电力网络拓扑快速识别及故障定位方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用电网多点信息的广域后备保护是解决当前电力系统中传统后备保护存在问题的有效途径。及时准确地掌握系统当前的运行方式和拓扑结构,可以为广域后备保护功能的实现奠定网架基础,而对故障元件的快速准确定位又是广域后备保护实现的关键功能。因此,论文针对网络拓扑快速分析以及故障元件定位两个方面内容展开深入全面的研究。
     以厂站内并行完成母线分析,并将结果上传主站完成厂站问拓扑分析的分层分布式拓扑建模方式从体系结构上保障了拓扑分析效率的提高。适应于基于WAMS的广域后备保护的需求,从应用于厂站内拓扑快速分析的矩阵方法以及PMU信息在拓扑分析中应用等角度对电力网络的快速识别问题展开研究。
     (1)仅利用开关状态量信息的厂站内拓扑矩阵型快速分析方法研究
     提出了一种基于虚拟阻抗的厂站内拓扑快速跟踪算法,通过赋给主接线中开关支路虚拟阻抗的途径,借鉴电网节点矩阵的形成及修改来实现对厂站内拓扑分析的初始形成及开关变位跟踪,实现了在已有拓扑结果上处理开关变位影响的效果,避免了传统矩阵法从初始邻接矩阵到全连通矩阵的重复运算。
     提出了一种基于开关连通路径的厂站内拓扑一体化分析方案,通过分析节点间开关连通路径与全联通矩阵中对应元素之间关系,利用主接线图形特征或邻接矩阵余子式形成两种路径发现算法,进而构建了以开关状态量为自变量的全连通矩阵函数,通过代入开关实时状态直接求值的方式实现了厂站内初始拓扑形成和开关变位跟踪的一体化分析。离线形成开关连通路径函数,在线加以实时跟踪的处理模式,从根本上提高了厂站内拓扑分析的效率。
     (2)网络拓扑分析中PMU提供的状态量和模拟量信息的具体应用研究
     提出了一套基于PMU信息混合运算的快速网络拓扑分析算法。其中,厂站内分析部分,在判断进出线母线归属的基础上,通过分析判断汇流母线节点关联注入电流是否满足KCL约束,实现划分连通片,进而完成厂站内拓扑分析任务;厂站间分析部分,在剖析网络树枝断开为电气岛追踪难点的基础上,利用广义KCL对区域网络的电流注入情况进行分析,并结合网络中树、连枝的动态划分,有效地解决了树枝断开追踪的难题。
     提出了一种基于最小二乘原理的厂站内开关拓扑错误辨识方案。首先对开关拓扑错误进行了分类,然后形成了联系开关状态量与线路及开关电流量的线性方程,并通过对电流相量实虚部同时分析的处理方式构建了对开关状态进行辨识的最小二乘算法,能够有效地处理各类开关拓扑错误。
     全网多点布置的PMU所提供信息的快速性和同步性对网络拓扑分析功能的实现产生了深刻影响,而由其保障的系统电气量计算的同时性也为实现广域后备保护关键功能——故障元件定位提供了有利条件。根据对故障点出现造成的电网拓扑结构破坏的不同处理方式,以及不同规模PMU测点信息的应用,论文侧重从电气拓扑一致性分析以及PMU量测布点有限的角度对故障定位方法进行研究。
     (1)提出了一种基于电气拓扑一致性分析的故障元件定位方案。通过分析支路故障和节点故障对网络结构破坏的不同影响,一方面利用是否满足电气拓扑一致性约束来快速定位支路故障,另一方面引入贝叶斯判别分析理论,综合利用故障前后电气量信息,以先验知识和后验概率相结合来实现对节点故障的准确可靠定位。
     (2)有限PMU布点提供电网局部量测信息下的全网故障定位方法研究。
     首先,通过对故障点在电网拓扑上加以等效消除,推导验证了电网故障前后节点矩阵的不变性特点。然后结合具有表达电网全局信息优势的节点阻抗矩阵,提出了两种分别基于近远区自适应搜索以及基于方差最小原理的故障定位算法,并能提供一定精度的故障点距离计算值。其中,前者在进行近远区故障定义和划分的基础上,利用PMU电压信息形成故障支路自适应搜索的策略,达到了近区故障定位效率高,远区故障搜索不遗漏的效果;后者通过分析节点等效注入虚拟故障电流数列的特点,利用方差最小原理实现第一步定位故障关联节点,第二步定位故障支路的目的,能够将搜索范围缩小到故障关联节点相连的支路集合中,有效地提高了故障定位的效率。
The wide area backup protection is an effective technical way to solve the problems existing in traditional backup protection, in which the multi-point information from much wider area of power network could be used. The current operation mode and topology structure of power system need to be tracking rapidly and precisely, which could supply the wide area backup protection with the latest physical network grid information. Meanwhile, the fast and accurately location of faulted components is the key function for the implementation of wide area backup protection. Therefore, in the thesis the fast topology analysis and fault location will be the two attracting aspects needed researching fundamentally and comprehensively.
     The hierarchical and distributed topology modeling could improve the efficiency of topology analysis process in program architecture, in which all the substation configurations could be finished in a parallel way, and then the system network topology could be implemented based on the uploaded analysis results from different power stations and plants. Hence, in order to meet the requirement of wide area backup protection based on WAMS, the following fast topology identification contents, including novel matrix-based topology analysis method for substation configuration and the concrete application of PMU information in topology analysis, have been researched. The corresponding result of this part is as following:
     (1) Research on fast matrix-based substation configuration method only the circuit breaker status information in utilization
     A new topology tracking algorithm is proposed based on virtual impedance. Firstly, the each switch branch in electric main connection is processed as one branch with virtual impedance; then, the original topology analysis and the tracking status change in circuit breakers in stations could be finished in a similar way as the formulation and modification of the nodal matrix for power network; finally, the aim to deal with the effect from status change of breakers on the pre-existing topology results could be achieved, and the repeat operation could be avoided which existing in the process from original adjacent matrix to completed connected matrix in traditional matrix-based method.
     In addition, a novel integrated topology analysis scheme is founded based on the breaker connected routes. In this scheme, the relationship between the breaker connected routes among two nodes and the corresponding elements in completed connected matrix is analyzed firstly. And two routes finding algorithms are proposed respectively according to the graphical characteristic of main connection or the cofactor signing simplification of adjacent matrix. Then the completed connected matrix in function way with the breaker statuses as variables could be established systematically, to which the integrated analysis for original topology formulation and tracking status change of breakers could be accomplished based on the finding of solution by substituting the real time statues of the corresponding breakers. Moreover, the topology analysis process, formulation of breaker connected routes function in off-line and the real time tracking in on-line, could enhance the efficiency of substation configuration.
     (2) Research on concrete application of state and analog information from PMU in network topology analysis
     A fast topology analysis algorithm is formulated based on the hybrid operation of PMU information. In the step of substation configuration, based on the bus grouping for inlet and outlet lines, how many connected pieces are grouped could be formed by judging whether the line currents incident to the concentrated bus node meet the KCL. Then the task of substation configuration could be finished. In the step of topology analysis among stations and power plants, the difficulty in islands analysis is pointed as the tracking the open of tree-branch firstly; then the generalized KCL is applied to the analysis for input currents of area network, and the tracking difficulty could be overcome combining with the dynamic grouping of tree-branches and cotree-branches.
     In addition, an identification method based on least square principle is established to correct the topology error in circuit breaker status. In this part, the types of switch topology error are determined at the beginning. Moreover, the linear equations are formulated in complex form to associate the switch status with the current in lines and breakers. After the partition of real and imag part for plural equations, the identification algorithm for switch status could be implemented by use of the least square method. The test examples have validated the efficiency of the proposed algorithm.
     The rapidity and synchronism of the PMU information from the multi-point in entire power network has affected the topology analysis function deeply. The calculation simultaneity of electrical quantities is also useful to the location of faulted components, which plays the key role in wide area backup protection. The occurrence of fault in power system will lead to the broken of power network topology. According to the different process modes and the variation in size of PMU measurements, the fault location methods have been focused in this thesis as following:
     (1) A fault location method is proposed based on the consistency analysis of electrical topology. The different between fault in branch and node have been analyzed in the broken for power network topology structure. As to the faulted branch location, the consistency for electrical topology is used to implement the rapid and accurate fault detection. As supplements, the Bayes Discriminant theory is introduced to finish the location of nodal fault precisely and reliably, in which the combination prior knowledge with posterior probability have been utilized about electrical quantities during the pre-and post-fault.
     (2) Research on fault location method for entire power network based on sparse PMU placement
     Firstly, the invariance characteristic of the nodal matrix for power network during pre-and post-fault is analyzed by the equivalent elimination of fault point. Secondly, having taken the advantage of the nodal impedance matrix, two fault location algorithms are proposed:one is based on the adaptive searching of near and remote sections, and the other is based on the minimum variance principle. The two mentioned algorithm could provide the fault point distance with a certain precise.
     In the former one, the classification of fault in near and remote section is defined. According to the nodal voltage information, the adaptive searching scheme for branches has been established. In this algorithm, the fault in near section could be located with high efficiency, and in remote section also can be determined without omittance. In the last one, the statistical characteristic of nodal equivalent input virtual fault current series has been extracted. Based on minimum variance principle, the first step to locate the suspected bus and second one to determine faulted branch could be finished. In this process, the searching scope could be limited to the branch set associated with suspected bus, from which the fault location could benefit more.
引文
[1]袁季修.防御大停电的广域保护和紧急控制[M].中国电力出版社,2007
    [2]刘振亚.加快建设坚强国家电网促进中国能源可持续发展[J].中国电力,2006,39(9):1-3
    [3]S.H. Horowitz, A.G. Phadke. Third Zone Revisited [J]. IEEE Transaction on Power Delivery,2006,21(1):23-29
    [4]A. G. Phadke, J.S. Thorp. Expose hidden failures to prevent cascading outages [J]. IEEE Computer Applications in Power,1996,9(3):20-23
    [5]A. G. Phadke, James S. Thorp. Synchronized Phasor Measurements and Their Application[M].New York:Springer Science+Business Media,2008
    [6]A. G. Phadke, James S. Thorp. Computer Relaying For Power Systems Second Edition[M].England:John Wiley&Sons Ltd,2009
    [7]A.G. Phadke, R.M. de Moraes. The wide world of wide-area measurement [J]. IEEE Power & Energy Magazine,2008,6(5):52-65
    [8]M.G. Adamiak, A.P. Apostolov, M.M. Begovic, C.F. Henville, K.E. Martin, G.L Michel, A.G. Phadke, J.S. Thorp. Wide area protection-Technology and infrastructures [J]. IEEE Transactions on Power Delivery,2006,21(2):601-609
    [9]丁剑,白晓明,王文平,等.电力系统中基于PMU同步数据的应用研究综述[J].继电器,2006,34(6):78-84
    [10]Qixun Yang, Tianshu Bi, Jingtao Wu. WAMS Implementation in China and the Challenges for Bulk Power System Protection [C]. IEEE Power Engineering Society General Meeting,2007:1-6
    [11]鞠平,代飞,金宇清等.电力系统广域测量技术[M].北京:机械工业出版社,2008
    [12]S. Chakrabarti, E. Kyiakides, Tianshu Bi, et al. Measurments get together [J]. IEEE Power & Energy Magazine,2009,7(1):41-49
    [13]M.M. Saha, J.Izykowski, E. Rosolowski. Fault location on Power Networks[M]. London:Springer-Verlag London,2009
    [14]于尔铿.电力系统状态估计[M].北京:水利水电出版社,1985
    [15]于尔铿.能量管理系统[M].北京:科学出版社,1998
    [16]孙宏斌,张伯明,吴文传,郭庆来等.面向中国智能输电网的智能控制中心[J].电力科学与技术学报,2009,24(2):1-7
    [17]张伯明,孙宏斌,吴文传,郭庆来.智能电网控制中心技术的未来发展[J]. 电力系统自动化,2009,33(17):21-28
    [18]尹项根,李振兴,刘颖彤,等.广域继电保护及其故障元件判别问题的探讨[J].电力系统保护与控制,2012,40(5):1-7
    [19]何志勤,张哲,尹项根,等.电力系统广域继电保护研究综述[J].电力自动化设备,2010,30(5):125-130
    [20]徐天齐,尹项根,游大海,等.广域保护系统功能与可行结构分析[J].电力系统保护与控制,2009,38(1):93-97
    [21]李振兴,尹项根,张哲,等.分区域广域继电保护的系统结构与故障识别[J].中国电机工程学报,2011,31(28):95-103
    [22]李振兴,尹项根,张哲,等.有限广域保护系统的分区原则与实现方法[J].电力系统自动化,2010,34(19):48-51
    [23]尹项根,汪暘,张哲.适应智能电网的有限广域继电保护分区与跳闸策略[J].中国电机工程学报,2010,30(7):1-7
    [24]J. Tang, P. G. McLaren. A Wide Area Differential Backup Protection Scheme For Shipboard Application[J]. IEEE Transactions on Power Delivery,2006, 21(3):1183-1190
    [25]丛伟,潘贞存,赵建国,李宪忠,张新萍.基于电流差动原理的广域继电保护系统[J].电网技术,2006,30(5):91-110
    [26]M. M. Eissa, M. Elshahat Masoud, M. Magdy Mohamed Elanwar. A Novel Back Up Wide Area Protection Technique for Power Transmission Grids Using Phasor Measurement Unit[J]. IEEE Transactions on Power Delivery,2010, 25(1):270-278
    [27]曾飞,苗世洪,林湘宁,等.基于序分量的电网广域后备保护算法[J].电力系统自动化,2010,34(23):57-63
    [28]汪华,张哲,尹项根,等.基于故障电压分布的广域后备保护算法[J].电力系统自动化,2011,35(7):48-52
    [29]Zhiqin He,Zhe Zhang,Wei When,et al. Wide-area backup protection algorithm based on fault component voltage distribution[J].IEEE Transaction on Power Delivery,2011,26(4):2752-2760
    [30]吕颖,张伯明,吴文传.基于增广状态估计的广域继电保护算法[J].电力系统自动化,2008,32(12):12-16
    [31]Jing Ma, Jinlong Li, Zengping Wang, Qixun Yang. A Novel Wide-area Fault Location Algorithm Based on Fault Model. Asia-Pacific Power and Energy Engineering Conference.2010, Chengdu, China
    [32]李金龙.基于广域测量的故障定位方法的研究[D].北京:华北电力大学, 2010
    [33]马静,李金龙,叶东华,等.基于故障匹配度的广域后备保护新原理[J].电力系统自动化,2010,34(20):55-59
    [34]马静,李金龙,王增平,等.基于故障关联因子的新型广域后备保护[J].中国电机工程学报,2010,30(31):100-107
    [35]Jing Ma, Jinlong Li, J.S. Throp,et al. A fault steady state component-based wide area backup protection algorithm[J].IEEE Transactions on Smart Grid,2011,2(3):468-475
    [36]徐慧明,毕天姝,黄少锋,等.基于广域同步测量系统的预防连锁跳闸控制策略[J].中国电机工程学报,2007,27(19):32-38
    [37]杨增力,石东源,段献忠.基于方向比较原理的广域继电保护系统[J].中国电机工程学报,2008,28(22):87-93
    [38]从伟,潘贞存,赵建国.基于纵联比较原理的广域继电保护算法[J].中国电机工程学报,2006,26(21):8-14
    [39]张保会,周良才,汪成根,等.具有容错性能的广域后备保护算法[J].电力系统自动化,2010,34(5):66-71
    [40]张保会,周良才.变电站集中式后备保护[J].电力自动化设备,2009,29(6):1-5
    [41]田聪聪,文明浩.具有高信息冗余的广域后备保护[J].电网技术,2011,35(10):214-219
    [42]J.C. Tan, P.A. Crossley, P.G. McLaren, P.F. Gale, I. Hall, J. Farrell. Application of a wide area backup protection expert system to prevent cascading outages[J]. IEEE Transactions on Power Delivery,2002,17(2):375-380
    [43]汪暘,尹项根,张哲,等.基于遗传信息融合技术的广域继电保护[J].电工技术学报,2010,25(8):174-179
    [44]李振兴,尹项根,张哲,等.基于多信息融合的广域继电保护新算法[J].电力系统自动化,2011,35(9):14-18
    [45]苏盛,段献忠,曾祥君,等.基于多Agent的广域电流差动保护系统[J].电网技术,2005,29(14):15-19
    [46]王晓茹,K.M. Hopkinson, J.S.Thorp,等.利用Agent实现新的电网后备保护[J].电力系统自动化,2005,29(21):57-62
    [47]童晓阳,王晓茹,汤俊.电网广域后备保护代理的结构和工作机制研究[J].中国电机工程学报,2008,28(13):91-98
    [48]童晓阳,王晓茹,K.M.Hopkinson,等.广域后备保护多代理系统的仿真建模与实现[J].中国电机工程学报,2008,28(19):111-117
    [49]童晓阳,王晓茹.广域后备保护系统若干问题的探讨[J].继电器,2007,35(S),45-48
    [50]周曙,王晓茹,钱清泉.电力系统广域后备保护中的贝叶斯网故障诊断方法[J].电力系统自动化,2010,34(4):44-48
    [51]徐俊明.图论及其应用[M].合肥:中国科学技术大学出版社,1998
    [52]殷剑宏,吴开亚.图论及其算法[M].合肥:中国科学技术大学出版社,2003.
    [53]A.Monticelli. State Estimation in Electric Power Systems-A Generalized Approach[M].Massachusetts:Kluwer Academic Publisher,1999
    [54]万华,李乃湖,陈珩,唐国庆.基于广度优先的快速拓扑分析[J].电力系统及其自动化学报,1995,7(2):17-23
    [55]梅念,石东源,段献忠.基于图论的电网拓扑快速形成与局部修正新方法[J].电网技术,2008,32(13):35-39
    [56]杨秀霞,张晓锋,张毅.独立电力网络拓扑分析方法及其在故障恢复中的应用[J].电力自动化设备,2005,25(5):10-15
    [57]朱文东,刘广一,于尔铿等.电力网络局部拓扑的快速算法[J].电网技术,1996,20(3):30-33
    [58]竺炜,穆大庆.电力网络实时拓扑分析的两种算法的实现[J].长沙电力学院学报(自然科学版),2001,16(2):23-25
    [59]竺炜.用于DTS的实用电力网络拓扑分析方法[J].华北电力技术,1998,8(1):10-12
    [60]韩政.基于间隔的电力网络拓扑分析[D].济南:山东大学,2006
    [61]Phongsak D. Yehsakul, Iraj Dabbaghchi. A Topology-Based Algorithm for Tracking Network Connectivity [J]. IEEE Transaction on Power Systems,1995,10(1):339-346
    [62]宋少群,朱永利,于红.基于图论与人工智能搜索技术的电网拓扑跟踪方法[J].电网技术,2005,29(19):45-49
    [63]Goderya F, Metwally A A, Mansour O. Fast detection and identification of islands in power networks[J]. IEEE Transactions on Power Apparatus and Systems,1980, PAS-99(1):217-221
    [64]于雨,陈云山,王大为.电网连通性检测方法的探讨[J].电力学报,1999,14(3):183-188
    [65]王湘中,罗伟成.网络连通性问题的快速解法[J].计算机工程,2002,28(9):84-85,229
    [66]王湘中,黎晓兰.基于关联矩阵的电网拓扑辨识[J].电网技术,2001, 25(2):10-12,16
    [67]李晓鹏,侯佑华,刘斌,等.矩阵方法在电力系统网络拓扑的应用[J].内蒙古电力技术,2000,18(4):4-5,12
    [68]崔岩.邻接矩阵染色法及其在电力系统网络拓扑分析中的应用[J].电力系统保护与控制,2008,36(16):52-56
    [69]崔晓祥.电力系统网络拓扑及基于PMU状态估计算法研究[D].南京:东南大学,2005
    [70]吕昊,付立军,叶志浩,谢帧.几种电力网络图的连通路径拓扑算法研究[J].电力系统保护与控制,2009,37(21):81-85
    [71]吕海薇.基于信号流图法的配电网拓扑分析新方法[D].北京:华北电力大学,2006
    [72]马昭彦,高斯消元法在图计算中的应用[J].辽宁电机工程学报,1984,3(31):46-52
    [73]华健,韩学山,王锦旗,等.改进高斯消元算法在电力系统拓扑结构分析中的应用[J].电网技术,31(23):57-61
    [74]华健,电力系统拓扑分析的高斯消元法及其研究应用[D].济南:山东大学,2007
    [75]姚玉斌,王丹,吴志良,等.方程求解法网络拓扑分析[J].电力自动化设备,2010,30(1):79-83
    [76]姚玉斌.一种电力系统的网络拓扑分析方法.[发明专利].2009
    [77]于锟.网络拓扑分析算法的研究与设计[D].大连:大连海事大学,2008
    [78]于红,朱永利,宋少群.图形数据库一体化的厂站接线拓扑分析[J].电力自动化设备,2005,25(11):79-82
    [79]董张卓,秦红霞,孙启宏,等.采用面向对象技术和方法的电力系统网络拓扑的快速跟踪(一)[J].中国电机工程学报,1998,18(3):178-181
    [80]董张卓,秦红霞,孙启宏,等.采用面向对象技术和方法的电力系统网络拓扑的快速跟踪(二)[J].中国电机工程学报,1998,18(4):283-287
    [81]陈世君,周步祥,胡美蓉.基于面向对象与链式存储结构的配电网拓扑分析新方法[J].继电器,2006,34(21):29-32
    [82]尹亮.基于图形化主接线的电气连通性分析和研究[J].电力系统保护与控制,2009,37(15):65-68,74
    [83]龙启峰,陈岗,丁晓群,丁颖等.基于面向对象技术的电力网络拓扑分析新方法[J].电力系统及其自动化学报,2005,17(1):73-77
    [84]吴文传,张伯明.基于图形数据库的网络拓扑及其应用[J].电网技术,2002, 26(2):14-18
    [85]周步祥,刘欣宇.基于网络图形的配电网拓扑分析方法及应用[J].电力系统自动化,2003,27(16):67-69
    [86]周琰,周步祥,邢义.基于邻接矩阵的图形化网络拓扑分析方法[J].电力系统保护与控制,2009,37(17):49-52,56
    [87]王冬辉.DTS网络拓扑变化快速计算[D].保定:华北电力大学,2004
    [88]陈跟军,顾全.基于CIM的配电网一体化追踪拓扑[J].电力系统自动化,2009,33(3):59-63
    [89]姜志宇.有色Petri网模型在电力网络拓扑分析中的应用[D].保定:华北电力大学,2005
    [90]徐青山.电力系统故障诊断及故障恢复[M].北京:中国电力出版社,2007
    [91]董朝阳,张沛等.电力系统分析新兴技术[M].北京:高等教育出版社,2009
    [92]M.Kezunovic.Smart Fault Location for Smart Grids[J].IEEE Transactions on Smart Grid,2011,2(1):11-22
    [93]John G. Webster. Wiley Encyclopedia of Electrical and electronics engineering-fault location [M]. England:John Wiley & Sons, Inc.1999
    [94]Yinghong Lin, Chihwen Liu, Chingshan Chen. A new PMU-based fault detection/location technique for transmission lines with consideration of arcing fault discrimination-part I:theory and algorithms [J]. IEEE Transaction on Power Delivery,2004,19(4):1587-1593
    [95]Yinghong Lin, Chihwen Liu, Chingshan Chen. A new PMU-based fault detection/location technique for transmission lines with consideration of arcing fault discrimination-part II:performance evaluation [J]. IEEE Transaction on Power Delivery,2004,19(4):1594-1601
    [96]Kaiping Lien, Chihwen Liu, JoeAir Jiang, et al. A novel fault location algorithm for multi-terminal lines using phasor measurement units[C]. Proceedings of the 37th Annual North American on Power Symposium, 2005:576-581
    [97]Chishan Yu, Chihwen Liu, Yinghong Lin. A fault location algorithm for transmission lines with tapped leg-PMU based approach[C]. Power Engineering Society Summer Meeting,2001, (2):915-920
    [98]Joeair Jiang, Junzhe Yang, Yinghong Lin, et al. An adaptive PMU based fault detection/location technique for transmission lines. I. Theory and algorithms [J]. IEEE Transaction on Power Delivery,2000,15(2):486-493
    [99]Joeair Jiang, Junzhe Yang, Yinghong Lin, et al. An adaptive PMU based fault detection/location technique for transmission lines. Ⅱ. PMU implementation and performance evaluation [J]. IEEE Transaction on Power Delivery,2000,15(4):1136-1146
    [100]Chishan Yu, Chihwen Liu, Sunli Yu, et al. A New PMU-Based Fault Location Algorithm for Series Compensated Lines [J]. IEEE Transactions On Power Delivery,2002,17(1):33-46
    [101]Zengping Wang, Yagang Zhang, Jinfang Zhang, et al. Recent Research Progress in Fault Analysis of Complex Electric Power Systems [J]. Advances in Electrical and Computer Engineering,2010,10(1),28-33
    [102]Yagang Zhang, Jing Ma, Jinfang Zhang, et al. Fault Diagnosis Based on Cluster Analysis Theory in Wide Area Backup Protection System[C]. Asia-Pacific Power and Energy Engineering Conference,2009:1-4
    [103]徐岩,刘金生,张亚刚,等.聚类算法在电网故障元件定位应用中的研究[J].电力系统保护与控制,2010,38(12),13-18
    [104]徐岩,刘金生,张亚刚,等.基于模糊聚类理论的电网故障元件定位[J].电网技术,2010,34(8),188-193
    [105]Yagang Zhang, Zengping Wang, Jinfang Zhang, et al. Fault Detection Based on Discriminant Analysis Theory in Power Systems[J]. ICIC Express Letters. 2010,4(3),809-814
    [106]徐岩,吴丹,张亚刚.基于判别分析方法的电网故障元件定位方法[J].电力自动化设备,2010,30(8),19-22
    [107]Yagang Zhang, Zengping Wang, Jinfang Zhang, et al. PCA Fault Feature Extraction in Complex Electric Power Systems [J]. Advances in Electrical and Computer Engineering,2010,10(3),102-107
    [108]Shanshan Luo, Mladen Kezunovic, Don R.Sevick. Locating faults in the transmission network using sparse field measurements,simulation data and genetic algorithm[J].Electric Power Systems Research,2004,71(2):169-177
    [109]Kaiping Lien, Chihwen Liu, Chishan Yu, et al. Transmission network fault location observability with minimal PMU placement [J]. IEEE Transaction on Power Delivery,2006,21 (3):1128-1136
    [110]Chun Wang, Chunxia Dou, Xinbin Li, et al. A WAMS/PMU-based fault location technique[J]. Electric Power Systems Research,2007,77(8):936-945
    [111]Chun Wang, Qingquan Jia, Xinbin Li, et al. Fault location using synchronized sequence measurements [J]. International Journal of Electrical Power & Energy Systems,2008,30(2):134-139
    [112]王波,江全元,陈晓刚,等.基于同步电压相量的故障定位新方法[J].电力系统自动化,2009,33(11):33-37
    [113]Bo Wang, Quanyuan Jiang, Yijia Cao. Transmission Network Fault Location Using Sparse PMU Measurements[C]. International Conference on Sustainable Power Generation and Supply,2009:1-6
    [114]Yuan Liao.Fault location observability analysis and optimal meter placement based on voltage measurements[J].Electric Power Systems Research 2009,79(7):1062-1068
    [115]Yuan Liao.Generalized fault-location methods for overhead electric distribution systems [J]. IEEE Transactions on Power Delivery,2011,26(1):53-64
    [116]Yuan Liao. Fault location for single-circuit line based on bus-impedance matrix utilizing voltage measurements[J]. IEEE Transactions on Power Delivery,2008,23(2):609-617
    [117]S. M. Brahma.Fault location in power distribution system with penetration of distributed generation [J]. IEEE Transactions on Power Delivery, 2011,26(3):1545-1553
    [118]S.M. Brahma.New fault-location method for a single multiterminal transmission line using synchronized phasor measurements [J]. IEEE Transactions on Power Delivery,2006,21(3):1148-1153
    [119]S.M. Brahma.Fault location scheme for a multi-terminal transmission line using synchronized voltage measurements [J]. IEEE Transactions on Power Delivery,2005,20(2):1325-1331
    [120]S.M. Brahma.Fault location on a transmission line using synchronized voltage measurements [J]. IEEE Transactions on Power Delivery, 2004,19(4):1619-1622
    [121]张伯明,陈寿孙,严正.高等电力网络分析[M].北京:清华大学出版社,2007
    [122]郭志忠.电力网络解析论[M].北京:科学出版社,2008
    [123]刘万顺.电力系统故障分析[M].北京:中国电力出版社,1998
    [124]Homer E. Brown. Solution of large networks by matrix method (second edition)[M]. England:John wiley & sons.Inc,1985
    [125]杨耿杰.电力系统不对称计算[M].北京:中国电力出版社,2008
    [126]熊信银,朱永利.发电厂电气部分(第三版)[M].北京:中国电力出版社,2004
    [127]张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004
    [128]梅长林,范金城.数据分析方法[M].北京:高等教育出版社,2006
    [129]何晓群.多元统计分析(第二版)[M].北京:中国人民大学出版社,2008
    [130]高惠璇.应用多元统计分析[M].北京:北京大学出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700