原位骨组织工程及其相关应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[目的]
     研究原位骨组织工程技术及其在特殊含气空腔部位修复骨缺损的可能行性,为此技术应用于耳鼻咽喉头颈外科领域的骨缺损修复重建提供实验依据。
     [方法]
     1.原位骨组织工程相关基础研究:制备脱细胞松质骨,观察其结构及生物相容性;取兔骨髓基质干细胞,体外培养,复合于含BMP-2的脱细胞松质骨,于皮下移植,观察BMP-2原位诱导骨髓基质干细胞原位成骨分化能力;将BMP-2与脱细胞松质骨复合,异位移植,观察BMP-2原位诱导间充质干细胞成骨分化及促进新生骨形成的能力。
     2.原位骨组织工程相关应用研究:选择健康兔,制作颅骨标本,观察听泡大体形态及位置,取活体兔听泡,使用耳内镜及病理学方法观察其结构特点。选择耳后手术径路,观察活体兔此径路术中手术标志;采用耳后进路,于兔听泡后外侧骨壁钻孔,清除听泡内部分粘膜组织,植入复合BMP-2听骨赝复物,单纯脱细胞骨小柱植入作为对照。术后3个月,通过大体及病理切片观察听骨赝复物成骨情况;制备复合BMP-2的片状脱细胞松质骨,单侧以生物蛋白胶固定薄层胶原海绵作为修复材料,未加BMP-2材料用做对照。手术去除兔上颌窦外侧骨壁及附着粘膜,胶原海绵侧面向窦腔,原位修复缺损,术后3个月进行大体标本及病理切片观察,了解其修复效果及成骨情况。
     [结果]
     1、松质骨经脱细胞处理后,保持海绵状多孔结构,孔径约在200-600μm左右,机械性能无明显变化,植入体内后无明显免疫排斥发生,具有良好生物相容性;体内植入实验术后3个月材料形状无明显变化,周围组织有少量血管增生,无明显免疫排斥现象,脱细胞松质骨/BMP-2/骨髓基质细胞组、脱细胞松质骨/BMP-2组病理学检查发现有新骨形成,对照组仅有纤维结缔组织充填。
     2、兔听泡体积较大,听骨及内耳结构主要集中于听泡前方,取其耳后切口,沿骨性外耳道后壁,寻找茎突样结构,经听泡后壁可顺利进入听泡,不会损伤重要结构;BMP-2/脱细胞松质骨小柱植入兔听泡后3个月,大体观察材料与听泡骨壁接触部位结合紧密,表面被再生黏膜覆盖,形态无明显变化。病理学检查发现有新骨形成,对照组仅有黏膜覆盖,无新骨形成;BMP-2/脱细胞松质骨材料可很好地修复上颌窦外侧骨壁缺损,窦腔内侧面有可形成新生粘膜覆盖,材料孔内有新生骨形成,对照组仅有纤维结缔组织长入。
     [结论]
     1、脱细胞松质骨可保持多孔结构,无明显免疫原性,适用于原位骨组织工程支架材料。
     2、BMP-2可原位诱导间充质干细胞成骨分化,并可于异位形成新生骨组织。
     3、耳后切口,经听泡后壁可进入兔听泡,不损伤重要结构,此径路可应用于基于兔听泡的相关实验研究。
     4、复合BMP-2的脱细胞松质骨可于听泡内形成新生自体骨组织,形态无明显变化,有可能成为听骨链缺损重建材料。
     5、BMP-2具有诱导成骨能力,胶原海绵可用作粘膜再生支架,脱细胞松质骨/BMP-2/胶原海绵,可用于修复含气窦腔局部骨壁伴粘膜缺损。
     [意义]
     本实验为原位骨组织工程技术应用于特殊部位骨缺损修复提供了理论和实验依据。
[Objective]
     To study the in situ bone tissue engineering technique and the ability of this technique to reconstruct the bone defects in special parts contained air, and to provid experimental evidence for reconstructing the bone defects in the aera of otolaryngology–head-neck.
     [Methods]
     1. Fundamental research for in situ bone tissue engineering: To prepare the acellcular cancellous bone, observe the structure and the biocompatibility of the materials; To culture the rabbit’s bone marrow stem cells on the acellcular cancellous bone/BMP-2 in vitro, and then transplant the compound into partes subcutanea. We observed the osteogenesis ability of bone marrow stem cell induced by BMP-2 in situ; To add the BMP-2 into the acellcular cancellous bone, and trandplant into allotopia parts, then observe the osteogenesis ability of mesenchymal stem cell induced by BMP-2 in situ .
     2. Application study for in situ bone tissue engineering: To choose healthy rabbit to make skull bone specimen, observe the shape and position of the bullae. take fresh bullae to observe the detailed structure through endoscope and pathology technique. and then observe the landmarks of the retroauricular approach in a real surgery; Then from retroauricular approach, to make a hole in the posterolateral bone wall of the acoustic vesicle, and the prepared materials were implanted. After 3 month, we observed the osteogenesis of the prothesis with macroscopical anatomy and pathology; To prepare the acellular cancellous bone combined with BMP-2, and collagen sponges lamella were fixed on the material unilaterally by protein glue. The same material without BMP-2 were used in the control group. To remove part of the maxillary sinus lateral bone wall with mucosa, repair it with the prepared material, and the aspects of collagen sponge were put medially in situ. After 3 month, we observed the osteogenesis and reparation of the defects with macroscopical anatomy and pathology.
     [Results]
     1. The acellular cancellous bone maintained porous structure just like sponge, the diameter of the pores were about 200-600μm, and the intension of the materials weren’t significant change than the cancellous bone. No obvious immunological reaction occoured after the materials were transplanted in vivo; In the osteogenesis test, the implanted acellular cancellous bones maintained the shape after they were transplanted 3 month. There were some angiogenesis around the materials, no obvious immune reaction occured. In the acellcular cancellous bone/BMP-2/bone marrow stem cells and the acellcular cancellous bone/BMP-2 groups, osteogenesis were observed. In control groups, no osteogenesis occurred in simple acellular cancellous bone.
     2. There is a large cavity in the bullae. The rabbit’s ossicle and inner ear are in the anterior of the bullae. From the retroauricular incision, following the posterior bone wall of the external auditory canal, we can find the processus styloideus-like structure. Trough the posterior wall , we can open the bullae with the important structure protected well; After 3 month, the implanted acellular cancellous bones were banded tightly with the bone of the acoustic vesicle bone wall. The surface of all materials were covered with mucosa. No obvious transformation of the materials were observe, and in the material with BMP-2, osteogenesis occurred; In the maxillary sinus wall defects repair test, the rabbits recovered soon after surgery, the implanted acellular cancellous bones were banded tightly with the bone around the defects, the medial aspects of the material were covered with mucosa., and new bone were formed after 3 month.
     [Conclusion]
     1. The acellcular cancellous bone can maintain its porous structure, no obvious antigenicity, and it is a suitable material for bone tissue engineering.
     2. BMP-2 can induce the mesenchymal stem cells differentiate into osteobalsts, and induce osteogenesis in allotopia.
     3. Through the retroauricular incision and surgical approach, we can enter the rabbit’s bullae easily, and this technique can be used in the experiments based on rabbit’s bullae.
     4. The acellular cancellous bone with BMP-2 could induce osteogenesis in acoustic vesicle with primary shape, this material might be use to reconstruct the defects of ossicular chain.
     5. The BMP-2 could induce osteogenesis, the collagen sponges could support the mucosal regeneration, collagen sponge and acellular cancellous bone combined with BMP-2 could be used to repair the defects of the maxillary sinus bone wall and mucosa.
     [Significance]
     This study can provide the theoretic and experimental basis for the bone defects in special parts using in situ bone tissue engineering trchnique.
引文
[1] Vacanti CA. The history of tissue engineering. J Cell Mol Med, 2006, 10( 3): 569-576
    [2]杨志明主编。《组织工程基础与临床》。成都:四川科学技术出版社,2000,1~2
    [3] Langer R, Vacanti JP. Tissue engineering. Science, 1993, 260: 920-926
    [4]商庆新,曹谊林,张涤生,翁雨来。生物工程领域的崭新前沿---组织工程。实用美容整形外科杂志,2000,11(2):57~58
    [5] Kneser U, Schaefer DJ, Polykandriotis E, et al. Tissue engineering of bone: the reconstructive surgeon’s point of view. J Cell Mol Med, 2006, 10(1): 7-19
    [6] Rose FR, Oreffo RO. Bone tissue engineering: hope vs hype. Biochem Biophys Res Commun, 2002, 292(1): 1-7
    [7] Horch RE. Future perspectives in tissue engineering. J Cell Mol Med, 2006, 10(1): 4-6
    [8]杨志明。组织工程骨的研究成果及存在的问题。中国修复重建外科杂志,2005,19(2):87-89
    [9] Shimizu Y. Tissue engineering for soft tissue, in lkaka Y(ed), Tissue Engineering for Therapeutic Use, Tokyo, Elsevier, 1998, 119-122
    [10]李雪盛,孙建军。原位组织工程技术的发展与应用前景。中华医学杂志,2007,87(6):430~431
    [11] Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials, 2003, 24(24): 4353-64
    [12] Webster TJ, Ahn ES. Nanostructured biomaterials for tissue engineering bone. Adv Biochem Eng Biotechnol. 2007, 103: 275-308
    [13] Kassem M, Kristiansen M, Abdallah BM. Mesenchymal stem cells: cell biology and potential use in therapy. Basic Clin Pharmacol Toxicol, 2004, 95(5): 209-214
    [14] Cancedda R, Mastrogiacomo M, Bianchi G, et al. Bone marrow stromal cells andtheir use in regenerating bone. Novartis Found Symp. 2003, 294: 133-147, 170-174, 239-241
    [15] Derubeis AR, Cancedda R. Bone marrow stromal cells (BMSCs) in bone engineering: limitations and recent advances. Ann Biomed Eng, 2004, 32(1): 160-165
    [16] Young HE, Duplaa C, Romero-Ramos M, et al. Adult reserve stem cells and their potential for tissue engineering. Cell Biochem Biophys, 2004, 40(1): 1-80
    [17] Li C, Vepari C, Jin HJ, et al. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials. 2006, 27(16): 3115-24
    [18] Cowan CM, Soo C, Ting K, et al. Evolving concepts in bone tissue engineering. Curr Top Dev Biol, 1005, 66: 239-285.
    [19] Urist MR. Bone morphogenetic protein: the molecularization of skeletal system development. J Bone Miner Res, 1997, 12(3): 343-346
    [20] Urist MR, Mikulski A, Boyd SD. A chemosterilized antigen-extracted autodigested alloimplant for bone banks. Arch Surg, 1975, 110(4): 416-428
    [21]孔庆雷译。《组织病理学与组织化学技术手册》。北京:科学出版社。1982,184-187
    [22]张旗涛,姚猛,于友,等。同种异体脱细胞骨的生物力学性质及其临床应用。中华小儿外科杂志,2004,25(2):172-175
    [23]王德超,刘维刚,杜靖远。脱细胞骨基质研究进展。生物骨科材料与临床研究,2006,3(1):23-25
    [24]罗卓荆,胡蕴玉,王茜,等。去抗原异种松质骨移植的免疫反应研究。中华外科杂志,1997,35(11):690-693
    [25]袁志,马平,胡蕴玉,等。复合rhBMP-2的异种骨(rhBMP-2/BCB)与骨膜联合移植修复兔桡骨节段性骨缺损。中华骨科杂志,1999,19(9):557-561
    [26]孙新君,王正国,朱佩芳。重组人骨形态发生蛋白-2/脱细胞骨基质材料复合移植修复兔骨缺损的研究。中华实验外科杂志,2005,22(3):287-289
    [27] Yarlaqadda PK, Chandrasekharan M, Shyan JY. Recent advances and currentdevelopment in tissue scaffolding. Biomed Mater Eng. 2005, 15(3): 159-177
    [28] Mankani MH, Kuznetsov SA, Wolfe RM, et al. In vivo bone formation by human bone marrow stromal cells: reconstruction of the mouse calvarium and mandible. Stem cells. 2006, 24(9): 2140-2149
    [29] Beloti MM, Rosa AL. Osteoblast differentiation of human bone marrow cells under continuous and discontinuous treatment with dexamethasone. Braz Dent J, 2005, 16(2): 156-161
    [30] Huang W, Carlsen B, Wulur I, et al. BMP-2 exerts differential effects on differentiation of rabbit bone marrow stromal cells grown in two-dimensional and three-dimensional systems and is required for in vitro bone formation in a PLGA scaffold.Exp Cell Res, 2004, 299(2): 325-334
    [31]鄂征主编。组织培养与分子细胞学技术。北京:北京出版社,1995:1390~1398
    [32] Friedenstein AJ, Chailakhyan RK, Gerasimov UV: Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tiss Kinet. 1987; 20(3): 263~272
    [33] Cianferotti L, Demay MB. VDR-mediated inhibition of DKK1 and SFRP2 suppresses adipogenic differentiation of murine bone marrow stromal cells. J Cell Biochem, 2007, [Epub ahead of print]
    [34] Beloti MM, Rosa AL. Osteoblast differentiation of human bone marrow cells under continuous and discontinuous treatment with dexamethasone. Braz Dent J, 2005, 16(2): 156-161
    [35] von Knoch F, Jaquiery C, Kowalsky M, et al. Effects of bisphosphonates on proliferation and osteoblast differentiation of human bone marrow stromal cells. Biomaterials, 2005, 26(34): 6941-6949
    [36] Saito N, Takaoka K. New synthetic biodegradable polymers as BMP carriers for bone tissue engineering. Biomaterials, 2003, 24(13): 2287-2293
    [37] Hosseinkhani H, Hosseinkhani M, Khademhosseini A, et al. Bone regenerationthrough controlled release of bone morphogenetic protein-2 from 3-D tissue engineered nano-scaffold. J Control Release, 2007, 117(3): 380-386
    [38] Hu ZM, Peel SA, Sandor GK, et al. The osteoinductive activity of bone morphogenetic protein (BMP) purified by repeated extracts of bovine bone. Growth Factors, 2004, 22(1): 29-33
    [39] Silva MJ, Brodt MD, WopenkaB, et al. Decrease collagen organization and content are associated with reduced strength of demineralized and intact bone in the SAMP6 mouse.
    [40] Tan Q, Steiner R, Hoerstrup SP, et al. Tissue-engineering trachea: History, problems and the future. Eur J Cardiothorac Surg, 2006, 30(5): 782-786
    [41] Cassell OC, Hofer SO, Morrison WA, et al. Vascularisation of tissue-engineered grafts: the regulation of angiogenesis in reconstructive surgery and in disease states. Br J Plast Surg, 2002, 55(8): 603-610
    [42] Griffith LG, Naughton G. Tissue engineering—current challenges and expanding opportunities. Science, 2002, 295(5557):1009-1014
    [43] Buchbinder D, Urken ML, Vickery C, et al. Bone contouring and fixation in functional, primary microvascular mandibular reconstruction. Head Neck, 1991, 13(3): 191-199
    [44] Hurvitz KA, Kobayashi M, Evans GR. Current options in head and neck reconstruction. Plast Reconstr Surg. 2006, 118(5): 122e-133e
    [45] Heydt JL, Cunningham LL, Rubel EW, et al. Round window gentamicin application: an inner ear hair cell damage protocol for the mouse. Hear Res, 2004, 192: 65-74
    [46]刘娅,孙建军,李雪盛,等。载药体-藻酸钠凝胶对豚鼠听泡的组织学影响。听力学及言语疾病杂志,2004,12:247-248
    [47]邹艺辉,黄德亮,孙建和,等。听泡内注射法建立大鼠化脓性中耳炎模型。中华耳科学杂志,2004,2:64-66
    [48] Noushi F, Richardson RT, Hardman J, et al. Delivery of neurotrophin-3 to the cochlea using alginate beads. Otol Neurotol, 2005, 26: 528-533
    [49] Wimmer C, Mees K, Stumpf P, et al. Round window application of D-methionine, sodium thiosulfate, brain-derived neurotrophic factor, and fibroblast growth factor-2 in cisplatin-induced ototoxicity. Otol Neurotol, 2004, 25: 33-40
    [50] Arnold W, Senn P, Hennig M, et al. Novel slow- and fast-type drug release round-window microimplants for local drug application to the cochlea: an experimental study in guinea pigs. Audiol Neurootol, 2005, 10: 53-63
    [51]张龙城,宋为明,李学佩,等。骨形态发生蛋白-羟基磷灰石复合人工听小骨动物实验研究。耳鼻咽喉-头颈外科杂志,2001,8:173-175
    [52] De Corso E, Marchese MR, Serqi B, et al. Role of ossiculoplasty in canal wall down tympanoplasty for middle-ear cholesteatoma: hearing results. J Laryngol Otol, 2006,24: 1-5
    [53] Smith JA, Danner CJ. Complications of chronic otitis media and cholesteatoma. Otolaryngol Clin North Am. 2006, 39(6): 1237-1255
    [54] Siddig MA. Otosclerosis: a review of aetiology, management and outcomes. Br J Hosp Med (Lond), 2006, 67(9):470, 472-476
    [55] Neuenschwander MC, Deutsch ES, Cornetta A, et al. Penetrating middle ear trauma: a report of 2 cases. 2005, 84(1): 32-35
    [56]孙燕,赵啸天,汪若峰。中耳人工合成听骨赝复物临床应用进展。国外医学耳鼻咽喉科学分册,1997,21(3):152-154
    [57] Smyth GD, Hassard TH, Kerr AG, et al. Ossicular replacement prostheses. Arch Otolaryngol, 1978, 104(6): 345-351
    [58] Doherty JK, Maceri DR. Ossicular discontinuity and exostoses in Proteus syndrome: a case report. Ann Otol Rhinol Laryngol, 2005, 114(3): 242-246
    [59] Goldberg VM. Selection of bone grafts for revision total hip arthroplasty. Clin Orthop Resat Res. 2000, 381: 68-76
    [60] Burchardt H. The biology of bone graft repair. Clin Orthop Relat Res, 1983, 174: 28-42
    [61] Berggren A, Weiland AJ, Ostrup LT. Bone scintigraphy in evaluating the viability of composite bone grafts revascularized by microvascular anastomoses, conventional autogenous bone grafts, and free nonrevascularized periosteal grafts. J Bone Joint Surg Am. 1982, 64(6): 799-809
    [62] Schuknecht HF, Shi SR. Surgical pathology of middle ear implants. Laryngoscope, 1985, 95: 249-258
    [63]许安廷。听骨链植入物的病理学研究。中华耳鼻咽喉科杂志,2003,38(3):171
    [64] Maruoka y, Oida S, Iimura T, et al. Production of functional human bone morphogenetic protein-2 using a baculovirus/Sf-9 insect cell system. Biochem Mol Biol Int, 1995, 35(5): 957-963
    [65]胡稷杰,金丹,全大萍,等。负载不同浓度骨形态发生蛋白的组织工程骨体内成骨的量效关系。中华骨科杂志,2006,26(3):196-201
    [66]刘铭,朱振安,汤亭亭,等。中国骨质疏松杂志,2006,12(3):218-221
    [67] Whitesides LM, Radwan A, Sharawy M. Sinus floor argmentation using a composite graft of bone morphogenic protein-2 and allogenic cancellous bone (Puros): case report.
    [68] Tsai CY, Wei FC, Chang YL, et al. Vastus lateralis muscle flap used for reconstruction of the maxilla after radical resection of recurrent ameloblastoma. Chang Gung Med J, 2006, 29(3): 331-335
    [69] Hori Y, Nakamura T, Matsumoto K, et al. Experimental study on in situ tissue engineering of the stomach by an acellular collagen sponge scaffold graft. ASAIO J. 2001, 47(3): 206-210.
    1.Hori Y, Nakamura T, Matsumoto K, et al. Experimental study on in situ tissue engineering of the stomach by an acellular collagen sponge scaffold graft. ASAIO J. 2001, 47(3): 206-210
    2.Kanemaru S, Nakamura T, Omori K, et al. Regeneration of mastoid air cells in clinical applications by in situ tissue engineering. Laryngoscope, 2005, 115(2): 253-258
    3.Omori K, Nakamura T, Kanemaru S, et al. Cricoid regeneration using in situ tissue engineering in canine larynx for the treatment of subglottic stenosis. Ann Otol Rhinol Laryngol 2004, 113(8): 623-627
    4.Omori K, Nakamura T, Kanemaru S, et al. Regenerative medicine of the trachea: the first human case. Ann Otol Rhinol Laryngol 2005, 114(6): 429-433
    5.Bryan DJ, Tang JB, Holway AH, et al. Enhanced peripheral nerve regeneration elicited by cell-mediated events delivered via a bioresorbable PLGA guide. J-Reconstr-Microsurg. 2003, 19(2): 125-134
    6.Cassiede P, Dennis JE, Ma F, et al. Osteochondrogenic potential of marrow mesenchymal progenitor cells exposed to TGF-beta 1 or PDGF-BB as assayed in vivo and in vitro. J Bone Miner Res 1996; 11(9): 1264-1273
    7.Tabuchi M, Miyazawa K, Kimura M, et al. Enhancement of crude bone morphogenetic protein-induced new bone formation and normalization of endochondral ossification by bisphosphonate treatment in osteoprotegerin-deficient mice. Calcif Tissue Int, 2005, 77(4): 239–249
    8.Allegrini S, Yoshimoto M, Salles MB, et al. The effects of bovine BMP associated to HA in maxillary sinus lifting in rabbits. Ann Anat, 2003,185(4): 343-349
    9.Cook SD, Patron LP, Salkeld SL, et al. Repair of articular cartilage defects with osteogenic protein-1 (BMP-7) in dogs. J Bone Joint Surg Am, 2003,85-A (Suppl 3): 116-123
    10. Sittinger M, Hutmacher DW, Risbud MV. Current strategies for cell delivery incartilage and bone regeneration. Curr Opin Biotechnol, 2004,15:411-418
    11.Weiren D, Yingqing X, Yingjie P, et al. in vivo tissue engineering: a new concept. J First Mil Med Univ, 2004, 24(9): 969-974
    12. Pratt AB, Weber FE, Schmoekel HG, et al. Synthetic extracellular matrices for in situ tissue engineering. Biotechnol Bioeng. 2004, 86(1): 27-36
    13. Agrawal S, Schaffer DV. In situ stem cell therapy: novel targets, familiar challenges. Trends Biotechnol. 2005, 23(2): 78-83

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700