兰新第二双线路基防风设施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新建兰州至乌鲁木齐第二通道为客运专线铁路,为我国首条通过大风地区的高速铁路,计划运营车速350km/h的高速动车组。线路全长1768公里,穿越大风地区总长度达500多公里,风区内大风频繁,风力强劲,路况复杂,大风对铁路列车运行安全及运输畅通构成严重威胁。客运专线列车运行安全情况以及弓网接触供电是否正常成为制约兰新第二双线工程成功的关键因素。为使高速动车组安全通过风区,必须开展风、车、路、墙、网等耦合空气动力特性和大风环境下列车运行安全研究。
     本文以数值计算为主,采用动模型试验和风洞试验结果作为验证,对设置防风设施后动车组气动特性、接触网处风速影响等进行数值计算,以此为基础进行不同路基高度上挡风墙的合理高度研究,防风走廊的合理外形研究等,得出结论:综合考虑动车组运行安全和弓网供电正常,平地和路堤上合理挡风墙的高度基本在3.5m~4m范围内,路堑上的合理挡风墙高度相对偏低,且路堤越高,最大防御风速越小;在环境风速超过挡风墙防御的风区,提出修建一种新型的半封闭式防风走廊,该防风走廊既能实现对列车和接触网的综合防护,又具有防沙功能,同时也不会产生隧道空气动力效应等不利影响,是一种理想的强风区高速铁路防风设施。
     研究成果为兰新第二双线路基防风设施设计提供了科学可靠的依据并已用于线路工程建设。
The second channel from Lanchow to Urumqi, a line for passenger transport, is the first high-speed railway through strong winds region of our country, on which high-speed EMU runs with the speed of 350km/h. Its total length is 1768 km, with 500 km through wind region. Frequent and strong wind, complex road situation pose a serious threat on the running train safety and expedite railway transportation. It is the key element to constrain the success of the second Lanchow-Sinkiang double-line project whether the running train is safe and overhead contact wire above pantograph supplies power normally or not. To insure high-speed EMU security through winds region, research on the coupling air dynamic characteristics among the wind, vehicles, roads, walls, overhead contact wire etc and train safety must be carried out.
     This paper give priority to the numerical simulation, with the supplements of moving model test and wind tunnel test verification. Based on the numerical calculations about aerodynamic characteristics of EMU and influence on overhead contact wire after the wind-break facilities, the right height of wind-break wall in different subgrades and reasonable shape of wind-break corridor are researched. The conclusions are that:the reasonable height of wind-break wall on the ground and embankment is in the rangement of 3.5m-4m, but lower on the line below the ground, the higher embankment is, the smaller maximum defendable wind is; in the area where environment wind speed beyond wind-break wall's defence, a new kind of semi-enclosed wind-break corridor is put forward to be bulit, and this wind-break corridor can not only provide comprehensive protection to the train and overhead contact wire, prevent the sand, but also make no adverse effects, such as tunnel aerodynamic effects etc, so it is an ideal wind-break facility within strong winds region for high-speed railway.
     Research achievements provide scientific reliable basis for the wind-break facilities design of the second Lanchow-Sinkiang double-line railway, which has been applied in the line construction.
引文
[1]高广军,田红旗,姚松,等.兰新线强横风对车辆倾覆稳定性的影响.铁道学报,2004,26(4):36~40
    [2]刘凤华.不同类型挡风墙对列车运行安全防护效果的影响.中南大学学报:自然科学版,2006,37(1):176~182
    [3]刘凤华.加筋土式挡风墙优化研究.铁道工程学报,2006,91(1):96~99
    [4]姜翠香,梁习锋.挡风墙高度和设置位置对车辆气动性能的影响.中国铁道科学,2006,27(2):66~70
    [5]梁习锋,熊小慧,易仕和.强侧风作用下棚车气动外形优化研究.国防科技大学学报,2006,28(2):26~30
    [6]王厚雄,王蜀东,高注,等.防风工程对风特性及铁道车辆横风气动特性的影响.空气动力学学报,1990,8(4):430~435
    [7]王厚雄,尹永顺,高注.车顶外形对车辆气动横向稳定性等气动特性的影响.空气动力学学报,1993,11(1):98~101
    [8]王厚雄,高注,王蜀东,等.挡风墙高度的研究.中国铁道科学,1990,11(1):14~22
    [9]曾广勇.兰新线大风地区挡风墙的勘测与设计.路基工程,1998,81(6):24~29
    [10]伊永顺,王厚雄.兰新复线防风安全工程研究报告.乌鲁木齐:乌鲁木齐铁路局,1993:1~6
    [11]田红旗.列车空气动力学.北京:中国铁道出版社,2007:40~43,110~117
    [12]高广军.强侧风下列车运行安全性研究:[博士学位论文].长沙:中南大学,2008:1
    [13]杨明智,袁先旭,鲁寨军,等.强侧风下青藏线列车气动性能风洞试验研究.实验流体力学,2008,22(1):76~79
    [14]任尊松,徐宇工,王璐雷,等.强侧风对高速列车运行安全性影响研究.铁道学报,2006,28(6):46~50
    [15]Toshishige FUJII,Tatsuo MAEDA,Hiroaki ISHIDA,et a1. Wind-Induced Accidents of Train/Vehicle and Their Measures in Japan. QR of RTRl, 1999,40(1):50-55
    [16]种田胜二,铃木实,前田达夫.横风に对すゐ车辆の空气力学的特性风洞试验.日本铁道综研报告,1999,13(12):47~52
    [18]#12
    [19]Quinn,A.D. An Investigation of the wind—induced Rolling Moment on a Commercial vehicle in the Atmospheric Boundary Layer. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Autoumobile Engineering,2007,21(11):1367~1379
    [20]Coleman, S. A. Experimental Study of the Aerodynamic Behavior of High Sided Lorries in Cross Winds. Journal of Wind Engineering and Industrial Aerodynamics,1994,54(3):401 ~ 129
    [21]Baker, C. J. Behaciour of Road Vehicles in Unsteady Cross Winds. Journal of Wind Engineering and Industrial Aerodynamics,1993,49(1):439~ 448
    [22]Baker, C. J. Assessment of Wind Tunnel Testing Techniques for Ground Vehicles in Cross Winds. Journal of Wind Engineering and Industrial Aerodynamice,1990,33(1):429~438
    [23]Brockie,N. J. W. Aerodynamic Drag of High Speed Trains. Journal of Wind Engineering and Industrial Aerodynamics,1990,34(3):273~290
    [24]Baker, C. J. High Sided Articulated Board Vehicles in Strong Cross Winds. Journal of Wind Engineering and Industrial Aerodynamics,1998,31(1): 67~85
    [25]Coleman,S. A. High Sided Road Vehicles in Cross Winds. Journal of Wind Engineering and Industrial Aerodynamics,1990,36(2):1383~1392
    [26]Baker.C.J. Problems of Road Vehicle in Cross Winds. Highways and Transportation,1991,38(5):8~9
    [27]Baker. C. J. Wind Tunnel Tests to Obtain Train Aerodynamic Drag Coefficients. Journal of Wind Engineering and Industrial Aerodynamics,1991,38(1):23~28
    [28]Coleman.S. A. A Reduction of Accident Risk for High Sided Road Vehicle in Cross Winds. Journal of Wind Engineering and Industial Aerodynamics,1992,44(4):2658~2695
    [29]Humphreys, N. D. Forces on Vehicle in Cross Winds from Moving Model Tests. Journal of Wind Engineering and Industrial Aerodynamics,1992,44(4): 2673~2684
    [30]Khier, M. Breuer, F. Durst. Flow structure around trains under side win conditions:a numerical study. Computers & Fluids,2000,29(2):179~ 195
    [31]T.W.Chiu. Prediction of the aerodynamics loads on a railway train in cross-wind at a large yaw angels using an integrated two-and-three dimensional Source/Vortex panel method. Journal of Wind Engineering and Industrial Aerodynamics,1995,1(57):19~39
    [32]J. Bettle, A. G. L. Holloway, J. E. S. Venart. A computational study of the aerodynamics forces acting on a tractor-trailer vehicle on a bridge in cross-wind. Journal of Wind Engineering and Industrial Aerodynamics, 2003,1(91):573~592
    [33]Uzuki Masahiro, Arai Norio, Maeda Tatsuo. Numerical simulation of flow around train (2nd report Unsteady aerodynamics force on tail car). Nippon Kikai Gakkai Ronbunshu B Hen/Transactions of the Japan Society of Mechanical Engineers Part B,1996,62(595):1061 ~ 1067
    [34]C. J. Baker, N. D. Humphreys. Assessment of the adequacy of various wind tunnel techniques to obtain aerodynamic data for ground vehicles in cross winds. Journal of Wind Engineering and Industrial Aerodynamics, 1996,1(60):49~68
    [35]C. J. Baker, J. Jones, F. Lopez-Calleja, J. Munday. Measurements of the cross wind forces on trains. Journal of Wind Engineering and Industrial Aerodynamics,2004,1(92):547~563
    [36]乌鲁木齐铁路局科委.兰新复线防风安全工程.中国铁路,1995,1(10):43
    [37]轨道交通安全教育部重点实验室.兰新线实车试验报告.长沙:中南大学,2006:8~17
    [38]轨道交通安全教育部重点实验室.大风环境下车辆及防风设施空气动力学综合试验研究报告.长沙:中南大学,2010:1~3
    [39]王福军.计算流体动力学分析.北京:清华大学出版社,2004:1~28
    [40]费祥麟,胡庆康,景思睿. 高等流体力学. 西安:西安交通大学出版社,1989:7~10,305-360
    [41]陶文铨.数值传热学.西安:西安交通大学出版社,1992:137~182,416~485
    [42]陈景仁.湍流模型及有限分析法(臧国才,刘希云等译).上海:上海交通大学出版社,1989:56~89
    [43]章梓雄,董曾南.粘性流体力学.北京:清华大学出版社,1998:1~10
    [44]陈矛章.粘性流体动力学理论及紊流工程计算.北京:北京航空学院出版社,1986:1~13
    [45]孔珑.可压缩流体动力学.北京:水利电力出版社,1991:1~8
    [46]赵学端,廖其奠.粘性流体力学.北京:机械工业出版社,1983:1~5,64~89
    [47]勋刚.湍流.天津:天津大学出版社,1994:84~101
    [48]朱自强. 应用计算流体力学.北京:北京航空航天大学出版社,1998:165~177
    [49]Coleman, S. A., Baker, C. J.. High sided road vehicles in cross winds. J. of Wind Engineering and Industrial Aerodynamics,990,33(1):429~ 438
    [50]Bogstad, M. C., Habashi, W. G., Akel, I.. Computational fluid dynamics based advanced ship ~ airwake database for helicopter flight simulators. Journal of Aircraft,1993,39(5):326~351
    [51]Aradot N., Talotte C., Garem H.. A comparison of the numerical simulation and experimental investigation of the flow around a high speed train. American Society of Mechanical Engineers Fluids Engineering Division, 2002,257(1):1055~1060
    [52]Masbernat F., Wolfhugel Y. F., Dumas J. C.. CFD aerodynamics of the French High-Speed train. SAE Special Publications n 908 Vehicle Aerodynamics: Wake Flows Computational Fluid Dynamics and Aerodynamic Testing, 1992:85~99
    [53]MacNeill Robert A., Holmes Samuel, Lee Harvey S.. Measurement of the aerodynamic pressures produced by passing trains. In:Proceedings of the IEEE/ASME Joint Railroad Conference,2002:57~64
    [54]孟祥奎,伊津芝.铁路提速后保证良好弓网关系的探讨.电气化铁道,2002,10(3):28~30
    [55]张道俊,陶维富.接触网运营检修与管理.北京:中国铁道出版社,1996:5~7
    [56]付秀通,詹斐生.轮/轨-弓/网系统耦合动力学数值模拟分析与试验研究.铁道学报,1998,20(3):25~32
    [57]李健.接触网拉出值选用对弓网运行关系的改善.电气化改造,2005,11(6):35~38
    [58]隋延民.接触网风偏计算需注意的几个问题.电气化铁道,2003,11(3):25~27
    [59]席春堂,宇占军.风口地段接触网防风改造方案的探讨.电气化铁道,2003,7(4):19~20
    [60]刘凤华.挡风墙气动外形及位置优化:[硕士学位论文].长沙:中南大学,2005:53
    [61]王春新.既有线提速改造接触网设计.铁道标准设计,2005,(7):102~103
    [62]杨斌,李明茂.适用于高速电气化铁路的铜合金接触网.铁道机车车辆,2005,25(1):68~70
    [63]黄崇祺.轮轨高速电气化铁路接触网用接触网的研究.中国铁道科学,2001,(5):1~5
    [64]李燕飞.兰新线电气化改造工程大风区段行车安全研究:[硕士学位论文].长沙:中南大学,2007:39
    [65]轨道交通安全教育部重点实验室.兰新第二双线路基防风数值计算研究报告.长沙:中南大学,2010:42~43
    [66]铁道部科技司.京津城际铁路技术管理暂行办法.北京:铁道部,2008:16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700