电子式电流互感器及数字化电站新技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机技术、自动控制技术和网络通信等科学技术的飞速发展,电力系统设备的自动化程度不断提高。本世纪初,欧美国家相继提出了“智能电网”的概念和发展计划,我国的国家电网公司也于2009年启动了智能电网的建设工作。智能电网的研究和实践日益得到政府高度重视和全社会的关注,它将是现代电力系统的发展趋势。数字化变电站是智能电网的关键节点,电子式互感器作为数字化变电站重要的基础性设备,其工作方式与常规变电站的互感器有着本质的不同,它对稳态电流和暂态电流的刻画能力以及它与站内其他二次设备的通信接口,是电子式互感器在数字化变电站中应用成败的关键性问题。对电子式互感器开展深入研究,对大规模推广应用电子式互感器,以及数字化变电站乃至智能电网的安全稳定运行,有着不言而喻的重要意义。
     本文以目前获得广泛关注的有源型电子式电流互感器(简称ECT)为课题对象开展了相关研究。文章在国内外相关研究的基础上,深入研究了ECT的暂态测量特性和信号处理技术,探索了ECT合并单元(简称MU)的信息模型以及数字化风电场风力发电机的信息模型构建方法。
     目前关于ECT的研究主要是针对稳态测量情况下,探讨提高测量精度的各种方法和措施。但实践发现,ECT信号处理电路中的积分器电路对互感器的暂态特性有着决定性的影响。本文建立了ECT传感头的数学模型,通过数字仿真手段对比分析了不同积分器和参数配置对互感器暂态性能的影响,并提出了一种确定传感头积分器参数的方法。根据研究结果,文章设计了一套具有合适积分器的ECT传感头,实验表明该传感头有着良好的稳态性能和暂态性能,完全可以也十分有必要应用于比实际继电保护装置对互感器暂态特性要求更苛刻的动模实验研究中。
     针对改善ECT暂态性能,提高抗干扰能力以及为了更好地解决采样同步问题,文章发明了一种基于压频变换的模数混合积分器方法,并深入探讨了实现该方法的若干关键性技术。该方法通过巧妙的计数技术,将理想积分和模数变换在压频变换过程中完成,使传感头既具有良好的暂态特性,也免去了一般ECT所需的采样同步信号光纤,简化了电路结构,提高了ECT可靠性,也极大地增强了ECT的抗干扰能力。
     动态模拟实验是开展继电保护特性研究和电气设备暂态模型研究的重要手段。采用传统的电磁式电流互感器(简称MCT)测量电流可能会破坏模拟系统参数,影响实验结果,使得研究结论无法适用于真实情况。而且MCT由于磁饱和问题,导致输出波形畸变,使研究工作所依据的波形根本不是研究对象产生的一次电流波形,这严重干扰了对研究对象本身的研究,甚至可能会使研究工作误入歧途。本文以ECT为基本测量工具建立了整套的动模实验的测量系统,并在此基础上开展了发电机内部故障研究和变压器和应涌流研究。文章对比了ECT和MCT对动模实验结果的影响,结果表明,采用ECT作为测量手段,可充分发挥其微功耗、无饱和的独特优点,对研究工作的开展有着MCT无法替代的重要作用。
     风电作为一种实用化程度较高的可再生能源,近年来获得了迅猛的发展。数字化变电站作为风电场与电力网唯一接口,其安全稳定运行对于提高风电场发电效率有着决定性作用。MU是电子式互感器应用于数字化变电站的关键性接口装置,它承担着向二次设备及时提供电流电压采样值的重任。目前投入试运行的MU大多数基于IEC61850-9-1标准研制,或者实现了IEC61850-9-2标准的部分功能,都只能单向发送采样值。本文从数字化变电站应用的角度对MU进行了深入的需求分析,重点开展了基于IEC61850-9-2标准的MU信息建模和信息交换服务建模,使MU可以完成全双工通信,具备接受在线调整和控制的能力。这可缩短变电站的调试时问,也为运行人员在变电站连续运行中对MU的监视与控制提供了手段,有利于加强风电场安全稳定运行。
     目前风电场监控通信系统及通信协议多由风机厂家自行规定,这给风电场的建设和运行管理造成了极大的不便。本文借鉴计算机软件工程“自顶向下”的设计思想,利用研究合并单元建模的方法,首次建立了完整的基于IEC61400-25标准的风力发电机模型,这对于开展数字化风电场研究与建设具有较强的参考作用。
     最后,论文总结了主要研究成果,并指出了要进一步研究的内容。
With the great advances of computer technology, automatic technology and network communications, power system becomes more automatic than ever. At the beginning of this century, European countries and USA put forward the concept of "smart grid". The State Grid Corporation of China also started construction of the smart grid in 2009. The government and society pay more attention to the smart grid, and the smart grid is the development trend of power system. Digital substation is an important part in smart grid。Electronic transformer is very important and necessary to digital substation, whose characteristics and operation are quite different from conventional current transformer of voltage transformer. For the safe and steady operation of digital substation and smart grid, it is of great significance to make more intensive research on electronic transformer.
     This thesis carries out some related studies about the active Electronic Current Transformer (abbr. ECT) which has caused widespread concern. Based on plenty of references from home and abroad, the thesis makes thorough study on the transient characteristics and signal processing circuit of ECT. Then the thesis explores the modeling method of ECT's merging unit information model and wind generator information model in digital wind farm.
     The present study about ECT focuses on steady state performance. People explore all ways to improve the measurement accuracy. However, practical application implies that the integrator in ECT's signal processing circuit could infect the transient performance significantly. This thesis establishes mathematical model of the ECT's sensor, and analyses the influences of the integrator structure and parameter on ECT's transient performance by way of digital simulation. The thesis advances a method to find appropriate integrator parameters. Based on the result, the thesis designs a set of sensor with integrator. Experiments demonstrate that the sensor has excellent steady performance and transient performance, which means that the sensor can be applied in power system dynamic simulation research.
     Aiming at improving ECT transient performance and anti-interference ability, and also aiming at find better ways to solve the sampling synchronization, the thesis invents a new signal process method for Rogowski-coil based ECT. The thesis also discusses thoroughly some essential technologies to implement the new method. By means of artful counting, the method merges ideal integrator and analog-digital converter in VFC process, which makes the sensor acquire excellent transient performance and cancel the fiber for sampling synchronization. The method can simplify the sensor circuit and improve the sensor reliability.
     Dynamic simulation experiment (abbr. PSE) is very important for relay research and electric transient modeling. Applying magnetic current transformer (abbr. MCT) in PSE may affect simulation parameter, thus the research result can't be applied to active environment. Because of MCT's saturation, distorted waveform used in research isn't the true wave produced by electric equipment, which may make the research more difficult. The thesis build up a set of measure system comprised of ECT for PSE, and some experiments has been carried on. The thesis compares the waveforms produced by MCT and ECT, and result suggests that ECT is very suitable and important to PSE.
     As a kind of good practical renewable energy, wind power develops rapidly in recent years. Wind farm's digital substation is the only interface to power utility, whose operation is important to wind farm's operation. Merging unit is a key device for transmitting samples, which is very important for applying ECT in power system. Most merging units in trial operation are developed according to IEC61850-9-1 or part of IEC61850-9-2, which means that the merging unit can only transmit samples and can't receive commands. In the view of digital substation, the thesis analysis requirements for merging unit. Then the thesis focuses on establishing information model and information exchanging model of merging unit, which makes merging unit acquire the ability of full-duplex communication. In this way, the merging unit can online receive commands from other devices.
     Most supervisory and control system for wind farm are developed by wind generator manufacturer separately. It brings inconvenience to the wind farm construction and operation management. Referencing the "top-down" concept in computer software engineering, and according to IEC61400-25 standard, the thesis establishes a integrated information model of wind generator. The thesis also studies the merits and shortcomings of five SCSM defined in IEC61400-25. Involving the SCSM-MMS defined in IEC61850 standard, wind farm supervisory and control system can communicate with substation SCADA system seamlessly, which is the trend for future wind farm.
     All research results are summarized finally and the direction of further research are pointed out.
引文
[1]刘振亚.智能电网技术.北京:中国电力出版社,2010
    [2]韩小涛.光电传感数字化及其继电保护技术研究[博士学位论文].华中科技大学,2004
    [3]IEC. IEC 60044-8. Instrument transformers-Part 8:Electronic current transformers. First Edition,2002
    [4]F.Rahmatian. Design and Application of Optical Voltage and Current Sensors for Relaying.2006 IEEE PES Power Systems Conference and Exposition, Atlanta, GA, USA.2006:532~537
    [5]李开成,叶妙元,陈乔夫.从电磁式电压互感器到光学式光纤电压互感器.变压器,1995,11:6-8
    [6]K.Bohnert, P.Gabus, H.Brndle, et al. Fiber-Optic Current and Voltage Sensors for High-Voltage Substations.16th International Conference on Optical Fiber Sensors, Nara, Japan.2003:752~754
    [7]Brandao Faria J. A. An Overview of Electrooptic High Voltage Measuring Systems. AFRICON '92 Proceedings,3rd AFRICON Conference, Ezulwini, Valley, Swaziland.1992:466-469
    [8]Weihong Bi, Feng Liu, Xuan Guo. Development of Optical Voltage Transducer Based on Dual-Mode Highly Elliptical-Core Polarization Maintenance Fiber. Journal of Electronic Science and Technology of China.2004,6(4):492~495
    [9]刘丰,毕卫红,于建云.基于逆压电效应和模问干涉的电压互感器设计.电网技术,2008,32(11):90-94
    [10]T.Kumai, H.Nakabayashi, Y.Hiram, et al.Field Trial of Optical Current Transformer Using Optical Fiber as Faraday Sensor. IEEE Power Engineering Society Summer Meeting 2002, Vol.2,21-25 July 2002:920~925
    [11]段新辉.数字化变电站技术丛书.制造分册.北京:中国电力出版社,2010
    [12]A.Cruden, C.Michie, I.Madden, et al. Optical Current Measurement System for High-voltage Applieations. Measurement,1998,24(2):97~102
    [13]王政平,吴强,李庆波,等.线性双折射温度特性对光学电流互感器影响的理论分析.哈尔滨工程大学学报,2005,26(2):271-276
    [14]K.Bohnert, P.Gabus, J.Nehring, et al. Temperature and Vibration Insensitive Fiber-Optic Current Sensor. Journal of Lightwave Technology,2002,20(2):267-276
    [15]E.N.Li, J.M.K.MacAlpine, Y.B.Liu, et al. A novel Optical Curreut Transducer for Power Systems. Electric Power Systems Research,1998,46:21~25
    [16]Z.P.Wang, Q.B.Li, R.Y.Feng, et al. Influcences of the Extinction Ratio and Bias Angle Error of Polarizers upon the Performance of an Optical Current Sensor. Proceedings of SPIE Vol.4920,2002:392~399
    [17]聂一雄.电力系统检测新技术研究——绝缘子在线监测及光学电量互感器[博士学位论文].华中科技大学,2002
    [18]F.Y.C.Leung, W.C.K.Chiu, M.S.Demokan. Fiber-optic Current Sensor Developed for Power System Measurement. Advances in Power System Control, Operation and Management,1991, APSCOM-91,1991 International Conference on 5-8 Nov Vol.2, 1991:637~643
    [19]Katsukawa H, Ishhikawa H, Okajuma H, et al. Development of an optical current transducer with a bulk type Faraday sensor for metering. IEEE Trans. On Power Delivery,1996,11(2):702~707
    [20]关宏亮,尚秋峰,杨以涵.混合型光学电流互感器的集磁环传感头.电力自动化设备,2005,25(2):30-32
    [21]A.A.Jaecklin, M.Lietz. Elimination of Disturbing Birefringence Effects on Faraday Rotation. Applied Optics,1972,11(3):617~621
    [22]A.J.Rogers. Optical Measurement of Current and Voltage on Power Systems. Electric Power Applications.1979,2(4):120~124
    [23]ABB Power T&D Company. Type OMU Optical Metering Unit. Descriptive Bulletin 38-454,2000
    [24]D.Chatrefou. Alstom optical Sensor Presentation.2nd EPRI Optical Sensor Systems Workshop. Atlanta, Georgia,2000
    [25]N.Itoh, H.Minemoto, D.Ishiko, et al. Small Optical Magnetic-Field Sensor That Uses Rare-Earth Iron Garnet Films Based on the Faraday Effect. Applied Optics,1999, 38(10):2047~2052
    [26]朱勇,叶妙元,刘杰,等.220kV组合式光学电压电流互感器的设计.高电压技术,2000,26(2):34-36
    [27]徐雁,陈志萍,朱勇,等.无分压纵向线性电光效应用于高电压测量.高电压技术,2000,26(4):59-63
    [28]罗苏南,叶妙元,徐雁.光纤电压互感器稳定性的分析.中国电机工程学报,2000,20(12):15-19
    [29]Zhimin Zhao, Xiangning Lin, Zhiqian Bo. The Design of the Sensor in Electronic Voltage Transformer. Power & Energy Society General Meeting,2009, Calgary, Alberta, Canada.2009:1~4
    [30]Xiongying Duan, Jiyan Zou, Minfu Liao, et al. Combined Digital Electronic Current and Voltage Transducer. Journal of Shanghai University (English Edition).2002, 6(1):79~84
    [31]聂一雄,孙丹婷.阻容分压型电压互感器的性能分析.变压器,2007,44(1):9-14
    [32]张艳.直流输电系统的光纤电流测量技术[博士学位论文].华中科技大学,2008
    [33]王鹏,罗承沐,张贵新.基于低功率电流互感器的电子式电流互感器.电力系统自动化,2005,30(4),98-100
    [34]刘录明.基于数据融合的组合结构电流传感器研究.四川理工学院学报,2009,22(3),93-96
    [35]揭秉信.大电流测量(第一版).北京:机械工业出版社,1987
    [36]郭晓华Rogowski线圈的理论分析及有源光电电流互感器研究[博士学位论文].华中科技大学,2003
    [37]王海明.电子式电流互感器传感头的理论与工艺研究[博士学位论文].燕山大学,2006
    [38]陈庆,李红斌,张明明等.3种Rogowski线圈的设计及其性能分析.仪表技术与传感器,2005,7,54-58
    [39]Karrer N., Hofer-Noser. PCB Rogowski coils for high di/dt current transformer. IEEE PESC'00 Conference,galway,2000(6)
    [40]John D., Ramboz. Machinable Rogowski coil, design, and calibration. IEEE Trans. Instrument and Measurement,1996,45(2):511~515
    [41]钱政.有源电子式电流互感器中高压侧电路的供能方法.高压电器,2004,40(2):135-139
    [42]张庆,徐雁,胡爱华,等.光电电流传感器的低功耗设计.高压电器,2002,38(12):25-27
    [43]张曦,张庆伟,张源斌.混合式OCT高压侧电路的供电方式.高电压技术,2002,28(12):14-15
    [44]聂一雄,尹项根,李伟.有源光电式互感器工作电源设计.电力自动化设备,2003,23(12):49-51
    [45]刘丰,卢启柱,毕卫红.采用激光供能方法的光纤电流互感器.仪表技术与传感器,2007,5:5-6
    [46]周新启,刘会金,郑莎.混合式光电电流互感器高压侧的电源方案研究.继电器,2005,33(18):71-74
    [47]N.A.Pilling, R.Holmes, G.R.Jones. Optically Powered Hybrid Current Measurement System. Electronics Letters,1993,29(12):1049~1051
    [48]F Donaldson, J R Gibson, G R Jones, et al. Hybrid Optical Current Transformer with Optical and Power-line Energisation. IEE Proc-Gener. Transm. Distrib.,2000,147(5): 304~309
    [49]陈应林,黄德祥,孙志杰.OET700电子式互感器的结构与性能.变压器,2006,43(6):1-5
    [50]IEC Std 61850-1, Communication networks and systems in substations-Part 1: Introduction and overview,2003.
    [51]IEC Std 61850-2, Communication networks and systems in substations-Part 2: Glossary,2003.
    [52]IEC Std 61850-3, Communication networks and systems in substations-Part 3: General requirements,2003.
    [53]IEC Std 61850-4, Communication networks and systems in substations-Part 4: System and project management,2003.
    [54]IEC Std 61850-5, Communication networks and systems in substations-Part 5: Communication requirements for functions and device models,2003.
    [55]IEC Std 61850-6, Communication networks and systems in substations-Part 6: Configuration description language for communication in electrical substations related to IEDs,2004.
    [56]IEC Std 61850-7-1, Communication networks and systems in substations-Part 7-1: Basic communication structure for substation and feeder equipment-Principles and models,2003.
    [57]IEC Std 61850-7-2, Communication networks and systems in substations-Part 7-2: Basic communication structure for substation and feeder equipment-Abstract communication service interface (ACSI),2003.
    [58]IEC Std 61850-7-3, Communication networks and systems in substations-Part 7-3: Basic communication structure for substation and feeder equipment-Common data classes,2003.
    [59]IEC Std 61850-7-4, Communication networks and systems in substations-Part 7-4: Basic communication structure for substation and feeder equipment-Compatible logical node classes and data classes,2003.
    [60]IEC Std 61850-8-1, Communication networks and systems in substations-Part 8-1: Specific Communication Service Mapping (SCSM)-Mappings to MMS (ISO 9506-1 and ISO 9506-2) and to ISO/IEC 8802-3,2004.
    [61]IEC Std 61850-9-1, Communication networks and systems in substations-Part 9-1: Specific Communication Service Mapping (SCSM)-Sampled values over serial unidirectional multidrop point to point link,2003.
    [62]IEC Std 61850-9-2, Communication networks and systems in substations-Part 9-2: Specific Communication Service Mapping (SCSM)-Sampled values over ISO/IEC 8802-3,2004.
    [63]IEC Std 61850-10, Communication networks and systems in substations-Part 10: Conformance testing,2005.
    [64]郑建平.数字化变电站技术丛书.成果与展望分册.北京:中国电力出版社,2010
    [65]李永亮,李刚.IEC61850第2版简介及其在智能电网中的应用展望.电网技术,2010,34(4):11-16
    [66]赵希才,李九虎,曹冬明,等.2010年国际大电网会议系列报道-电力系统保护与自动化.电力系统自动化,2010,34(24):1-4
    [67]蒋陆萍,曾祥君,李泽文.基于GPS实现电力系统高精度同步时钟.电网技术,2011,35(2):202-206
    [68]曾祥君,尹项根,林干,等.晶振信号同步GPS信号产生高精度时钟的方法及实现.电力系统自动化,2003,27(8):49-53
    [69]郭彬,单庆晓,肖昌炎,等.电网时钟系统的北斗/GPS双模同步技术研究.计算机测量与控制,2011,19(1):139-141
    [70]段新辉.数字化变电站技术丛书-制造分册.北京:中国电力出版社,2010
    [71]IEEE Std.1588-2008, IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems,2008
    [72]林丹,王文海.基于全球定位系统的高精度事件顺序记录系统.计算机应用,2011,31(6):1719-1722
    [73]赵上林,胡敏强,窦晓波,等.基于IEEE 1588的数字化变电站时钟同步技术研究.电网技术,2008,32(21):97-102
    [74]邱红辉,李立伟,段雄英,等.用于激光供能电流互感器的低功耗光电传输系统.电力系统自动化,2006,30(20):72-76
    [75]邱红辉,段雄英,邹积岩.基于LPCT的激光供能电子式电流互感器.电工技术学报,2008,23(4):66-72
    [76]李伟,尹项根,张哲,等.用于电子式电流互感器的压频变换积分新方法.电力系统自动化,2008,32(8):88-92
    [77]曹团结,尹项根,张哲,李伟.电子式互感器数据同步的研究,电力系统及其自动化学报,2007,19(2):108-113
    [78]乔洪新,黄少锋,刘勇.基于二次插值理论的电子式互感器数据同步的研究.电力系统保护与控制,2009,37(15):48-52
    [79]王松,姚兴佳,李春影.风电场远程数据采集与监控系统的开发.节能,2001,5:10-12
    [80]徐甫荣.大型风电场及风电机组的控制系统.电气传动自动化,2003,25(6):5-11
    [81]时轶,崔新维,李春兰,等.在线监测系统在风力发电机上的应用.风机技术,2007,4:74-76
    [82]Bachmann M1 WTG Controller System, http://www.bachmann.info//images/stories/pdf/bae_wind_e.pdf
    [83]G.Smith. Development Of A Generic Wind Farm Scada System. http://www.berr.gov.uk/files/file17854.pdf
    [84]杜杰.大型风电场远程监控系统的研究和应用[硕士学位论文].浙江大学,2005
    [85]林媛源.风电机组监控安全通信系统设计与实现[硕士学位论文].湘潭大学,2010
    [86]IEC Std 61400-25-1, Wind turbines-Part 25-1:Communications for monitoring and control of wind power plants-Overall description of principles and models,2006
    [87]IEC Std 61400-25-2, Wind turbines-Part 25-2:Communications for monitoring and control of wind power plants-Information models,2006
    [88]IEC Std 61400-25-3, Wind turbines-Part 25-3:Communications for monitoring and control of wind power plants-Information exchange models,2006
    [89]IEC Std 61400-25-4, Wind turbines-Part 25-4:Communications for monitoring and control of wind power plants-Mapping to communication profile,2008
    [90]IEC Std 61400-25-5, Wind turbines-Part 25-5:Communications for monitoring and control of wind power plants-Conformance testing,2006
    [91]IEC Std 61400-25-6, Wind turbines-Part 25-6:Communications for monitoring and control of wind power plants-Logical node classes and data classes for condition monitoring,2010
    [92]郭华.风电场监控通信Web服务模型及安全机制研究[硕士学位论文].湘潭大学,2009
    [93]牛硕丰,任惠,程颖,等.基于IEC61400-25标准的风电场通信映射方式.华东电力,2011,39(7):1066-1073
    [94]基于IEC61400-25协议实现标准化风力发电机组通讯——TwinCAT支持各项风力发电行业标准
    [95]徐佳宇,陈燕华.数字化风电场的应用研究和发展方向.重庆电力学校学 报,2011,16(1):82-84
    [96]严伟,孟为群,石铁洪,等.数字化技术在大唐卓资风电场的应用.中国电力,2011,44(3):73-76
    [97]Wei Li, Xianggen Yin, Deshu Chen, et al. The Study of Transient Performance of Current Sensor Based on Rogowski Coil and Its Application in Dynamic Simulation Experiment.2006 International Conference on Power System Technology, Chongqing, China,2006:1-6.
    [98]Wei Li, Xianggen Yin, Deshu Chen, et al. The Study of Transient Performance for Electronic Current Transformer Sensor Based on Rogowski Coil. The 41st International Universities Power Engineering Conference, Northumbria University, Newcastle, UK,2006:162~165.
    [99]林辛,张雄金.空芯线圈分布电容测试的研究.电测与仪表,1997,34(7):25-27
    [100]辜承林.电机学(第二版).华中科技大学出版社,2005
    [101]张保会,尹项根.电力系统继电保护.中国电力出版社,2005
    [102]张振华,王绪昭,杨奇逊.适用于微机保护的模数变换器新方案探讨.华北电力学院学报,1989,3:1-6.
    [103]李芙英,陈翔,葛荣尚.基于Rogowski线圈和压频变换的电流测量方法.清华大学学报(自然科学版),2000,40(3):28-31.
    [104]聂一雄,尹项根,段惠明,等.电子式互感器模-数转换方法的研究.继电器,2005,33(6):46-50.
    [105]李伟,尹项根,张哲,等.用于电子式电流互感器的压频变换积分新方法.电力系统自动化,2008,32(8):88-92
    [106]高光天.模数转换器应用技术.北京:科学出版社,2001
    [107]夏勇军.大型水轮发电机故障暂态仿真及主保护优化的研究与应用.[博士学位论文].武汉:华中科技大学,2006
    [108]张侃君.特大型水轮发电机保护系统及其动模试验新技术.[博士学位论文].武汉:华中科技大学,2008
    [109]徐习东,郭晓明,周全明.一次和应涌流造成过流保护动作的分析与对策.华东电 力,2005,33(6):37-39.
    [110]李德佳.微机型变压器差动保护误动作原因分析与对策.继电器,2004,32(5):56-59.
    [111]余高旺,毕大强,王志广,吴水兰.变压器和应涌流现象及实例分析.电力系统自动化,2005,29(6):20-23.
    [112]武春菊,张学清,石凤兰.励磁涌流引起变压器差动保护误动分析及对策.华中电力技术,2007(3):51-54.
    [113]上官帖,谌争鸣,郭军燕.和应涌流对变压器差动保护的影响及对策.华中电力,2004,17(5):50-52.
    [114]邵德军.大型变压器暂态机理与保护新原理研究[博士学位论文].武汉:华中科技大学,2009
    [115]窦晓波,吴在军,胡敏强,等.IEC61850标准下合并单元的信息模型与映射实现.电网技术,2006,30(2):80-86
    [116]程良伦,田云杰,陈少华.一种基于IEC61850的嵌入式合并单元的研究与实现.电力系统保护与控制,2008,36(20):55-61
    [117]郑新才,施鲁宁,杨光,等.IEC61850标准下采样值传输规范9-1、9-2的对比和分析.电力系统保护与控制,2008,36(18):47-50
    [118]廖泽友,郭赞,杨恢宏.数字变电站采样值传输规约的综述与对比分析.电力系统保护与控制,2010,38(4):113-118
    [119]赵应兵,周水斌,马朝阳.基于IEC61850-9-2的电子式互感器合并单元的研制.电力系统保护与控制,2010,38(6):104-106
    [120]胡国,唐成虹,徐子安,等.数字化变电站新型合并单元的研制.电力系统自动化,2010,34(24):51-54
    [121]沈健,陆志浩,潘勇伟,等.合并单元技术条件及测试规范.电力系统通信,2010,31(218)
    [122]朱超,黄灿,梅军,等.基于FPGA与ARM的智能合并单元设计.电网技术,2011,35(6):10-14
    [123]周捷,杨永标,沈健,等.一种基于交流信号的模拟合并单元.电力系统保护与控制,2009,37(2):65-68
    [124]莫峻,谭建成.基于IEC61850-9-2的合并单元研究.现代电力,2009,26(4)
    [125]贺韬,李卫.风力发电场监控通讯标准IEC61400-25及其设计思路.电网与清洁能源,2009,25(8):45-49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700