热风微波耦合干燥特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题主要研究了热风微波耦合干燥技术的特性,探讨了热风与微波同时干燥物料设备和技术的可行性,研究了各个因素对干燥产品品质的影响,对干燥工艺参数进行了优化,并对热风微波耦合干燥过程进行了数学模拟。
     本文以胡萝卜片为原材料,利用自行研制的热风微波耦合干燥设备,在不同的组合工艺下干燥胡萝卜片,研究了热风温度、微波功率等几个因素对片状物料耦合干燥的影响,评价了干燥产品的品质。实验结果表明:1)热风微波耦合干燥能够极大地提高干燥速率,耦合干燥速度高于微波干燥,更是远远高于热风干燥速度。2)耦合干燥产品品质得到较大的提高,感官品质好、胡萝卜素保留率高、复水性良好。3)利用正交表可以在所涉及到的条件范围内得到较好的工艺参数组合。通过对干燥胡萝卜片实验数据的多元线性与非线性回归,得到了经验数学模型的特征参数。数学模型和实验数据都表明热风微波耦合干燥过程中,干燥速率主要受微波功率密度和热风温度的影响,干燥速率受热风风速的影响很小。功率密度越大,干燥速率越快;热风温度越高,干燥速率越快。
     对鲜枣的热风微波耦合干燥工艺进行了研究,并选取微波功率、热风温度、载重三个因素对干燥速率和感官评价两个指标进行响应面分析。试验结果表明:热风微波耦合干燥相比微波干燥和热风干燥,可以获得干燥速率快、维生素C保留率高、复水性能良好的产品。响应面分析表明:耦合干燥各因素之间的关系为简单的线性关系。利用极差分析各因素对干燥速度、复水比和维生素C的影响,得出三个因素的影响顺序为:微波功率的影响>载重的影响>热风温度的影响。
     通过对鲜枣实验数据的多元线性与非线性回归,得到了经验数学模型的特征参数,研究了鲜枣耦合干燥过程中温度分布和变化规律,通过公式的推断建立了温度数学模型。试验结果表明:热风微波耦合干燥物料时,干燥过程中温度分布和变化规律与物料的厚度(物料直径)密切相关。热风微波耦合干燥过程中温度变化可以看做有2个阶段,即升温阶段和变速干燥阶段。升温阶段阶段温度的变化主要取决于微波密度和干燥时间;变速干燥阶段温度的变化主要取决于微波密度、热风温度和干燥时间。
     研究表明:热风微波耦合干燥具有干燥速度快,干燥产品质量好的特点,在农产品和食品中具有广阔的应用前景。
This subject mainly studied on the characteristics of coupled hot air and microwave drying technology, discussed the feasibility of this current technology. Effects of some factors on the drying process were studied, the process was optimized, and the mathematic model of coupled drying process was simulated.
     Carrot slices drying were conducted using a novel lab-scale coupled hot air and microwave dryer which was designed and manufactured by author. Some factors such as microwave power density and hot air temperature were examined. Drying velocity, rehydration characteristic and retention of carotene were investigated and overall quality evaluation was done.Experimental results showed that: 1) Coupled microwave and hot air drying could greatly enhanced the drying rate. The drying rate of microwave drying was higher than hot air drying, and that of current coupled one was the fastest. 2) Products prepared by coupled drying was with more satisfied sensory quality, higher reserved content of carotene, higher rehydration, and better comprehensive evaluation scores. 3) The optimal drying process was done through orthogonal experiments and multiple linear or nonlinear regression, and drying kinetics and its mathematical model was also studied and proposed. Both mathematical model and experimental data showed that drying rate was mainly affected by microwave power density, while the influence of hot air temperature was little during coupled hot air and microwave drying process. Drying rate generally increased with the increase of microwave power density and hot air temperature.
     The drying characteristics of coupled hot air and microwave was also investigated using jujube as tested material. The drying rate and and sensory quality of it were studied. Experimental results showed that the coupled dried jujube had more satisfied sensory acceptance evaluation, higher reserved content of Vc and higher rehydration. Microwave power, hot air temperature and quantity of sample were chosen as three factors for response surface analysis. The effects of these three factors on the coupled drying were investigated. The experimental results showed that simple linear relationship was among them during coupled drying, the microwave power had the most important effect, quantity of sample followed and the hot air temperature had the least effect on them.
     The temperature distribution and change during coupled hot air and microwave drying were also investigated using jujube as test material, and related mathematical models were developed. The research showed that the distribution and changes of the temperature in samples were strongly related to the diameter of sphere material dried in coupled dryer. The whole drying process of the coupled hot air and microwave drying can be divided into 2 periods; they were warming-up period and speed-change period. In the warming-up period, the samples temperature depended on microwave power and drying time. While in the speed-change period, the samples temperature depended on microwave power, drying time and hot air temperature.
     The research showed that the coupled hot air and microwave drring can produce high quality dehydrated fruits and vegetables with higher drying rate. The energy consumption compared with traditional methods was greatly reduced. It hold signification potential for application in agricultural and food products drying.
引文
1.朱德泉,曹发海.微波技术在农作物种子干燥中的应用[J].现代农业装备,2003(6): 62-63.
    2.崔勇.粮食微波干燥技术[J].南方农机,2008(5):36-38.
    3. Helmar Schubert, Marc Regier.著.食品微波加工技术[M].徐树来,郑先哲译.北京:中国轻工业出版社,2008(1):109-116.
    4.高福成主编.微波食品[M].中国轻工业出版社,1995(5):20-98.
    5.黄全,黄艾祥.食品干燥加工技术[M].北京:化学工业出版社,2007(5):56-72.
    6.潘永康.现代干燥技术[M].北京:化学工业出版社, 1998: 541-543.
    7. H. Feng, J. Tang and R. P. Cavalieri, 0. A. Plumb. Heat and Mass Transport in Microwave Drying of Porous Materials in a Spouted Bed[J]. AIChE, 2001, 47(7):1499-1512.
    8. A.A.Gowen, N.Abu-Ghannam, J.Frias, J.Oliveira. Modeling dehydration and rehydration of cooked soybeans subjected to combined microwave–hot-air drying[J]. Innovative Food Science and Emerging Technologies, 2008 (9) :129-137.
    9. IlknurA.Microwave air and combined microwave-air-drying parameters of pumpkin slices [J]. LWT-Food Science and Technology, 2007, 40(8): 1445-1451.
    10. Varith J, Dijkanarukkul P, A chariyav iriya A. Combined microwave-hot air drying of peeled longan [J]. Journal of Food Engineering, 2007, 81(2): 459-468.
    11. C. Contreras, M.E. Mart?′n-Esparza, A. Chiralt N. Mart?′nez-Navarrete. Influence of microwave application on convective drying [J]. Journal of Food Engineering, 2008 (88) :55-64.
    12. F.A. Silva, A. Marsaioli Jr., G.J. Maximo, M.A.A.P. Silva, L.A.G. Goncalves. Microwave assisted drying of macadamia nuts[J]. Journal of Food Engineering , 2006 (77) :550-558.
    13.马先英,林艾光等.用热风与微波组合干燥胡萝卜的工艺[J].大连水产学院学报,2007, 22(2): 139-132.
    14.肖宏儒.微波干燥技术在金银花烘干中的应用研究[J].食品科学,2001, 22(5): 41-43.
    15.于秀荣.微波干燥玉米的研究[J].郑州粮食学院学报,1998,19(2):50-52.
    16.王俊,许乃章.微波干燥香菇试验研究[J].科技通报,1994,12(1):48-53.
    17. Na′dia R. Pereira, Antonio Marsaioli Jr., L?′lia M. Ahrne′. Effect of microwave power, air velocity and temperature on the final drying of osmotically dehydrated bananas [J].Journal of Food Engineering,2007(81):79-87.
    18. W.M. Cheng, G.S.V. Raghavan, M. Ngadi, N. Wang. Microwave power control strategieson the drying process I. Development and evaluation of new microwave drying system[J]. Journal of Food Engineering , 2006 (76): 188-194.
    19. Ana Andres, Cristina Bilbao, Pedro Fito. Drying kinetics of apple cylinders under combined hot air–microwave dehydration [J]. Journal of Food Engineering, 2004 (63) :71-78.
    20.彭增华,刘丽等.采用微波-热风干制鲜姜的工艺研究[J].昆明理工大学学报,2002,27(4):24-27.
    21.耿三省,张平等.胡萝卜中胡萝卜素含量测定方法[J].北京农业科,1996(4):24-26.
    22. Official Methods of Analysis of AOAC International, Sixteenth Edition, Washington, USA. 1995.
    23.黄艳,黄建立等.银耳微波真空干燥特性及动力学模型[J].农业工程学报,2010,26(4): 362-367.
    24.江宁,刘春泉等.果蔬微波干燥技术研究进展[J].江苏农业科学,2008(1):216-219.
    25. Khraisheh M A, McMinn W A, Magee T R. Quality and structural changes in starchy foods during microwave and conventive drying[J]. Food Research International, 2004,37(5):497-503.
    26.朱琴,朱科学等.微波热风组合干制板栗粉[J].食品工业科技,2008,29(02):209-211.
    27.徐小东,崔政伟.农产品和食品干燥技术及设备的现状和发展[J].农业机械学报, 2005(12):171-174.
    28.杨渊,段洁利.微波干燥及其发展[J].粮油加工及食品机械,2000:5-8.
    29.刘志军,张璧光.微波加热在木材干燥中的应用[J].世界林业研究,2005,3(18):54-58.
    30.郑先哲,汪春,贾富国.农产品干燥理论与技术[M].北京:中国轻工业出版社,2009(1):
    167-189.
    31.熊永森,王金双,王俊.土豆片的微波干燥特性及较佳工艺研究[J].食品科技,2002:16-19.
    32.梁静.莲子微波干燥特性及干燥工艺优化的研究[D].福建:福建农林大学,2007.
    33.杨娜伟.竹笋微波、薄层及其联合干燥对比试验的研究[D].重庆:西南大学,2010.
    34.朱文学等.食品干燥原理与技术[M].北京:科学出版社,2009(1):220-306.
    35.张宝善,陈锦屏,李强.干制方式对鲜枣维生素C、还原糖和总酸变化的影响[J].西北农林科技大学学报,2004,32(11):117-121.
    36.袁亚红,高振鹏.我国鲜枣的产业化开发[J].西北农林科技大学学报:自然科学版,2002(增刊):95-98.
    37.王安建,魏书信等.微波技术在枣产品加工中的应用[J].农产品加工·学刊,2010,5(208): 58-60.
    38.杨艳杰,秦利民.红枣干制过程中维生素C含量测定分析[J].安徽农业科学,2008,36(15):6516-6599.
    39.武婷,武之新.烘烤干制是实现鲜枣产业跨越发展的重要途径[J].农业科技管理,2010,29(2):61-62.
    40.赵爱玲,李登科等.枣的营养保健作用及综合利用[J].山西果树,2009(1):39-40.
    41.余艳峰,邓仁根等.中国枣业贸易发展现状及前景展望[J].农业展望,2008:4(11):30-33.
    42.袁亚宏,高振鹏等.我国红枣的产业化开发[J].西北农林科技大学学报(自然科学版),2002,30:95-98.
    43.张艳红.红枣中营养成分测定及质量评定[D].新疆:新疆大学,2007.
    44.祝圣远,王国恒.微波干燥过程数学描述[J].Industial Furnace.2004,26(1):15-29.
    45.谈浩,陈君若,石金艳.微波干燥过程数学模型建立与分析[J].现代制造工程, 2008(10):60-62.
    46. Emel Iraz Goksu, Gulum Sumnu, Ali Esin.Effect of microwave on fluidized bed drying of macaroni beads[J]. Journal of Food Engineering , 2005 (66) :463-468.
    47. Sacilik K., Unal G..Dehydration Characteristics of Kastamonu Garlic Slices[J].Biosyst- ems Engineering, 2005,92(2):207-215.
    48. Simal S.,Femenia A.,Garau M.C.,Rossello C.Use of exponential,Page's and diffusional models to simulate the drying kinetics of kiwi fruit [J].Journal of Food Engineering, 2005,66(3):323-328.
    49. Mwithiga G.,Olwal J.O..The drying kinetics of kale(Brassica oleracea) in a convective hot air dryer [J]. Journal of Food Engineering, 2005,71(4):373-378.
    50. Doymaz I.Drying behaviour of greenbeans[J]. Journal of Food Engineering, 2005,69(2): 161-165.
    51. Maskan M..Microwave/air and microwave finish drying of banana[J]. Journal of Food Engineering, 2000,44:71-78.
    52. Maskan M..Drying,shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying[J]. Journal of Food Engineering, 2001,48:177-182.
    53. Madamba P.S.,Driscoll R.H.,Buckle K.A.The thin-layer drying characteristics of garlic slices[J]. Journal of Food Engineering, 1996, 29(1):75-97.
    54. Akpinar E.,Midilli A.,Bicer Y.Single layer drying behaviour of potato slices in a convective cyclone dryer and mathematical modeling[J]. Energy Conversion andManagement, 2003, 44(10):1689-1705.
    55. Togrul.T.,Pehlivan D.Modelling of drying kinetics of single apricot[J]. Journal of Food Engineering, 2003, 58(1):23-32.
    56. Azoubel P.M.,Murr F.E.X.Mass transfer kinetics of osmotic dehydration of cherry tomato[J]. Journal of Food Engineering, 2004, 61(3):291-295.
    57. Methakhup S.,Chiewchan N.,Devahastin S.Effects of drying methods and conditions on drying kinetics and quality of Indian gooseberry flake[J]. LWT-Food Science and Technology, 2005, 38(6):579-587.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700