新型自动跟踪补偿消弧线圈的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
配电网中性点采用消弧线圈接地的运行方式,对改善电网供电质量、提高供电可靠性和保证整个系统安全运行具有十分重要的意义。
     目前国内外研究的消弧线圈,都是针对容性无功电流补偿设计的,不能补偿单相接地故障电流中的有功电流。
     在实际应用中,具有正常绝缘水平的电缆网络,流过单相接地故障点的接地泄漏电导电流通常为接地电容电流的2%~4%,可以不考虑零序有功电流的影响,但当绝缘老化后,该泄漏电导电流值可达到接地电容电流的10%。由于电缆的接地电容电流很大,所以,这部分接地泄漏电导电流的绝对值也是必须考虑的。
     因此,本文在总结国内外消弧线圈的研究成果的基础上,提出了一种基于可控电抗器原理的新型消弧线圈方案,从理论和Matlab/Simulink仿真上论证了这种消弧线圈原理的正确性。
     首先,文中建立了双绕组与多绕组变压器的端口模型,通过其模型分别阐述了双绕组电抗器与多绕组大容量电抗器的实现原理。然后,在多绕组电抗器原理的基础上,详细推导和分析了新型自动跟踪补偿消弧线圈的实现原理。同时针对本文消弧线圈的结构,对基于注入信号法的电网对地电容电流检测原理进行了详细推导。
     其次,对新型自动跟踪补偿消弧线圈的控制策略进行研究,结合本文新型消弧线圈全桥逆变器结构,分析了当前应用最广泛的滞环电流控制、三角波比较电流控制和周期采样法电流控制技术,利用Matlab/Simulink分别对其进行仿真,找出其中电流跟踪控制规律,同时给出了滞后移相控制电路的设计方案。
     最后,用Matlab/Simulink对新型消弧线圈系统进行建模仿真,证实了本文提出的新型自动跟踪补偿消弧线圈原理的正确性,即能同时实现补偿流经单相接地故障点的接地电容电流和接地泄漏电导电流。与此同时也验证了采用周期采样法电流控制技术跟踪一次侧绕组电流的控制方案的有效性。
The Arc-suppression coil grounding manner of the distribution network is vital to the quality and reliability of the power supply, and it increases the security of the circulating network.
     The recent researches on arc-suppression coil at home and aboard are based on the compensation for the reactive currents, can not compensate for the active current in the single grounding fault current.
     In practical application, the grounding leakage conductance current of the cable network at the normal insulation has as 2 to 4 percents as that of the grounding capacitive current when it passes the single grounding fault point ignoring the influence of the zero-sequence active current. When the insulation system goes to ageing, the grounding leakage conduction current can amount to as 10 percents as that of the grounding capacitive current. The grounding capacitive current being too huge, the consideration of the absolute value of this part is necessitated.
     Utilizing the former research on the arc-suppression coil, this paper puts forward a new formula of the arc-suppression coil based on the principle of the controllable reactor, and verifies the validity of this new arc-suppression coil theoretically and in Matlab/Simulink simulation.
     Firstly, the port models of double-winding and multi-winding transformer is built and the practical principles of the double-winding reactor and multi-winding large-capacity reactor are discussed respectively. Then, the practical principle of the new arc- suppression coil with the function of auto-tracking and auto-compensating is derived and analyzed in detail. Simultaneously for the structure of arc-suppression coil in this paper, the principle of the grounding leaking conduction current based on poured into the signal method is derived exactly.
     Secondly, the controlling methods of the new arc-suppression coil with the function of auto-tracking and auto-compensating is studied. Combined with the whole-bridge converter of the structure of the new arc suppression, the hysteresis current control, the triangular-wave comparative current control and the current control technology in weekly sampling are analyzed. Simulated the above-mentioned technologies in the way of Matlab/Simulink respectively, the following and controlling rules of currents are figured out and the designing schemes of the hysteresis phase shift control current is put forward.
     Finally, the new arc-suppression coil system is modeled and simulated in Matlab/Simulink, and the validity of the principles of the new arc- suppression coil with the function of auto-tracking and auto-compensating is verified, that is, it can also compensate the resistive component of the current flowing towards single-phase earth fault point except the capacitive component. And at the same time, the effectiveness of following the primary side winding currents with the technology of current controlling in weekly sampling is verified.
引文
[1] Mazon A J, Zamora I, Zabala L, et al. First resonant neutral grounding implantation in Spanish distribution system. IEEE Power Tech Proceedings, 2001, 4(2): 6-10
    [2] Khunbun K J, Kowpfinger J L. Headed Resonant Grounding (Ground Fault Neutralizer) of A Unit Connected Generator. IEEE Trans Power App Syst, 1997, 1(2): 550-559
    [3] Brown P G, Johnson I B. Generator Neutral Grounding Some Aspects of Application for Distribution Transformer with Secondary Resistor and Resonant Types. IEEE Trans on PAS, 1998, 119(3): 682-694
    [4] Griffel D, Harmand Y, LeitloffV, et al. A new deal for safety and quality on MV networks. IEEE Transaction on Power Delivery, 1997, 12(4): 1428-1433
    [5] Zamora I, Mazon A J, Sagastabeitia K J, et al. Verifying resonant grounding in distribution systems. IEEE Computer Applications in Power, 2002, 15(4): 45-50
    [6] 要焕年,曹梅月.电力系统谐振接地.北京:中国电力出版社,2001:1-98
    [7] 李润先.中压电网系统接地实用技术.北京:中国电力出版社,2001:48-102
    [8] 李福寿.中性点非有效接地电网的运行.北京:水利电力出版社,1993:25-46
    [9] 洪耀鹏.配电网中性点接地方式分析及选择.农村电气化,2004,16(4):28-29
    [10] 刘明岩.配电网中性点接地方式的选择.电网技术,2004,28(16):86-89
    [11] Gulachenski E M, Courville E W. New England Electric's 39 years of experience with resonant neutral grounding of unit-connected generators. IEEE Transac- tions on Power Delivery, 1991, 6(3): 1016-1024
    [12] 陈柏超.新型可控饱和电抗器理论及应用.武汉:武汉水利电力大学出版社,1999:1-152
    [13] 周腊吾,徐勇,朱青等.新型可控电抗器的工作原理与选型分析.变压器,2003,40(8):1-5
    [14] 陈忠仁,董浩斌,李景禄.调气隙式自动消弧线圈装置测量原理研究.电力自动化设备,2003,23(10):25.26
    [15] 陈忠仁,吴维宁,张勤等.调匝式消弧线圈自动调谐新方法.电力系统自动化,2005,29(24):75-77
    [16] 赵志丽,杨学昌,常思哲.新型式TSC自动调谐消弧线圈.高压电器,2004,40(5):339-341
    [17] Tabandeh M, Alavi M H, Marami M, et al. Design and implementation of TSC type SVC using a new approach for electrical quantities measurement. IEEE Power Tech Proceedings, 2001, 5(26): 1-6
    [18] 徐玉琴,陈志业,李鹏.晶闸管投切电容式消弧线圈的设计与应用研究.电力系统自动化,2001,25(13):38-41
    [19] 陆国庆,姜新宇,欧阳旭东.高短路阻抗变压器式自动快速消弧系统一配电网中性点新型接地方式的实现.电网技术,2000,27(7):25-28
    [20] 蔡旭,刘杰.偏磁式消弧线圈的动态调谐装置.电力系统自动化,2002,26(15):53-56
    [21] 贾雅君,蔡旭.偏磁式消弧线圈自动调谐新原理及应用.继电器,2004,32(10):1-5
    [22] 李祥惠,刘剑辉,刘益惠.磁阀式自动调谐消弧线圈成套装置.湖北电力,1999,23(1):61-62
    [23] 王崇林,刘建华.三相五柱式消弧线圈及其自动跟踪补偿原理.中国矿业大学学报,1999,28(5):50-53
    [24] 黄开长.新型快速可调节消弧线圈接地系统的研究:[重庆大学硕士学位论文].重庆:重庆大学电气工程学院,2003:10-14
    [25] 姚效云.新型消弧装置的研究与设计:[南京理工大学硕士学位论文].南京:南京理工大学动力学院,2004:7-13
    [26] 叶予光,庞元俊.电网接地方式与运行分析.煤矿机械,2003,5(11):55—56
    [27] Zeng Xiangjun, Yin Xianggen, Chen Deshu, et al. New Principle for Grouding Fault Feeder Detection in MV Distributions with Neutral Ineffectively Earthed. Journal of Southeast University, 2000, 16(1): 64-69
    [28] 王鸿雁,何湘宁.消弧线圈自动调谐原理的分析.继电器,2002,30(4):8-11
    [29] 赵牧函,纪延超.消弧线圈自动调谐原理的研究.电力系统及其自动化学报,2002,14(4):50-54
    [30] 曾祥君,尹项根,于永源等.基于注入变频信号法的经消弧线圈接地系统控制与保护新方法.中国电机工程学报,2000,20(1):29-36
    [31] 李玲玲,孙鹤旭,王晓宏.谐振接地电力网自动调谐的新方法.中国电机工程学报,2003,23(6):77-80
    [32] 叶光勇.基于注入信号法的消弧线圈自动调谐技术.湖南电力,2006,26(2):32-33
    [33] 陈国强,田翠华,陈柏超等.基于信号注入法的快速消弧线圈接地技术.高压电技术,2004,30(8):22—24
    [34] Mingxing Tian, Qingfu Li, Qunfeng Li. A Controllable Reactor of Transformer Type. IEEE Transactions on Power Delivery, 2004, 19(4): 1718-1726
    [35] 田铭兴,励庆孚.磁饱和式和变压器式可控并联电抗器.高电压技术,2003,29(7):26-27
    [36] 田铭兴,励庆孚.变压器式可控电抗器的磁场和参数计算.西安交通大学学报,2005,39(6):656—658
    [37] 刘金旭.变压器式可控电抗器型消弧线圈的谐波分析及抑制.高压电器,2005,41(4):276—278
    [38] 李达义,陈乔夫,贾正春.基于磁通可控的可调电抗器新原理.中国电机工程学报,2003,23(2):116-120
    [39] 盛建科,陈乔夫,熊娅俐等.高压大容量磁通可控型可调电抗器的技术.高电压技术,2006,32(4):91-94
    [40] 盛建科,陈乔夫,熊娅俐等.基于磁通可控的新型自动调谐消弧线圈.电工技术学报,2005,20(2):88-93
    [41] 杨旭,王兆安.一种新的准固定频率滞环PWM电流控制方法.电工技术学报,2003,18(3):24-28
    [42] 张志学,马皓.矩阵变换器的电流控制策略.中国电机工程学报,2004,24(8):61-65
    [43] 马惠,刘静芳,刘斌帅.改进的有源电力滤波器三角波脉宽调制电流控制方法.电力自动化设备,2004,24(11):30-33
    [44] 李达义,陈乔夫.三角波比较电流控制研究.高电压技术,2006,23(4):1-4
    [45] 戴朝波,林海雪.电压源型逆变器三角载波电流控制新方法.电机工程学报,2002,22(2):99-102
    [46] 王兆安,黄俊.电力电子技术(第4版).北京:机械工业出版社,2003:150-169
    [47] 王兆安,杨君,刘进军.谐波抑制和无功功率补偿.北京:机械工业出版社,2004:120-152
    [48] 林渭勋.现代电力电子电路.浙江:浙江大学出版社,2002:143-160
    [49] Kazmierkowski M P, Malesani L. Current control techniques for three-phase voltage-source PWM converters. IEEE Transactions on Industrial Electronics, 1998, 45(5): 691-703
    [50] Bord D M, Novotny D W. Current control of VSI-PWM inverter. IEEE Trans Industry Application, 1995, 21(4): 562-570
    [51] 李达义,陈乔夫,柯建兴等.采用周期采样法的电流控制方式研究.高电压技术,2003,29(6):12-13
    [52] 薛定宇,陈阳泉.基于Matlab/Simulink的系统仿真技术与应用.北京:清华大学出版社,2002:252-350
    [53] 洪乃刚.电力电子和电力拖动控制系统的Matlab仿真.北京:机械工业出版社,2006:110-160
    [54] 吴天明.Matlab电力系统设计与分析.北京:国防工业出版社,2004:205-502

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700