic and the related calculation with actual measurement data of the traction substations, the current operation situation and the existing problems of high-speed railway are analyzed in this paper. And the flexible operation mode of the traction power supply system is proposed. So that the traction power supply system has high efficiency in the early opening and could meet the requirements of long-term traffic volume at the same time.
     The simulation model of the all-parallel AT traction power supply system in Matlab/Simulink software based on the actual parameters of high-speed railway line is built in this paper. Considering the different train operation numbers and a variety of the position situations, the traction grid voltage as an important constraint condition of the electric traction is analyzed to test the power supply capacity. The negative sequence current of the traction transformer in the different wiring method is analyzed using the negative sequence current general expression of the traction transformer by system variation.The three-phase voltage imbalance degree of the traction substation in the optimization scheme is got by the calculation the traction substation actual measurement data and the contrast of the negative sequence current before and after optimization.
     According to the actual load data of the traction substation, the traction substation temperature rise curves of the traction transformer before and after optimization is described using the calculation method of traction transformer temperature rise and the life loss. The influence of the high-speed railway traction load level to the traction transformer temperature rise and the life lost is discussed and analyzed. And make the traction transformer winding temperature rise and the life lost as the constraint condition, the rationality of the optimal operation scheme is analyzed.
引文
[1]中长期铁路网发展规划(2008年调整).综合运输,2008(12).
    [2]李群湛,贺建闽.牵引供电系统分析[M].成都:西南交通大学出版社,2007.
    [3]李向国.高速铁路技术[M].北京:中国铁道出版社,2005.
    [4]喻奇.客运专线牵引供电系统电气模型的研究[D].西南交通大学硕十学位论文,2009.
    [5]Yoshiyasu HAGZWARA, Masayuki UENO,Advance in drive Control Technology and speeding up of Shinkanse EMUS[J], Japanese Railway Engineering,2002(149):6-11.
    [6]Yoshiyasu MOCHIZUKI, West Japan Railway Company Tackling Environmental Problems [J], Japanese Railway Engineering,2002(14):10-12.
    [7]C.Courtois. Earthing, Protection, miscellaneous [J]. IEE Colloquium on 50kV autotransformer traction supply system-French Experience (Part4),1993:1-3.
    [8]Pilo.E, Roueo.L, Fernandez.A. A simulation tool for the design of the electrical supply system of high-speed railway line [J]. IEEE Power Engineering Society Summner Meeting,2000,2:1053-1058.
    [9]JP.Menu. The autotransformer and other equipment [J]. IEE Colloquium on 50kV autotransformer traction supply system-French Experience (Part3),1993:1-4.
    [10]C.Courtois. Why the 2×25kV alternative [J]. IEE Colloquium on 50kV autotransformer traction supply system-French Experience (Part4), Nov.1993:1-4.
    [11]李群湛.我国高速铁路牵引供电发展的若干关键技术问题[J].铁道学报,2010,32(4):119-124.
    [12]李群湛,郭锴,周福林.交流电气化铁路AT供电牵引网电气分析[J].西南交通大学学报,2012(1):1-6.
    [13]李强.客运专线双边供电方案研究[D].西南交通大学硕士学位论文,2009.
    [14]景德炎.客运专线电气化技术标准探讨[A].中国铁道学会电气化委员会2006年学术会议论文集[C],2006.
    [15]H.Rousse. Power supply for the Atlantie TGV high speed line[J].Intemational Conference on main Line Railway Electrification,1989:388-392.
    [16]Cella R, Giangaspero G, MariseottiA. Measurement of AT Electric Railway System Currents at Power-Supply Frequency and Validation of a Multiconductor Transmission-Line Mode[J].IEEE Transactions on Power Delivery,2006,21(3):1721-1726.
    [17]E.Pilo, L.Rouco, A.Fernandez. A reduced representation of 2×x25kV eleetrical systems for high-speed railway[J]. Proceedings of the 2003 IEEE/ASME Joint Rail Conference,2003,4:199-205.
    [18]Mariscotti A, Pozzobon P, Vanti M. Distribution of the Traction Return Current in AT Electric Railway System[J]. IEEE Transactions on Power Delivery,2005,20(3):2119-2128.
    [19]耿志修,王保国,李群湛,景德炎.中国电气化铁道.成都:西南交通大学,2011.
    [20]李勇,黄宝莹,孙珂.京沪高铁供电工程统一技术标准的有关问题探讨[J].电力技术经济,2009,21(2):35-50.
    [21]邓云川.高速铁路牵引供电系统相关问题的分析与研究[D].西南交通大学硕士学位论文.2002.
    [22]李群湛,贺建闽,解绍锋.电气化铁路电能质量分析与控制[M].成都:西南交通大学出版社,2011.
    [23]胡志.大秦线2万吨重载列车运输组织模式分析[D].西南交通大学硕士学位论文,2005.
    [24]李学伟,张曙光.高速铁路概论[M].北京:中国铁道出版社,2010.
    [25]黄足平.客运专线牵引变压器选型综合分析[J].电气化铁道,2005,6:14-16.
    [26]李群湛,连级三,高仕斌.高速铁路电气化工程[M].成都:西南交通大学出版社,2006.
    [27]吴羽生.高速铁路牵引变压器典型负荷曲线与容量优化研究[D].西南交通大学硕士学位论文,2011.
    [28]韦国,闵英杰,周利军,吕玮,吴广宁.V/X接线牵引变压器的温升特性[J].中国铁道科学,2011,32(3): 119-124.
    [29]SUSA D, NORDMAN H. A Simple Model for Calculating Transformer Hot-Spot Temperature [J]. IEEE Transactions on Power Delivery,2009,24 (3):1257-1265.
    [30]康婕.电气化铁路牵引负荷的概率分布模型及其应用[D].西南交通大学硕士学位论文,2011.
    [31]贺建闽.牵引变压器容量的合理选择[J].电气化铁道,2005,6:1-5.
    [32]陈民武,李群湛,智慧.牵引供电系统设计方案的综合评价.高电压技术.2010,36(2):525-530.
    [33]陈民武.高速铁路牵引负荷特性及其对电能质量的影响[J].高速铁路,2011,3:14-53.
    [34]景德炎.电气化铁路的负荷特性及电能质量分析[J].标准生活,2010,1(12):18-22.
    [35]许岗.牵引电压损失与电力系统短路容量关系的研究[J].电气化铁道,2008,5:16-20.
    [36]京沪高速铁路股份有限公司.漫话京沪高速铁路[M].北京:中国铁道出版社,2011.
    [37]邢晓乾.带加强线的全并联直接供电技术的研究[D].西南交通大学硕士学位论文,2011.
    [38]张小瑜,吴俊勇.电气化铁路接入电力系统的电压等级问题[J].电网技术,2007,31(7):12-17.
    [39]杨振龙.Vx接线牵引变压器的研究和应用[J].电气化铁道,2004,4,12-15.
    [40]李爱武.AT供电方式及变电所接线方式优选[D].西南交通大学硕士学位论文.2010.
    [41]刘宇航.牵引网谐振规律研究[D].西南交通大学硕士学位论文.2009.
    [42]何俊文.牵引供电系统负荷过程仿真[D].西南交通大学硕士学位论文.2010.
    [43]王猛.AT所全并联供电方式牵引网电压损失分析[J].电铁信息网讯,2007(2):86-93.
    [44]李群湛.电气化铁道并联综合补偿及其应用[M].北京:中国铁道出版社,1993:6-13.
    [45]楚振宇,吴命利,张劲,等.三相Vv接线和单相Ii接线牵引变压器的组合应用[J].铁道学报.2007(01):109-114.
    [46]吴命利.牵引供电系统电气参数与数学模型研究[D].北京:北京交通大学,2006.
    [47]张子林.考虑再生制动工况的高速动车组仿真研究[D].西南交通大学硕士学位论文.2011.
    [48]王杰文.牵引变压器典型负荷曲线的建模、仿真与应用[D].西南交通大学硕士研究生论文,2004.
    [49]GB/T15543-2008电能质量三相电压不平衡[S].北京:中国标准出版社,2008.
    [50]Simon A.Ryder. A simple method for calculating winding temperature gradient in power transformers[J]. IEEE Transactions on Power Delivery.2002,17(4).
    [51]Simon A.Ryder. A simple method for calculating core temperature rise in power transformers[J]. IEEE Transactions on Power Delivery.2004,19(2).
    [52]Jardini, J.A, Brittes,J.L, Magrini,L.C, Bini,M.A. Yasuoka,J. Power transformer temperature evaluation for overloading conditions[J]. IEEE Transactions on Power Delivery.2005,20(1).
    [53]Tylavsky,D.J, QingHe,Si,J, MeCulla,G.A, Hunt,J.R. Transformer top-oil temperature modeling and simulation[J]. IEEE Transactions on Industry Applocations.2000,36(5).
    [54]Galli,A.W, Cox,M.D. Temperature rise of small oil-filled distribution transformers supplying non-sinusoidal load currents[J]. IEEE Transactions on Power Delivery.1996,11(1).
    [55]Sippola,M, Sepponen,R.E. Accurate prediction of high-frequency power-transformer losses and temperature rise[J]. IEEE Transactions on power Electronies.2002,17(5).
    [56]He,Q, Si,J, Tylavsky,D.J. Prediction of top-oil temperature for transformers using neural networks[J]. IEEE Transactions on power Delivery.2000,15(4).
    [57]Pierce,L.W. Predicting hottest spot temperatures in ventilated dry type transformer windings[J]. IEEE Transactions on Power Delivery.1994,9(2).
    [58]徐树栓.电力变压器运行[M].北京:水利电力出版社,1993.
    [59]GB/T15164-94《油浸式电力变压器负载导则》
    [60]周利军,吴广宁.牵引负荷对变压器绝缘老化和寿命损失的影响[J].电力系统自动化,2005,29(18):90-94.
    [61]王丹.牵引变压器电寿命在线监测及其在PSMIS中的实现[D].西南交通大学硕十研究生论文,2003.
    [62]解绍锋.牵引变压器温升与寿命损失计算[J].机车电传动,2003(4):15-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700