鼓式制动器动力学分析及制动性能优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鼓式制动器是一个柔性多体系统,各个零件在制动过程中的运动规律和受力情况比较复杂,通过建立刚柔耦合模型可较真实得仿真制动过程,得到相对准确的动力学分析结果,为制动性能的预测与优化提供基础。目前,在建立鼓式制动器刚柔耦合模型进行动力学分析并进行基于仿真的优化研究上还未见成熟报道。因此,本文在借鉴国内外相关研究成果的基础上,进行了两方面的研究:探索了建立鼓式制动器刚柔耦合模型的通用方法,采用参数化设计方法开发了界面友好的建模与仿真平台,以E260鼓式制动器为实例进行了动力学仿真分析;然后,引入多岛遗传算法与代理模型技术,按照“试验设计-获取样本点-构建代理模型-误差分析-建立优化数学模型-选择优化算法-进行优化设计-验证优化结果”的路线,对E260鼓式制动器进行了基于动力学仿真的制动性能优化,加快了优化进程。主要研究如下:
     (1)探索了建立鼓式制动器刚柔耦合模型的通用方法。忽略一次制动中温升对制动效能的影响,提出了基于鼓式制动器刚柔耦合模型进行动力学仿真的方法。研究了有限元模态中性文件的生成与导入方法;利用迭代法建立了渐开线凸轮模型;建立了摩擦片与制动鼓之间基于哑物体的接触力;通过能量守恒推导了整车的等效转动惯量公式,建立了“四分之一”整车模型;然后在MSC.ADAMS中开发了鼓式制动器刚柔耦合模型建立与动力学仿真平台,解决了建模耗时、耗力的问题。
     (2)建立了E260鼓式制动器的刚柔耦合模型,并对满载时初速度60 km/h的制动工况进行了动力学仿真。结果显示:持续制动阶段制动力矩为19574.53 Nm;制动减速度5.24 m/s2,制动距离为27.89m,满足国标要求;接触力作用线与两滚轮中心连线夹角16.70。,可通过优化结构减小此夹角来提高制动效能。
     (3)构建了预测制动力矩的代理模型。选取滚轮中心坐标A、滚轮中心坐标P、滚轮半径、内盖板宽度的一半、摩擦片包角和摩擦片起始角为六个设计变量,选制动力矩为响应,采用拉丁超立方试验设计方法安排30个样本点,用平台计算响应后构建了二次多项式响应面模型和径向基函数模型。然后用复相关系数法和均方根误差法进行误差分析,结果表明,径向基函数模型可较好得预测制动力矩。
     (4)进行了基于多岛遗传算法与代理模型的制动性能优化并进行仿真验证。引入多岛遗传算法,利用建立好的径向基函数代理模型,以制动力矩最大为目标对E260鼓式制动器的六个设计变量进行了优化,优化后制动力矩提高25.60%。把修正后结果代入平台进行建模与仿真的结果表明:优化后持续制动阶段制动力矩为24698.15 Nm,制动力矩的波动程度略有增大;制动减速度增加到6.74 m/s2;制动距离为22.34 m;接触力作用线与滚轮中心连线的夹角减小了4.76°,凸轮对制动蹄的张开效果更好,制动效能更高。
Drum brake is a flexible multi-body system, and the situations of the movement and force of varoius parts are complicated during the braking process. More realistic simulation of the braking process can be achieved and the relatively accurate dynamic analysis results can be also obtained through the establishment of rigid-flexible coupling model of drum brake, which provide the basis for the prediction and optimization of braking performance. Currently, mature research of rigid-flexible coupling model establishing of drum brake for dynamic analysis and simulation-based optimizing of drum brake has not been reported. Therefore, two aspects of work were completed based on referring the related research achievements home and abroad in this thesis:first, the general methods of building rigid-flexible coupling model of drum brake were explored, and a user-friendly modeling platform was developed using parametric design method, and the E260 drum brake was taked as an actual example to do dynamic simulation and analysis; second, metamodling and multi-island genetic algorithms (MIGA) were introduced to optimize braking performance of E260 drum brake based on dynamic simulation according the line of "Design of experiment (DOE)-Access to samples-Building surrogate model-Verification of error-Establishment of optimal mathematical model-Selection of optimization algorithm-Realization of optimization and design-Verification of results", which greatly accelerated the optimization process. The main research is as follows:
     (1) The general methods of establishing rigid-flexible coupling model of drum brake were explored. Ignoring the effect of the rise of temperature during a braking peocess on the braking efficiency, the methods of building a rigid-flexible coupling model of drum brake were presented. The generation and import methods of finite element modal neutral file (MNF) were researched. The involute cam model was built by iteration method. The contact force model between the friction lining and brake drum was established based on dummy parts. The equivalent inertia formula of the vehicle was derived according energy conservation, and the "quarter" vehicle model was established. Then a user-friendly modeling and simulation platform was developed in MSC.ADAMS, solving the time-consuming and labor-intensive problems of modeling.
     (2) The rigid-flexible coupling model of E260 drum brake was built and the dynamic simulation was done under the braking conditions of full loaded at the initial braking speed of 60 km/h. The results showed that:the brake torque during the continuous braking stage was 19574.53 Nm; the braking deceleration was 5.24 m/s2 and the braking distance was 27.89 m, which met the national standard; the angle between the contact force action line and the connection line of two roller centers was 16.70°, which could be reduced by optimizing the structure.
     (3) The surrogate model which predicted the brake torque was constructed. The roller center coordinates A and P, the roller radius, half the width of the internal cover, the friction lining wrap angle, the friction lining initial angle were selected as six design variables, and braking torqe was selected as response.30 sample points were arranged using Latin hypercube (LH) experimental design, and after the responses being calculated using the platform the quadratic polynomial response surface model (RSM) and radial basis function (RBF) model were constructed. The error analysis of multiple correlation coefficient and root mean square error (RMSE) method shows that RBF surrogate model can predict the brake torque better.
     (4) The braking performance was optimized based on multi-island genetic algorithm (MIGA) and surrogate model, and the results were verified by simulation. Introducing MIGA and metamodling, taking the maximum brake torque as the optimization object, the six design variables of the E260 drum brake were optimized using well-established RBF surrogate model. After the optimization the brake torque was improved by 25.60%. The results were modified and corresponding models were established on the platform, the simulation results showed that:the optimized brake torque during the continuous braking stage was 24698.15 Nm, but the fluctuation degree of the brake torque increased little; the braking deceleration was 6.74 m/s2; the braking distance was 22.34 m; the angle between the contact force action line and the connection line of two roller centers was decreased by 4.76°, and the cam could better push the brake shoes resulting in higher braking performance.
引文
[1]关文达.汽车构造[M].北京:清华大学出版社,2007:346-391.
    [2]VALX. Products[EB/OL]. (2011-4-3) http://www.valx.eu/en/products.aspx.
    [3]陈家瑞.汽车构造(第三版)[M].北京:人民交通出版社,2002:274-298.
    [4]A. A. Shabana. Computer aided analysis of flexible multibody vehicle systems:SAE International,41st Annual Earthmoving Industry Conference, Peoria,04-03-1990 [C]. Illinois:Journal of Materials and Manufacturing,04-03-1990.
    [5]Shan Shih, Rajesh Somnay, Robert Hannon, etal. Improved drum brake shoe factor prediction with the consideration of system compliance[C]. USA:SAE International Truck & Bus Meeting & Exposition,2000:1-10.
    [6]Rajesh Somnay, Shan Shih, Paul Johnston. Improved drum brake performance prediction considering coupled thermal and mechanical effects:Chicago [C]. USA:SAE International Truck and Bus Meeting and Exhibition 2001:1-8.
    [7]Yitzong (Jim) Chern, R. H. Basch. A Drum Brake Squeal Analysis in the Time Domain: May 16-19,2005[C]. USA:SAE TECHNICAL PAPER SERIES.
    [8]Francesco Massi, Laurent Baillet, Oliviero Giannini, Aldo Sestieri. Brake squeal:Linear and nonlinear numerical approaches [J]. Mechanical Systems and Signal Processing,2007, 21:2374-2393.
    [9]Jiayin Li, J. R. Barber. Solution of transient thermoelastic contact problems by the fast speed expansion method [J]. Wear,2008,265:402-410.
    [10]Lyes Nechak, Sebastien Berger, Evelyne Aubry. A Polynomial Chaos Approach to the Robust Analysis of the Dynamic Behaviour of Friction Systems (unedited) [J]. European Journal of Mechanics/A Solids, doi:10.1016/j.euromechsol.2011.03.002.
    [11]XingDong Wang, YuJing Hu, ChengGang Li and XueLin Wang. Dynamic Characteristics Analysis of Brake System for Heavy-Duty Off-Highway Vehicle [C]. USA:SAE Advancements in Air Brake Systems, Truck Suspensions & Military Vehicle/Terrain Interface, SAE-2004-01-2638.
    [12]王宣锋.鼓式制动器动力学性能的研究[D].硕士学位论文,哈尔滨:哈尔滨工业大学,2006.
    [13]Xuanfeng Wang,Yingchun Liang, Chaosheng Huang, Guozeng Ying. Research on Dynamic Performance of Drum Brake:14th Asia Pacific Automotive Engineering Conference Hollywood, California, USA August 5-8,2007[C]. USA:SAE TECHNICAL PAPER SERIES,2007-01-3673.
    [14]Xiaobin Ning, Bin Meng, Jisheng shen, Wenming Zhang. Simulation Based Design for Heavy Truck Brake[C]. USA:SAE TECHNICAL PAPER SERIES,2009-01-0581.
    [15]Xiao Bin Ning, Ji Sheng Shen, Bin Meng. Prediction for Shoe Factor of Drum Brakes Based on Nonlinear 3D Simulation Models[J]. Applied Mechanics and Materials,2010,37-38: 880-885.
    [16]王庭义,吕彭民,兰吉光,李玉杰,孟铁.鼓式制动器制动过程动力学仿真[J].中国公路学报,2010,23(6):115-120.
    [17]管欣,中军烽,管仁梅,詹军.鼓式制动器多柔性体ADAMS建模与仿真[J].汽车技术,2007,(10):6-9.
    [18]管欣,中军烽,管仁梅,詹军.鼓式制动器相关参数对其制动效能的影响[J].科学技术与工程,2009,9(4):940-942.
    [19]吕振华,亓昌.蹄-鼓式制动器热-弹性耦合有限元分析[J].机械强度,2003,25(4):401-407.
    [20]李亮,宋健,李永,郭振宇.制动器热分析的快速有限元仿真模型研究[J].系统仿真学报,2005,17(12):2869-2877.
    [21]丁树伟.汽车鼓式制动器接触及热参数化有限元分析[D].硕士学位论文,长春:吉林大学,2009.
    [22]汇聚久臣.汔车鼓式制动器多物理场仿真研究及数字化分析平台[D].博士学位论文,长春:吉林大学,2009.
    [23]高诚辉,黄健萌,林谢昭,唐旭最.盘式制动器摩擦磨损热动力学研究进展[J].中国工程机械学报,2006,4(1):83-88.
    [24]孟德建,张立军,余卓平.通风盘式制动器热机耦合理论建模与分析[J].同济大学学报(自然科学版),2010,38(6):890-897.
    [25]赵凯辉,魏朗.鼓式制动器三维热-机耦合温度场仿真[J].农业机械学报,2009,40(2):32-36.
    [26]Weiming Liu, Jerome Pfeifer. Reducing High Frequency Disc Brake Squeal by Pad Shape Optimization [C]. USA:SAE Brake Technology:ABS/TCS Systems, NVH, and Foundation Brakes, SAE-2000-01-0447.
    [27]Swift, R. A Parametric Modeling Approach for the Preliminary Design of Automotive Disc Brakes [C]. USA:22nd SAE Brake Colloquium, SAE-2003-01-3330.
    [28]Charles L. Penninger, Richard A. Swift. Disc Brake Lining Shape Optimization by Multibody Dynamic Analysis [C]. USA:SAE ABS/TCS, Brake Technology and Foundation Brake NVH and Tire and Wheel Technology, SAE-2004-01-0725.
    [29]Shih-Wei Kung, Greg Stelzer, Kelly A. Smith. A Study on Low Frequency Drum Brake Squeal: October 10-13,2004[C]. USA:SAE TECHNICAL PAPER SERIES,2004-01-2787.
    [30]M Tirovic, G A Sarwar. Design synthesis of non-symmetrically loaded high-performance disc brakes Part 3:verification and optimization [C]. Proc. Instn Mech. Engrs,2004,218: 105-112.
    [31]Lars Hammerstrom, Staffan Jacobson. Surface modification of brake discs to reduce squeal problems [J]. Wear,2006,261:53-57.
    [32]Snehasis Ganguly, Huanan Tong and Yuri Karpenko. A Systems Approach to Eliminating Squeal in a Drum Brake:26th Annual Brake Colloquium & Exhibition San Antonio, Texas October 12-15,2008[C]. USA:SAE TECHNICAL PAPER SERIES,2008-01-2531.
    [33]H-J Cho, C-D Cho. A study of thermal and mechanical behaviour for the optimal design of automotive disc brakes [C].Proc. IMechE 2008,222 Part D:J. Automobile Engineering: 895-892.
    [34]Kerem Karakoc, Edward J. Park, Afzal Suleman. Design considerations for an automotive magnetorheological brake[J]. Mechatronics,2008,18:434-447.
    [35]Gottfried Spelsberg-Korspeter. Structural optimization for the avoidance of self-excited vibrations based on analytical models [J]. Journal of Sound and Vibration. 2010,329:4829-4840
    [36]韩文明,吕振华.关于鼓式制动器效能因数变化特性的新探讨[J].公路交通科技,2004,21(5):128-131.
    [37]吕振华,韩文明.鼓式制动器摩擦副压强不均匀性分析与评价[J].汽车工程,2004,26(1):90-93.
    [38]黄健萌,高诚辉,林谢昭,唐旭晟.盘式制动器摩擦界面接触压力分布研究[J].固体力学学报.2007,28(3):297-302.
    [39]米洁,吴欲龙.汽车鼓式制动器多目标优化设计[J].机械设计与制造.2007(1):25-26.
    [40]程贤福,熊坚,李骏.汽车鼓式制动器的可靠性稳健优化设计[J].华东交通大学学报,2009,26(2) :67-71.
    [41]周明刚,陈源,周敬东,易军.鼓式制动器设计的遗传算法优化及其Mat la实现[J].湖北工业大学学报,2009,24(2):78-80.
    [42]杨仁华.基于汽车制动综合性能的鼓式制动器优化设计[J].中国西部科技,2010,9(23):39-49.
    [43]周俊波.基于变异系数的盘式制动器结构优化设计[D].硕士学位论文,武汉:武汉理工大学,2009.
    [44]胡文婕,陈亮.基于iSIGHT的汽车盘式制动器多学科设计优化[J].农业机械学报,2010,41(5):17-20.
    [45]边永杰.鼓式制动器:中国,CN201020301661.5[P].2010-09-15.
    [46]Suzukawa Shoihi. Drum Brake with Automatic Adjustment Mechanism of Shoe Gap:Japan, JP2004353751[P].2004.
    [47]J.-F. M. Barthelemy, R.T. Haftka. Approximation concepts for optimum structural design-a review[J]. Structural Optimization,1993,5:129-144.
    [48]T. W. Simpson, J. D. Peplinski, P. N. Koch and J. K. Allen. Metamodels for Computer-based Engineering Design:Survey and recommendations[J]. Engineering with Computers,2001, 17:129-150.
    [49]G. Gary Wang, S. Shan. Review of Metamodeling Techniques in Support of Engineering Design Optimization [J]. ASME,2007,129:370-380.
    [50]潘志雄.基于径向基函数的优化代理模型应用研究[J].航空工程进展,2010,1(3):242-245.
    [51]安治国,周杰,赵军,张渝.基于径向基函数响应面法的板料成形仿真研究[J].系统仿真学报, 2009,21(6):1557-1561.
    [52]穆雪峰,姚卫星,余雄庆,刘克龙,薛飞.多学科设计优化中常用代理模型的研究[J].计算力学学报,2005,22(5):608-612.
    [53]穆雪峰.多学科设计优化代理模型技术的研究和应用[D].硕士学位论文,南京:南京航空航天大学.2004.
    [54]王继新.工程车辆翻车保护结构设计方法与试验研究[D].博士学位论文,长春:吉林大学.2006.
    [55]陈国栋,韩旭,刘桂萍,赵子衡.基于自适应径向基函数的整车耐撞性多目标优化[J].中国机械工程,2011,22(4):488-493.
    [56]杨济匡,吴亚军,张斌.汽车侧面碰撞中头胸部安全气囊的优化研究[J].湖南大学学报(自然科学版),2010,37(1):23-28.
    [57]陈国栋,韩旭,刘桂萍,雷飞,姜潮.某重型商用车驾驶室动态特征分析及优化[J].中国机械工程,2010,21(20):2509-2513.
    [58]周萍,于德介,臧献国,姚凌云.采用响应面法的汽车转向系统固有频率优化[J].汽车工程,2010,32(10):883-887.
    [59]榻伟旗.车身前部抗撞性优化的研究[D].博士学位论文,长春:吉林大学.2010.
    [60]吉野辰萌.薄壁梁单元简化方法在碰撞优化设计中的研究[D].博士学位论文,长春:吉林大学.2010.
    [61]高云凯,孙芳,余海燕.基于Kriging模型的车身耐撞性优化设计[J].汽车工程,2010,32(1):17-21.
    [62]王凌,吉利军,郑大钟.基于代理模型和遗传算法的仿真优化研究[J].控制与决策,2004,19(6):626-630.
    [63]范久臣,杨兆军,刘长亮,王继新,丁树伟,施宗成.鼓式制动器刚柔耦合虚拟样机[J].吉林大学学报(工学版),2009,39(增刊1):183-187.
    [64]石珍强,徐培民.MSC. ADAMS刚柔耦合多体系统动力学建模[J].安徽工业大学学报,2007,24(1):43-45.
    [65]陈萌.基于虚拟样机的接触碰撞动力学仿真研究[D].博士学位论文,武汉:华中科技大学,2003.
    [66]He Hao, Dengfeng Wang, Shuming Chen, Shengqiang Liu and Shaoxian Bu. Simulation and Test on Braking Performance of Heavy-duty Truck with Multi-axis Braking System[C].2010 Second Pacific-Asia Conference on Circuits, Communications and System (PACCS):47-50.
    [67]冯樱,李春茂,郭一鸣.基于ADAMS的汽车制动方向稳定性仿真分析[J].拖拉机与农用运输车2010,37(5):68-70.
    [68]刘铸永.刚-柔耦合系统动力学建模理论与仿真技术研究[D].博士学位论文,上海:上海交通大学,2008.
    [69]洪嘉振,蒋丽忠.动力刚化与多体系统刚-柔耦合动力学[J].计算力学学报,1999,16(3):15-20.
    [70]洪嘉振,蒋丽忠.柔性多体系统刚-柔耦合动力学[J].力学进展,2000,30(1):295-301.
    [71]刘锦阳,洪嘉振.柔性体的刚-柔耦合动力学分析[J].固体力学学报,2002,23(2):159-166.
    [72]杨辉,洪嘉振,余征跃.两种刚柔耦合动力学模型的对比研究[J].上海交通大学学报,2002,36(11):1591-1595.
    [73]杨辉,洪嘉振,余征跃.刚-柔耦合多体系统动力学建模与数值仿真[J].计算力学学报,2003,20(4):402-408.
    [74]洪嘉振,尤超蓝.刚柔祸合系统动力学研究进展[J].动力学与控制学报,2004,2(2):1-6.
    [75]刘锦阳,李彬,洪嘉振.作大范围空间运动柔性梁的刚-柔耦合动力学[J].力学学报,2006,38(2):276-282.
    [76]洪嘉振,刘铸永.刚柔耦合动力学的建模方法[J].上海交通大学学报,2008,42(11):1922-1926.
    [77]Kane T R, Ryan R R, Banerjee A K. Dynamics of a cantilever beam attached to a moving base[J]. Journal of Guidance, Control and Dynamics,1987,10(2):139-151
    [78]孟明明,汤文成,周徐斌,蒋国伟.基于ANSYS和MSC. ADAMS的刚柔耦合卫星太阳电池阵的建模研究[J].电气技术与自动化,2010,39(1):138-140.
    [79]朱才朝,唐倩,黄泽好,范群,宋朝省.人—机—路环境下摩托车刚柔耦合系统动力学研究[J].机械工程学报,2009,45(5):225-229.
    [80]万朝燕,李培行,庄绪红.基于MSC. ADAMS的凸轮机构弹性动力学分析[J].大连交通大学学报,2010,31(1):45-48.
    [81]高立新,胡延平,吴红艳.基于MSC. ADAMS的刚柔耦合汽车悬架性能分析[J].合肥工业大学学报(自然科学版),2009,32(6):814-817.
    [82]Zhaojun Yang, Changliang Liu, Jixin Wang, Xun Yang. Dynamic analysis of disc brake and impact law of related parameters on braking torque:Proceedings of the 2010 IEEE International Conference on Information and Automation June20-23,2010, Harbin, China [C]. United States:IEEE Computer Society,2010:1478-1483.
    [83]MSC. ADAMS. Theoretical Background:A working knowledge of the theory used to implement flexible bodies in MSC. ADAMS[M]. USA:MSC. Software Corporation,2003:1-30.
    [84]ANSYS. Release 11.0 Documentation for ANSYS:Advanced Analysis Techniques Guide[M]. USA: ANSYS, Inc.2007.
    [85]石博强,中焱华,宁晓斌,李跃娟.MSC. ADAMS基础与工程范例教程[M].北京:中国铁道出版社,2007:228-251.
    [86]MSC. Software Corporation. MSC. ADAMS/View Help For MSC. ADAMS2005R2[M]. USA:2005.
    [87]王宣锋,黄朝胜,应国增,王博.试验构建鼓式制动器的摩擦模型[J].汽车技术,2007,(10):43-46.
    [88]方泳龙.汽车制动理论与设计[M].北京:国防工业出版社,2005:9-13.
    [89]中华人民共和国国家标准.GB12676-1999《汽车制动系统结构、性能和试验方法》[S].1999.
    [90][苏]马什克A Φ,罗扎诺夫B Γ.汽车的制动系[M].郝生陆译.北京:人民交通出版社,1980.
    [91]林秉华.最新汽车设计实用手册[M].哈尔滨:黑龙江人民出版社,2005:1536-1539.
    [92]Douglas C. Montgomery试验设计与分析(第六版)[M].傅玉生,张健等译.北京:人民邮电出版社,2009:14-16.
    [93]任露泉.试验设计及其优化[M].北京:科学出版社,2009:7-17,174-175.
    [94]李仲兴,郭鹏飞,薛念文,周孔亢.房车制动器的稳健优化设计[J].农业工程学报,2005,21(11):81-84.
    [95]游登科.制动器特性建模及参数测试方法研究[D].硕士学位论文,长春:吉林大学.2008.
    [96]管欣,申军烽,管仁梅,詹军.鼓式制动器相关参数对其制动效能的影响[J].科学技术与工程,2009,9(4):940-942.
    [97]方开泰,马长兴.正交与试验设计[M].北京:科学出版社,2001:83-103.
    [98]张维刚,刘晖,廖兴涛.基于代理模型的汽车乘员约束系统仿真设计[J].江苏大学学报(自然科学版),2008,29(4):293-296.
    [99]张勇.基于近似模型的汽车轻量化优化设计方法[D].博士学位论文,长沙:湖南大学.2009.
    [100]Matthieu Petelet, Bertrand Iooss, Olivier Asserin, Alexandre Loredo. Latin hypercube sampling with inequality constraints[J]. Advances in Statistical Analysis.2010,94: 325-339.
    [101]A. Jourdan, J. Franco. Optimal Latin hypercube designs for the Kullback-Leibler criterion[J]. Advances in Statistical Analysis.2010,94:341-351.
    [102]Raymond H. Myers, Andre I. Khuri and Walter H. Carter, Jr. Response Surface Methodology:1966-1988[J]. Technometrics.1989,31(2):137-157.
    [103]R. Jin, W. Chen and T.W. Simpson. Comparative studies of metamodelling techniques under multiple modelling criteria[J]. Journal of Structural and Multidisciplinary Optimization.2001,23:1-13.
    [104]R.Jin, X. Du, W.Chen. The use of metamodeling techniques for optimization under uncertainty[J]. Journal of Structural and Multidisciplinary Optimization.2003, 25:99-116.
    [105]E. J. Kansa. Motivation for using radial basis functions to solve PDEs,(未出版的论文)[OL].1999. Online:http://www.cityu.edu.hk/rbf-pde/files/overview-pdf.pdf.
    [106]Hardy, RollandL. Multiquadric Equations of Topography and Other Irregular Surfaces [J]. Journal of Geophysics Researeh.1971,71:1905-1915.
    [107]Benoit Guillaume, Marine Chanet. Improving the accuracy of large-dimension response surface models:application to the vibration behaviour of a car body:2nd International Conference on Engineering Optimization, September 6-9,2010,Lisbon, Portugal [C]. Portugal,2010:1-10.
    [108]任露泉.回归设计及其优化[M].北京:科学出版社,2009:9-32.
    [109]余志生.汽车理论(第四版)[M].北京:机械工业出版社,2007:75-129.
    [110]王科社.机械优化设计[M].北京:国防工业出版社,2007:1-7,171-179.
    [111]杨世春,朱传高,高莹,李君.并联式混合动力汽车遗传模糊控制策略的研究[J].汽车工程,2011,33(2):106-111.
    [112]蒋炎坤,刘刚强,李宗,张宏.基于遗传算法的挖掘机工作装置铰点位置优化[J].华中科技大学学报(自然科学版),2011,39(3):22-25.
    [113]陈伦军.机械优化设计遗传算法[M].北京:机械工业出版社,2005:3-33.
    [114]MA Lee and H. Takagi. Dynamic control of genetic algorithms using fuzzy logic techniques[C]. Morgan Kaufmann, Berlin (1993):76-83.
    [115]Georges Raif Harik. Learning Gene Linkage to E ciently Solve Problems of Bounded Difficulty Using Genetic Algorithms[D]. PhD Thesis, USA:The University of Michigan, 1997.
    [116]Engineous Software, Incorporated. iSIGHT-FD User's Guide[M]. USA:Engineous Software,2006:700-750.
    [117]陈剑,徐陈夏.发动机悬置系统优化设计及其可靠性分析[J].汽车工程,2009,31(3):234-238.
    [118]钟睦,曹炜洲,黄尊地.基于iSIGHT的铁道车辆横向稳定性优化设计[J].铁道机车车辆,2010,30(2):19-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700