黑加仑果片微波真空膨化工艺及品质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑加仑果实富含多种营养成分,风味独特,黑加仑制品是市场潜力很大商品。采用微波真空膨化方法加工的黑加仑脆片是一种新型的浆果制品,营养成分保留率高,口感酥脆。
     本研究通过单因素试验,分析了不同因素对黑加仑微波真空膨化特性的影响规律,并利用计算机仿真技术构建出膨化过程中果片温度、水分及形状变化的数学模型,得到以下结论:
     1.在膨化时间方面:随着微波强度及微波功率的增加,果片膨化时间减少;随着真空压强的增加,膨化时间先增加后减少;而随着初始含水率的增加,膨化时间增加。
     2.在果片水分变化方面:在膨化过程的前10 s,果片处于加速脱水阶段。此后,初始条件不同,脱水速率也不相同。当初始含水率为25%或真空压强为15 kPa时,果片处于恒速脱水阶段;当初始含水率为35%,或真空压强为30 kPa,或微波功率为0.93 kW,或全部微波强度水平时,果片先恒速脱水,而后降速脱水;当微波功率为1.57 kW和2.48 kW时,果片先处于加速脱水阶段,而后变为降速脱水阶段;当初始含水率为45%时,果片先降速脱水,而后恒速脱水;而当真空压强为45 kPa时,果片先处于加速脱水阶段,之后进入恒速脱水阶段,最后变为降速脱水阶段。
     3.在果片温度变化方面:随着膨化时间的增加,果片的温度不断上升,而温度上升速率逐渐减小。
     4.在果片形态变化方面:除微波功率为2.48 kW时,果片膨化过程分为前期的体积迅速膨胀和后期的体积恒定两个阶段外,在其他因素水平下,果片的膨化过程均可分为三个阶段:第一阶段,在膨化过程的初期,果片体积不变,但形状发生变化,果片直径增加,厚度减少,而45 kPa的真空压强在此阶段则出现果片厚度和直径减小,体积收缩的现象;第二阶段,果片体积急剧膨胀,膨化率迅速增加,果片的直径迅速减小,厚度迅速增加;第三阶段:在膨化过程的中后期,果片直径、厚度和体积无明显变化,而真空压强较高或较低时,果片在此阶段均出现体积收缩现象。
     5.计算机模拟仿真:根据傅里叶传热方程,模拟出果片的温度变化规律,得出:随着时间的增加,果片的温度逐渐增加,并且前期温升较快,后期较慢;对于同一时刻来说,果片的温度由内到外逐渐升高。根据水分扩散方程,模拟出果片水分的变化规律,得出:随着时间的增加,果片含水率下降;在任意时刻,果片各处的水分扩散速度相同,含水率没有差异。根据应力-应变的形变方程,模拟出果片形状的变化过程,得出:果片在前10 s时,轴向发生收缩,之后开始膨胀。
     对比研究了微波膨化和微波真空膨化两种方式加工出黑加仑脆片的品质,结果表明:与微波膨化相比,微波真空膨化后的脆片体积大,膨化率高,脆片微观组织由许多小分子颗粒组成,结构疏松,层次感强,脆片内部出现中空现象,脆片硬度小,脆性大,色泽明亮,花青素损失少,整体品质明显优于微波膨化后的脆片。
     本研究通过试验方法确定出黑加仑鲜片的最佳配制方案为绵白糖添加10%,小苏打添加1%。在此基础上,利用中心组合试验方法进行响应曲面分析,得出各因素与膨化后脆片品质的回归模型,并优化出最佳的微波真空膨化工艺参数。
     1.各因素交互作用对脆片品质指标的影响:在膨化率方面,单因素对其影响程度依次为,初始含水率>微波功率>真空压强>膨化时间,在回归模型中,初始含水率一次项和二次项、及初始含水率与其余三个因素的交互项对膨化率影响显著,其余均不显著;在色泽方面,单因素对其作用顺序为,膨化时间>微波功率>初始含水率>真空压强,在回归模型中,膨化时间一次项,微波功率和真空压强与初始含水率的交互项、及微波功率与膨化时间的交互项,真空压强、初始含水率及膨化时间二次项对色泽的影响显著;在花青素含量方面,单因素对其的影响程度依次为,初始含水率>微波功率>膨化时间>真空压强,在回归模型中,真空压强与初始含水率和膨化时间的交互项,以及初始含水率的二次项对花青素影响达到显著水平;在最终含水率方面和感官分数方面,只有微波功率,初始含水率及膨化时间的一次项对二者的回归模型影响显著,在单因素作用顺序中,对最终含水率的作用大小为,初始含水率>微波功率>膨化时间>真空压强,而对感官分数的作用依次是,微波功率>膨化时间>初始含水率>真空压强;在质构特性指数方面,单因素对其作用顺序为,膨化时间>初始含水率>微波功率>真空压强,在回归模型中,微波功率一次项、初始含水率和膨化时间的一次项与二次项,以及微波功率和初始含水率与膨化时间的交互项对质构特性指数影响显著。
     2.黑加仑脆片微波真空膨化的最佳工艺参数:微波功率3.35 kW,真空压强23 kPa,初始含水率35.59%和膨化时间100 s,所得结果为:膨化率200%,色泽31.44,花青素47.73,最终含水率10.62%,感官分数9.08,质构特性指数2.51。与理论预测值相比,验证结果最大相对误差小于10%,表明优化参数合理。
     本文得到的黑加仑果片微波真空膨化机理及最佳工艺参数,可为实际加工提供理论依据和指导,膨化后的脆片可丰富浆果深加工种类。
As a kind of berry fruit with rich nutritionous ingredient and special flavor, blackcurrant berry has the great potential market for its products. The blackcurrant snack puffed subjected to microwave vacuum method is a new type of berry’s product. There is high retention rate of nutrition, and the flavor of blackcurrant.
     In this research, according to the single factor experiment, the influences of the different factors on the characteristics of blackcurrant subjected to microwave vacuum puffing were analysed. And the mathematic models of the temperature, moisture content and shape were developed in the puffing process using computer simulation method. The conclusions were obtained as follows:
     1. The puffing time of blackcurrant snack decreased with the increase of microwave intensity and microwave power. As the vacuum pressure increasing, puffing time first increased, and then decreased. And the puffing time increased with initial moisture content increasing.
     2. The moisture content of the blackcurrant snacks were in the period of accelerating dehydration during the first 10 s of puffing process. Thereafter, the dehydration rates were different for the different initial conditions. When the initial moisture content was 25% or vacuum pressure was 15 kPa, the dehydration rate is constant. Under the 35% initial moisture content, or 30 kPa vacuum pressure, or 0.93 kW microwave power, or all levels of microwave intensity, the snacks firstly remained constant dehydration and afterwards were in the decelerating dehydration. When the microwave power of 1.57 kW or 2.48 kW, the dehydration rate was increasing firstly, and then decreasing. Under 45% initial moisture content, the snacks were in the period of decelerating dehydration, and then converted into the constant dehydration. While the dehydration rate was firstly increasing, and then remained the contant up to the decrease at last period under 45 kPa vacuum pressure.
     3. As the increase of puffing time, the temperature of blackcurrant snack was gradually arising at a slow trend.
     4. Subjected to the microwave power was 2.48 kW, the puffing process of blackcurrant snack was divided into two periods, the period of volume puffing rapidly and the period of constant volume. For the other factors and levels, the puffing process can be divided into three periods based on the shape change of snack. In the first period, there were no changed in the volume of snack, but the shape was changed, where the diameter was increase and the thickness was decrease. Under 45 kPa vacuum pressure, in this period the thickness and diameter of snack were decreasing, and the volume shrank. In the second period, the volume of blackcurrant snack rapidly puffed, the thickness increased and diameter decreased. In the third period, no significant change of diameter, thickness and volume of blackcurrant snack were found. When the vacuum pressure was in 15 kPa or 45 kPa, the volume shrank.
     5. During computer simulation, the temperature change of blackcurrant snack can be simulated according to Fourier’s equations of heat conduction. The conclusions were that the temperature increased gradually with the increase of puffing time, and the rising rate was faster in the early stage and then was slower in the late stage, accompied with the temperature increasing from inner to outer. The moisture change of snack can be simulated using moisture diffusion equation. The result was that the moisture content of snack was decreasing with time increase. At any time, the moisture diffusion rate is the same in any point of snack, and there was no significant difference. The shape change of snack can be simulated according to stress-strain the deformation equation. It was found that the thickness shrank in the first 10 s before its increasing.
     A contrasting experiment on the qualities of snack between microwave puffing and microwave vacuum puffing blackcurrant chip was conducted. The results suggested that the the snack producted by microwave vacuum method was superior to that by the microwave method in the quality attributes in terms of volume, expansion ratio, the micro-structure of small molecules, loose and mult-layer structure, the cavity in the inner of chip. The hardness of snack was decreased and its crispness was increased, and the color was lighter, the loss of anthocyanin was decreased subjected to the microwave vacuum puffing.
     In this research, the optimization prescription, with the addition content of 10% soft sugar and 1% saleratus at weight ratio, respectively, to the blackcurrant fresh slice was obtained. On the basis of the optimization prescription, the regression models between the different factors and puffing qualities were obtained by responding surface methodology, and the optimization process parameters were developed.
     1. The interaction influence of every factor on quality of chip: The sequence of the effect of single factor on expansion ratio was that initial moisture content >microwave power >vacuum pressure >puffing time. In the regression model, the influences of the monimial and quadratic term of initial moisture content, and the interaction between initial moisture content and the other factors were significant, while the effect of the other terms was not significant on the expansion ratio. For the color, the relation of the single factors showed that the puffing time is the most important factor, followed by microwave power and initial moisture content, and the vacuum pressure is the least important. The results of regression analysis found the significant effects of monimial term of puffing time, the interaction of microwave power and initial moisture content, between vacuum pressure and initial moisture content, as well as between microwave power and puffing time, and the quadratic terms of vacuum pressure, initial moisture content and puffing time. For the anthocyanin content, the initial moisture content is the most important factor, followed by microwave power and puffing time, and the vacuum pressure is the least important. In the regression model, the interaction of vacuum pressure and initial moisture content, between vacuum pressure and puffing time, as well as the quadratic term of initial moisture content had significant influence on anthocyanin content. For finial moisture content and sensory score, the monimial and quadratic term of microwave power, initial moisture content and puffing time had significant effect. Accordint to the relation between single factors and finial moisture content, the initial moisture content is the most important factor, followed by microwave power and puffing time, and the vacuum pressure is the least important. While the sequence on the sensory score showed that microwave power >puffing time >initial moisture content >vacuum pressure. For the texture characteristics index, the sequence of the single factors was that puffing time >initial moisture content >microwave power >vacuum pressure. In the regression model, the effect of the monimial term of microwave power, the monimial and quadratic term of initial moisture content and puffing time, and the interaction between microwave power and puffing time, as well as between initial moisture content and puffing time was significant.
     2. The optimization process parameters of blackcurrant chip by microwave vacuum puffing were as follow: the microwave power of 3.35 kW, the vacuum pressure of 23 kPa, the initial moisture content of 35.59% and puffing time was 100 s. On the basis of optimization process parameters, the quality results of snack puffed from a verified experiment were that expansion ratio was 200%, the color value was 31.44, the anthocyanin content was 47.73, the finial moisture content was 10.62%, the sensory score was 9.08, and the texture characteristics index was 2.51. Comparing with the predicted values, the maximum relative error was less than 10%. It suggested that the optimization parameters were acceptable.
     In this research, the mechanism and the optimization process parameters of blackcurrant puffing by microwave vacuum method can be used to guide the practical production. The puffing crips can enrich the kind of berry’s futher processing.
引文
白超,胥伟兵,黄玉敏等. 2008a.黑加仑浓缩果汁营养成份及其保健功能分析[J].酿酒. (4): 38~40.
    白超,祖洪元,黄玉敏. 2008b.中国黑加仑浆果资源开发[J].酿酒. (2): 10~12.
    曹崇文. 2004.微波真空干燥技术现状[J].干燥技术与设备. (3): 5~9.
    常虹,李远志,刘清化等. 2007.微波真空干燥技术及其在农产品加工中的应用[J].农业工程技术.农产品加工. (7): 52~54, 59.
    程建军,崔成东. 1999.黑加仑果粒饮料的研制[J].食品工业. (2): 2~4.
    崔政伟. 2004.微波真空干燥的数学模拟及其在食品加工中的应用[D].江南大学.
    邓宇,郑先哲. 2008a.蕨菜微波真空干燥特性和品质试验研究[J].农业工程学报. 24(5): 253~257.
    邓宇. 2008b.蕨菜微波真空干燥试验研究[D].东北农业大学.
    董航飞. 2010.四重滚筒干燥机的模拟和优化[D].东北农业大学.
    古丽江·许库尔汗. 2007.新疆小浆果植物资源及其开发利用[J].中国野生植物资源. 26(1): 12~14.
    郭文川. 2007.果蔬介电特性研究综述[J].农业工程学报. 23(5): 284~289.
    郭英,刘雅娟,蔡秀成等. 2000.黑加仑油对大鼠血脂的影响[J].中国老年学杂志. (06): 371~372, 390.
    韩清华,李树君,马季威等. 2006.微波真空干燥膨化苹果脆片的研究[J].农业机械学报. 37(08): 155~158, 167.
    韩清华,李树君,马季威等. 2008.微波真空干燥膨化苹果片的能耗与品质分析[J].农业机械学报. 39(01): 74~77.
    韩清华. 2007.微波真空干燥膨化苹果片的机理及品质研究和设备设计[D].中国农业机械化科学研究院.
    侯勇,李剑波. 1997.黑加仑子蜜酒的营养与保健价值[J].酿酒. (2): 46.
    胡光华.微波真空膨化香蕉片的制作方法:中国, CN200510037398.7[P]: 2006-04-19.
    黄发琳,马海乐,刘伟民. 2009.真空微波干燥胡萝卜的恒速干燥速度及临界含水量的实验和回归模型[J].食品工业科技. 30(12): 139~141.
    黄儒强,芮汉明,曾庆孝. 2002a.食盐对微波真空膨化爆裂玉米的影响[J].食品与发酵工业. 28(10): 53~55.
    黄儒强,芮汉明,曾庆孝. 2002b.水分对微波真空膨化爆裂玉米的影响[J].食品与机械. (6): 15~16.
    黄儒强,芮汉明,曾庆孝. 2002c.乙醇对微波真空膨化爆裂玉米的影响[J].湖北农业科学. (6): 121~122.
    黄儒强,芮汉明,曾庆孝. 2003a.爆裂玉米与普通玉米微波真空膨化特性比较[J].华南理工大学学报(自然科学版). 31(1): 88~90, 96.
    黄儒强,芮汉明,曾庆孝. 2003b.不同溶液浸泡处理对爆裂玉米微波真空膨化的影响[J].华南理工大学学报(自然科学版). 31(8): 88~91, 96.
    黄儒强,芮汉明,曾庆孝等. 2003c.酒精溶液浸泡处理对爆裂玉米微波常压与微波真空膨化的影响[J].粮油加工与食品机械. (3): 53~54.
    黄艳,黄建立,郑宝东. 2009.农产品微波真空干燥技术的现状及发展趋势[J].福建轻纺. (2): 40~42.
    贾丽丽,路金才. 2008.黑加仑的药用研究进展[J].中国中医药信息杂志. (S1): 110~113.
    贾暑花. 2009.基于微波真空方法的蓝靛果脆片膨化工艺研究[D].东北农业大学.
    姜元欣,许时婴,王璋. 2004.南瓜渣的微波真空干燥[J].食品与发酵工业. (5): 58~62.
    李焕荣,黄文书,陈丽等. 2008.黑加仑果茶制作工艺的研究[J].食品工业科技. (8): 180~183.
    李佳,李国庆,吴松林等. 2009.黑加仑和蓝靛果对家兔高血脂作用的研究[J].地方病通报. (1): 14~16, 19.
    李莉,马龙,赵效国等. 2008a.新疆黑加仑提取物体外抗氧化活性的研究[J].食品与发酵工业. (7): 68~70.
    李莉,赵效国,马龙等. 2008b.黑加仑提取物抗疲劳作用的动物实验研究[J].营养学报. (5): 499~501.
    李莉,赵效国,马龙等. 2009.黑加仑提取物保护血管内皮细胞氧化损伤的实验研究[J].卫生研究. (5): 592~595.
    李里特,李秀婷,张友龙. 1995.微波加工果蔬脆片的研究[J].食品科学. 16(1): 20~23.
    李明勇. 2007.稻米籽粒电特性与动态力学特性的研究与应用[D].东北农业大学.
    李清明,谭兴和,申双贵等. 2003.食品微波膨化技术研究进展[J].包装与食品机械. 21(4): 13~16, 19.
    李文鹏,张艳,程建军. 2008.黑加仑果中花青素的提取及其抗氧化性的研究[J].食品工业科技. (6): 220~222.
    李远志,郑素霞,罗树灿等. 2003.真空微波加工马铃薯脆片的工艺特性[J].食品与发酵工业. 29(8): 40~43.
    林勉,芮汉明,刘通讯. 1999a.膨化技术及其在膨化食品生产中的应用[J].广州食品工业科技. 15(1): 48~51.
    林勉,芮汉明,刘通讯. 1999b.食品膨化技术及其应用[J].食品与发酵工业. 25(3): 65~68.
    刘成海,霍俊伟,郑先哲等. 2009.应用微波真空方法膨化蓝靛果脆片的研究[J].东北农业大学学报. 40(11): 116~120.
    刘洪章,文连奎,郝瑞等. 1998.黑穗醋栗果实营养成分研究[J].吉林农业大学学报. 20(3): 1~4.
    刘钟栋. 1997.微波膨化技术在花生制品中的应用[J].食品科学. 18(1): 122~125.
    刘钟栋. 1998.微波技术在食品工业中的应用[M].北京:中国轻工业出版社: 1~6.
    刘自强. 1997.食品膨化机理的理论探析[J].食品工业科技. (6): 52~53, 79.
    卢晓梅,张亚楼,张琰等. 2005.新疆天然植物黑加仑对食管癌细胞增殖、凋亡的影响[J].营养学报. (5): 68~70, 75.
    吕军仓,席小艳. 2006.质构分析仪在面制品品质评价中的应用[J].粮油加工. (3): 73~74, 77.
    马涛,侯旭杰,李永泉. 1999.微波真空技术在无核葡萄干制中应用的研究[J].食品科学. (9): 46~48.
    满其有. 1984.黑穗状醋粟(黑加仑子)及其利用[J].上海食品科技. (1): 12~15.
    苗雨. 2008.黑加仑果渣中花色苷的制备及其功能特性研究[D].东北林业大学.
    乔吉滨,刘晓梅. 2005.从黑加仑果籽中提取黑加仑籽油的研究[J].粮食与食品工业. (4): 11~13.
    宋芸,崔政伟. 2008.微波真空干燥胡萝卜片过程中收缩变形的数学模型研究[J].食品科技. (1): 62~65.
    宋钟伍,景新华. 2002.浅谈我国发展黑加仑生产的机遇和挑战[J].北方园艺. (4): 8~9.
    苏娅,陈肇琰,佘纲哲. 1996.微波膨化谷物食品的工艺研究[J].郑州粮食学院学报. (4): 4~12.
    孙尤海,陈海昌. 1993.黑加仑子果酿制食醋[J].食品科学. (5): 50~52.
    汤大卫,张天使. 2000.微波真空干燥技术的运用与前景[J].医药工程设计. (5): 195~198.
    汤大卫. 1999.微波真空干燥技术在食品中的应用[J].中国食品工业. (8): 30~31.
    王绍林. 1994.微波食品工程[M].北京:机械工业出版社: 83~84.
    王喜鹏,胡光华,张进疆. 2004.龙眼的真空微波干燥试验研究[J].现代农业装备. (10): 44~47.
    王喜鹏. 2006.微波真空干燥过程的特性及应用研究[D].东北大学.
    王晓燕,李莉,吐尔逊江等. 2009.黑加仑多糖抗氧化活性研究[J].中外医疗. (9): 6~7.
    肖辉,张月明,冷爱枝等. 2007.黑加仑提取物抑制肿瘤生长及其机制的研究[J].毒理学杂志. (2): 132~134.
    肖辉,张月明,于亚鸳. 2005.黑加仑原汁调节血脂的实验研究[J].预防医学论坛. (3): 300~302.
    谢焕雄,王海鸥. 2006.我国膨化食品加工技术概况与发展[J].农产品加工(学刊). (9): 39~42.
    徐鑫,刘国艳,王静. 2007.黑加仑籽油降血脂功能性的研究[J].食品科学. (11): 549~551.
    许晓春,林朝朋. 2007.佛手瓜的微波真空干燥及其神经网络模拟的研究[J].韶关学院学报. 28(12): 80~84.
    杨明. 1996.黑加仑果胶凝胶特性的研究[J].食品科学. (9): 19~20.
    杨薇,欧又成,张付杰等. 2008.蘑菇热风、微波对流和微波真空干燥的对比试验[J].农业机械学报. (6): 102~104, 112.
    杨玉平,闫玲,佐小华. 2006.黑加仑调节血脂的功效研究[J].食品与药品. (2): 51~53.
    杨玉平. 2005.黑加仑原汁调节血脂的功效评价[D].新疆医科大学.
    袁海涛,黄儒强,芮汉明. 2001.氯化钠对爆裂玉米微波真空膨化的影响[J].食品工业科技. 22(4): 24~25.
    张国琛,徐振方,潘澜澜. 2004.微波真空干燥技术在食品工业中的应用与展望[J].大连水产学院学报. (4): 242~246.
    张骏,张慜,单良. 2006.真空微波工艺条件对香脆鳙鱼片品质的影响[J].食品与生物技术学报. 25(2): 37~41, 47.
    张黎骅,郑严,秦文. 2008.花椒的真空微波干燥工艺参数优化[J].西南大学学报(自然科学版). (7): 179~183.
    张亚楼. 2004.黑加仑营养成分及保健功能研究进展[J].国外医学(卫生学分册). (2): 108~111.
    张志东,李亚东,吴林. 2003a.英国黑加仑的栽培与研究及我国黑加仑发展策略[J].吉林农业大学学报. (3): 296~300.
    张志东,李亚东,吴林等. 2003b.黑加仑的营养价值[J].中国食物与营养. (12): 52~54.
    郑艳平,张丽珍,殷肇君. 2006.膨化技术在特色膨化休闲食品加工中的应用[J].包装与食品机械. 24(4): 40~42, 47.
    周广文,张培正,朱英莲. 2005.非油炸膨化果蔬脆片的改进技术措施[J].农产品加工. (1): 39~40.
    周贺. 2009.黑加仑果浆微波泡沫干燥工艺的研究[D].东北农业大学.
    朱德泉. 2003.微波技术在颗粒食品膨化机械上的应用[J].包装与食品机械. 21(5):37~38, 41.
    朱玉梅,刘玉庆,鲁卫星. 2003.黑加仑油软胶囊治疗原发性高脂血症80例对照观察[J].中国中医基础医学杂志. (5): 77~78.
    朱智明. 1989.黑加仑子及其加工[J].中国果品研究. (3): 9~11.
    朱智明. 1990a.黑加仑果丹皮的制作[J].农业科技通讯. (12): 30.
    朱智明. 1990b.黑龙江省黑加仑资源及其开发利用[J].自然资源. (4): 59~63.
    Assawarachan R., Noomhorm A. 2008. Effect of operating condition on the kinetic of color change of concentrated pineapple juice by microwave vacuum evaporation[J]. Journal of Food, Agriculture & Environment. 6(3): 47~53.
    Bejan A. 1993. Heat Transfer[M]. Wiley.
    Birla S., Wang S., Tang J., et al. 2008. Characterization of radio frequency heating of fresh fruits influenced by dielectric properties[J]. Journal of Food Engineering. 89(4): 390~398.
    Bondaruk J., Markowski M., Blaszczak W. 2007. Effect of drying conditions on the quality of vacuum-microwave dried potato cubes[J]. Journal of Food Engineering. 81(2): 306~312.
    Brekhovskikh L. M., Goncharov V. 1994. Mechanics of continua and wave dynamics, 2nd ed.[M]. Springer-Verlag.
    Changrue V. 2007a. Hybrid (osmotic, microwave-vacuum) drying of strawberries and carrots[D]. McGill University.
    Changrue V., Orsat V., Raghavan G. S. V. 2008. Osmotically dehydrated microwave-vacuum drying of strawberries[J]. Journal of Food Processing and Preservation. 32(5): 798~816.
    Changrue V., Raghavan G. S., Gariepy Y., et al. 2007b. Microwave vacuum dryer setup and preliminary drying studies on strawberries and carrots[J]. J Microw Power Electromagn Energy. 41(2): 39~47.
    Chen H., Marks B., Murphy R. 1999. Modeling coupled heat and mass transfer for convection cooking of chicken patties[J]. Journal of Food Engineering. 42(3): 139~146.
    Chen S. D., Chiu E. M. 1999. Kinetics of volatile compound retention in onions during microwave vacuum drying[J]. Food science and agricultural chemistry. 1(4): 264~270.
    Cheng C. C. 1996. Temperature distribution and measurement for grape puffs (TM) in the microwave vacuum drying system[D]. California State University.
    Chew W. C., Liu Q. H. 1996. Perfectly matched layers for elastodynamics: a new absorbing boundary condition[J]. J. Comp. Acoustics. 4: 341~359.
    Clary C. D. 1994. Application of microwave vacuum and liquid media dehydration for the production of dried grapes[D]. Michigan State University.
    Clary C. D., Mejia-Meza E., Wang S., et al. 2007. Improving grape quality using microwave vacuum drying associated with temperature control[J]. Journal of Food Science. 72(1): E023~E028.
    Clary C. D., Wang S. J., Petrucci V. E. 2005. Fixed and incremental levels of microwave power application on drying grapes under vacuum[J]. Journal of Food Science. 70(5): E344~E349.
    Dekker M. 1987. Handbook of industrial drying[M] // Schiffmamn R.F. Microwave and dielectric drying, ed. New York, USA: In A.S.Mujunmdar(Eds.).
    Del Castillo M., Dobson G., Brennan R., et al. 2004. Fatty acid content and juice characteristics in black currant (Ribes nigrum L.) genotypes[J]. J. Agric. Food Chem. 52(4): 948~952.
    Durance T. D., Wang J. H. 2002. Energy consumption, density, and rehydration rate of vacuum microwave- and hot-air convection-dehydrated tomatoes[J]. Journal of Food Science. 67(6): 2212~2216.
    Elias S. 1979. Microwave vacuum drying: quick, quiet, clean, efficient[J]. Food Engineering International. 4(1): 32~33.
    Erle U., Schubert H. 2001. Combined osmotic and microwave-vacuum dehydration of apples and strawberries[J]. Journal of Food Engineering. 49(2-3): 193~199.
    Feng H., Tang J., Cavalieri R. P. 2002. Dielectric properties of dehydrated apples as affected by moisture and temperature[J]. Journal of Electronic Packaging. 45(1): 129~135.
    Gunasekaran S. 1999. Pulsed microwave-vacuum drying of food materials[J]. Drying Technology. 17(3): 395~412.
    Guo W., Tiwari G., Tang J., et al. 2008. Frequency, moisture and temperature-dependent dielectric properties of chickpea flour[J]. Biosystems Engineering. 101(2): 217~224.
    Hilz H., Bakx E., Schols H., et al. 2005. Cell wall polysaccharides in black currants and bilberries-characterisation in berries, juice, and press cake[J]. Carbohydrate Polymers. 59(4): 477~488.
    Hu Q. G., Zhang M., Mujumdar A. S., et al. 2006. Drying of edamames by hot air and vacuum microwave combination[J]. Journal of Food Engineering. 77(4): 977~982.
    Hu Q. G., Zhang M., Mujumdar A. S., et al. 2007. Performance evaluation of vacuum microwave drying of edamame in deep-bed drying[J]. Drying Technology. 25(4): 731~736.
    Incropera F. P., Dewitt D. P. 1996. Fundamentals of heat and mass transfer, 4th ed.[M]. John Wiley & Sons.
    Johnson C. 1987. Numerical solution of partial differential equations by the finite element method[M]. Studentlitteratur.
    Kang H. 2001. Microwave-vacuum drying of short roundwoods and wood turneries[J]. Journal of the Korean Wood Science and Technology. 29(4): 25~32.
    Katulski B., Zawirska-Wojtasiak R., Wasowicz E. 2001. Flavour retention, rehydration capacity and sensory attributes of dried product obtained by microwave-vacuum method[J]. Zywnosc. 8(4): 57~65.
    Krulis M., Kuehnert S., Leiker M., et al. 2005. Influence of energy input and initial moisture on physical properties of microwave-vacuum dried strawberries[J]. European Food Research & Technology. 221(6): 803~808.
    Lefort J. F., Durance T. D., Upadhyaya M. K. 2003. Effects of tuber storage and cultivar on the quality of vacuum microwave-dried potato chips[J]. Journal of Food Science. 68(2): 690~696.
    Lin T. M., Durance T. D., Scaman C. H. 1998. Characterization of vacuum microwave, air and freeze dried carrot slices[J]. Food Research International. 31(2): 111~117.
    Lin T. M., Durance T. D., Scaman C. H. 1999. Physical and sensory properties of vacuum microwave dehydrated shrimp[J]. Journal of Aquatic Food Product Technology. 8(4): 41~53.
    Liu C. H., Zheng X. Z., Jia S. H., et al. 2009. Comparative experiment on hot-air and microwave-vacuum drying and puffing of blue honeysuckle snack[J]. International Journal of Food Engineering. 5(4).
    Liu C. H., Zheng X. Z., Shi J., et al. 2010. Optimising microwave vacuum puffing for blue honeysuckle snacks[J]. International Journal of Food Science and Technology. 45(3): 506~511.
    Lu Y., Sun Y., Foo L. Y. 2000. Novel pyranoanthocyanins from black currant seed[J]. Tetrahedron Letters. 41(31): 5975~5978.
    Markowski M., Bondaruk J., Baszczak W. 2009. Rehydration behavior of vacuum-microwave-dried potato cubes[J]. Drying Technology. 27(2): 296~305.
    Mejia-Meza E. I., Yanez J. A., Davies N. M., et al. 2008. Improving nutritional value of dried blueberries (Vaccinium corymbosum L.) combining microwave-vacuum, hot-air drying and freeze drying technologies[J]. International Journal of Food Engineering. 4(5): 1~6.
    Mousa N., Mohammed F. 2002. Microwave vacuum drying of banana slices[J]. Drying Technology. 20(10): 2055~2066.
    Mui W. W., Durance T. D., Scaman C. H. 2002. Flavor and texture of banana chips dried by combinations of hot air, vacuum, and microwave processing[J]. J Agric Food Chem. 50(7):1883~1889.
    Opoku A., Tabil L. G., Meda V., et al. 2007. Microwave and microwave-vacuum drying kinetics of field peas[C]. An ASABE Meeting Presentation.
    Pandit R., Prasad S. 2003. Finite element analysis of microwave heating of potato-transient temperature profiles[J]. Journal of Food Engineering. 60(2): 193~202.
    Pap N., Kertész S., Pongrácz E., et al. 2009. Concentration of blackcurrant juice by reverse osmosis[J]. Desalination. 241(1-3): 256~264.
    Poonnoy P. Tansakul A., Manjeet Chinnan,. 2007. Artificial neural network modeling for temperature and moisture content prediction in tomato slices undergoing microwave-vacuum drying[J]. Journal of Food Science. 72(1): E042~E047.
    Powell B. A., Kinney W. H. 2007. Pre-inflationary vacuum in the cosmic microwave background[J]. Physical Review D. 76(6).
    Rahman M. S. 2008. Food Properties Handbook 2nd ed.[M]. Taylor & Francis Group, LLC. Ressing H., Ressing M., Durance T. 2007. Modeling the mechanisms of dough puffing during vacuum microwave drying using the finite element method[J]. Journal of Food Engineering. 82(4): 498~508.
    Ressing M. J. 2006. Puffing induced in two model systems by microwave assisted drying under vacuum: An experimental and numerical analysis[D]. The University of British Columbia. Sacilik K., Tarimci C., Colak A. 2006. Dielectric properties of flaxseeds as affected by moisture content and bulk density in the radio frequency range[J]. Biosystems Engineering. 93(2): 153~160.
    Sacilik K., Tarimci C., Colak A. 2007. Moisture content and bulk density dependence of dielectric properties of safflower seed in the radio frequency range[J]. Journal of Food Engineering. 78(4): 1111~1116.
    Schubert H., Regier M. 2005. The microwave processing of foods[M]. Wood Publishing Ltd. Setiady D., Clary C., Younce F., et al. 2007. Optimizing drying conditions for microwave-vacuum (MIVAC?) drying of Russet potatoes (Solanum tuberosum)[J]. Drying Technology. 25(9): 1483~1489.
    Sham P. W. Y., Scaman C. H., Durance T. D. 2001. Texture of vacuum microwave dehydrated apple chips as affected by calcium pretreatment, vacuum level, and apple variety[J]. Journal of
    Food Science. 66(9): 1341~1347. Slimestad R., Solheim H. 2002. Anthocyanins from black currants (Ribes nigrum L.)[J]. Agric Food Chem. 50(11): 3228~3231.
    Song X. J., Zhang M., Mujumdar A. S. 2007a. Effect of vacuum-microwave predrying on quality of vacuum-fried potato chips[J]. Drying Technology. 25(12): 2021~2026.
    Song X. J., Zhang M., Mujumdar A. S. 2007b. Optimization of vacuum microwave predrying and vacuum frying conditions to produce fried potato chips[J]. Drying Technology. 25(12): 2027~2034.
    Song X. J., Zhang M., Mujumdar A. S. et al. 2009. Drying characteristics and kinetics of vacuum microwave-dried potato slices[J]. Drying Technology. 27(9): 969~974.
    Stepien B. 2008. Effect of vacuum-microwave drying on selected mechanical and rheological properties of carrot[J]. Biosystems Engineering. 99(2): 234~238.
    Sunjka P. S., Orsat V., Raghavan G. S. V. 2008. Microwave/vacuum drying of cranberries (Vacccinium macrocarpon)[J]. American Journal of Food Technology. 3(2):100~108.
    Sutar P. P., Prasad S. 2007. Modeling microwave vacuum drying kinetics and moisture diffusivity of carrot slices[J]. Drying Technology. 25(10): 1695~1702.
    Weerachai K., Surachate C., Somchai W. 2002. Experimental study on drying of chilli in a combined microwave-vacuum-rotary drum dryer[J]. Drying Technology. 20(10): 2067~2079.
    Wojdy A., Figiel A., Oszmian J. 2009. Effect of drying methods with the application of vacuum microwaves on the bioactive compounds, color, and antioxidant activity of strawberry fruits[J]. Journal of Agricultural and Food Chemistry. 57(4): 1337~1343.
    Wu Y., Irudayaraj J. 1996. Analysis of heat, mass and pressure transfer in starch based food systems[J]. Journal of Food Engineering. 29(3-4): 399~414.
    Yang H. W. 1996. Dehydration rate of Thompson seedless grapes in a microwave vacuum dehydration system[D]. California State University.
    Yang H., Sakai N. 2001a. Shrinkage and mechanical characteristics of potato undergoing air convection drying[J]. Japan Journal of Food Engineering. 2(2): 67~72.
    Yang H., Sakai N., Watanabe M. 2001b. Drying model with non-isotropic shrinkage deformation undergoing simultaneous heat and mass transfer[J]. Drying Technology: An International Journal. 19(7): 1441~1460.
    Yongsawatdigul J., Gunasekaran S. 1996a. Microwave-vacuum drying of cranberries. II. Quality evaluation[J]. Journal of Food Processing & Preservation. 20(2): 145~156.
    Yongsawatdigul J., Gunasekaran S. 1996b. Microwave-vacuum drying of cranberries. I. Energy use and efficiency[J]. Journal of Food Processing & Preservation. 20(2): 121~143.
    Yuenyongputtakal W., Wuttijumnong P., Niranjan K. 2006. Combined osmotic and microwave-vacuum dehydration of persimmon (Diospyros kaki)[J]. Kasetsart Journal, Natural Sciences. 40(3): 680~687.
    Zhang J., Zhang M., Shan L., et al. 2007. Microwave-vacuum heating parameters for processing savory crisp bighead carp (Hypophthalmichthys nobilis) slices[J]. Journal of Food Engineering. 79(3): 885~891.
    Zhou L., Puri V., Anantheswaran R., et al. 1995. Finite element modeling of heat and mass transfer in food materials during microwave heating-model development and validation[J]. Journal of Food Engineering. 25(4): 509~529.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700