Math1基因诱导成年大鼠前庭毛细胞再生的在体实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代社会中,由于先天性异常、病毒性疾病和耳毒性药物以及老年化退行性变等,导致前庭功能障碍患者不断增多。
     虽然前庭功能障碍有一系列潜在的不同因素,但前庭毛细胞的缺失是前庭功能障碍最主要的原因。目前,周围性前庭功能障碍的减轻主要依靠中枢性前庭功能的代偿,而不是前庭感觉上皮本身结构和功能的恢复。因此,如果我们能够找到一种方法来有效地替代损害或缺失的毛细胞,那么就有可能使周围性前庭功能障碍患者得到更有效的治疗。
     许多研究已经证实,成年哺乳动物耳蜗Corti器的毛细胞缺失后不能再生,而前庭感觉上皮具有一定的毛细胞再生能力。在一些动物模型中如豚鼠、大鼠以及灰鼠等,能够诱导前庭毛细胞的再生。
     Math1是哺乳动物内耳毛细胞发育过程中所必需的一个基因。已有研究证实,敲除Math1基因的小鼠,听觉和前庭毛细胞均未见发育,而在体外培养的Corti器中加入以质粒为载体的Math1基因后,产生了额外的毛细胞。用Math1在人类中的同源基因Hath1,同样重复出了上述结果。
     近来国外有研究报道,内耳导入以腺病毒为载体的Math1(Ad-Math1)基因后,药物性前庭功能障碍的小鼠出现了前庭毛细胞的再生和功能的恢复,使通过基因导入治疗前庭功能障碍成为可能。但是目前前庭毛细胞再生研究仍存在的问题是基因导入前庭最佳途径的选择,再生毛细胞的性质、功能和来源以及与突触的连接情况尚不清楚,这些问题仍阻碍前庭功能障碍基因治疗的临床应用。
     本文对前庭功能障碍动物模型的建立、基因导入前庭的方法和Math1基因对药物损害后大鼠前庭感觉上皮毛细胞再生的作用等进行了研究。本研究共分为3部分:
     一、新霉素对大鼠前庭毛细胞毒性作用的实验研究
     目的:研究新霉素对大鼠前庭毛细胞的毒性作用,为药物性前庭功能障碍动物模型的建立和相关研究提供参考。方法:将15只成年Wistar大鼠分为正常对照组、新霉素组和人工外淋巴液组,新霉素组大鼠在右耳通过耳蜗底转鼓阶打孔的方法在耳蜗内注入0.1%(g/100ml)新霉素5ul,人工外淋巴液组按同样方法注入人工外淋巴液5ul。正常对照组大鼠不做任何处理。处理3天后对动物进行颈髓硬膜外短声诱发电位(click-evoked potentials on thesurface of the cervical dura mater,CDM-CEP)检查和游泳试验,来评价前庭功能,然后将动物处死,进行组织形态学观察。结果:3天后新霉素组大鼠的前庭毛细胞即出现毁灭性破坏,并出现严重的前庭功能障碍。正常对照组大鼠的游泳时间为4.0±0.71s,新霉素组大鼠的游泳时间为10.2±1.64s,人工外淋巴液组大鼠的游泳时间为4.4±1.14s。在短声(Click)刺激下,正常大鼠引出CDM-CEP的阈值为85±3.54 dB(SPL),阈值时的潜伏期为6.59±0.41s;新霉素组大鼠120dB(SPL)仍无法引出CDM-CEP;人工外淋巴液组大鼠引出CDM-CEP的阈值为90±5.0dB(SPL),阀值时的潜伏期为6.68±0.31s。结论:新霉素对大鼠前庭毛细胞具有毁灭性的破坏作用,新霉素耳蜗内注射的方法可以建立理想的前庭功能障碍动物模型。
     二、基因导入大鼠前庭的方法及Ad-Math1内耳应用的安全性研究
     目的:探索前庭基因导入的方法和途径,并对Ad-Math1的安全性进行研究,为前庭功能障碍基因治疗的相关研究提供参考。方法:将25只成年Wistar大鼠分为正常对照组、缺失E1、E3基因且构建有Math1基因和绿色荧光蛋白报告基因的复制缺陷型腺病毒(adnovirus-Math1-enhanced greenfluorescence protein,Ad-Math1-EGFP)鼓阶导入组和前庭阶导入组。Ad-Math1-EGFP导入组大鼠在右耳通过耳蜗底转鼓阶或前庭阶打孔的方法导入物理滴度为2.1×10~(11) v.p./ml的上述腺病毒(Ad-Math1-EGFP)5ul。正常对照组大鼠不做任何处理。在处理7天后对动物进行颈髓硬膜外短声诱发电位(click-evoked potentials on the surface of the cervical dura mater,CDM-CEP)和听性脑干反应(auditory brain-stem response,ABR)阈值检查和游泳试验,来评价前庭和耳蜗功能,并分别在处理后3天、7天将动物处死,进行组织学观察和形态学观察。结果:导入Ad-Math1-EGFP 3天后,Ad-Math1-EGFP前庭阶导入组的前庭终末器官及耳蜗均出现Ad-Math1-EGFP的转染;而Ad-Math1-EGFP鼓阶导入组的表达则局限于耳蜗,7天后仍未见前庭终末器官的表达;Ad-Math1-EGFP导入后,耳蜗及前庭器官的毛细胞及纤毛均未见破坏。导入7天后,正常对照大鼠的游泳时间为4.0±0.71s,Ad-Math1-EGFP鼓阶导入组大鼠的游泳时间为4.8±0.84s,前庭阶导入组大鼠的游泳时间为5.0±0.71s。在短声(Click)刺激下,正常对照组大鼠引出CDM-CEP的阈值为85±3.54 dB(SPL),阈值时的潜伏期为6.59±0.41s,听性脑干反应(auditorybrain-stem response,ABR)阈值为37±4.47 dB(SPL);Ad-Math1-EGFP鼓阶导入组大鼠引出CDM-CEP的阈值为91±5.48 dB(SPL),阈值时的潜伏期为6.76±0.26s,ABR阈值为42±2.74 dB(SPL);前庭阶导入组大鼠CDM-CEP的阈值为89±6.52 dB(SPL),阈值时的潜伏期为6.78±0.26s,ABR阈值为40±3.54 dB(SPL)。结论:缺失E1、E3基因的复制缺陷型腺病毒对前庭和耳蜗毛细胞是比较安全的,可以作为基因导入比较理想的载体,耳蜗底转前庭阶打孔可以作为基因导入前庭的有效途径。
     三、Math1基因诱导成年大鼠前庭毛细胞再生的在体实验研究
     目的:探讨Math1基因对成年大鼠前庭毛细胞再生的作用及机制,为将来前庭功能障碍基因治疗的临床应用提供理论基础。方法:将35只成年wistar大鼠分为正常对照组、新霉素组和Math1基因导入组。新霉素组大鼠经鼓阶耳蜗内注射新霉素后,不导入Math1基因,而导入组动物经鼓阶耳蜗内注射新霉素两天后,通过前庭阶导入以缺失E1、E3基因的复制缺陷型腺病毒为载体物理滴度为2.1×10~(11) v.p./ml的Math1基因(Ad-Math1)5ul,正常对照组大鼠不做任何处理。处理3月后,对三组动物进行颈髓硬膜外短声诱发电位(click-evokedpotentials on the surface of the cervical dura mater,CDM-CEP)检查和游泳试验,来评价前庭功能,并分别在处理后1、2、3月处死动物,将前庭囊斑取出进行组织形态学检查分析。结果:导入Ad-Math1基因一月后,导入组大鼠前庭未见毛细胞再生,而导入Math1基因两月后,损害的大鼠前庭感觉上皮可见毛细胞再生,导入三个月时的情况与两月时相似;新霉素组大鼠在以上各个时间点均未见前庭毛细胞再生。通过透射电镜进一步检查发现再生的前庭毛细胞绝大部分为Ⅰ型毛细胞,并与传入神经纤维之间有完整的突触连接,在新生的前庭感觉上皮中,可见有丝分裂现象。处理3个月后,正常对照组大鼠的游泳时间为4.0±0.71s,新霉素组大鼠的游泳时间为11.2±1.64s,Math1基因导入组大鼠的游泳时间为10.4±1.52s。在短声(Click)刺激下,正常对照大鼠引出CDM-CEP的阈值为85±3.54 dB(SPL),阈值时的潜伏期为6.59±0.41s;新霉素组和Math1基因导入组大鼠在120dB(SPL)仍无法引出CDM-CEP。结论:Math1基因可以诱导大鼠前庭毛细胞的再生,再生的前庭毛细胞绝大部分为Ⅰ型毛细胞,并与传入神经之间有完整的突触连接,有丝分裂参与了前庭毛细胞再生的过程。
     结论
     1.新霉素对大鼠前庭毛细胞具有毁灭性的破坏作用,新霉素耳蜗内注射的方法可以建立理想的前庭功能障碍动物模型。
     2.缺失E1、E3基因的复制缺陷型腺病毒对前庭和耳蜗毛细胞是安全的,可以作为基因导入比较理想的载体,耳蜗底转前庭阶打孔可以作为基因导入前庭的有效途径。
     3.Math1基因可以诱导大鼠前庭毛细胞的再生,再生的前庭毛细胞绝大部分为Ⅰ型毛细胞,并与传入神经之间有完整的突触连接,有丝分裂参与了前庭毛细胞再生的过程。
     以上研究结果表明,以缺失E1、E3基因的复制缺陷型腺病毒为载体的Math1基因(Ad-Math1)可以诱导耳毒性药物严重破坏后大鼠前庭感觉上皮的毛细胞再生,提示前庭功能障碍的基因治疗是具有可行性的。
Vestibular dysfunction patients increase gradually because of congenital abnormality,viral disorders,ototoxic drugs and aged degeneration in modern society.Although there are a diverse series of underlying causes for balance disorders,loss of vestibular hair cells represents a common cause of balance dysfunction.At presently,the peripheral vestibular dysfunction alleviation is depended on mostly central vestibular function compensation instead of vestibular sensory epithelium local restoration.So,the peripheral vestibular dysfunction patients maybe gain more effective therapy if we can find a method to replace the loss or damaged hair cells substantially.
     Many of researches previous demonstrated that mature mammalian hair cells of Corti organ were lack of capability of regeneration absolutely,but preserved a limit regeneration capacity still in vestibular sensory epithelium. Regeneration of vestibular hair cells can be induced in a variety of model systems including guinea pig and rat macular organs and the chinchilla crista ampullaris.
     One of the genes involved in the development of hair cells is the mammalian atonal homologue math1.Mice carrying a homozygous knockout of math1 failed to develop auditory and vestibular hair cells.Delivery of a plasmid vector expressing math1 to neonatal organ of Corti cultures produced supernumerary hair cells in vitro.These results were repeated using the human homologue of math1(hath1) and an adenovector(Ad) as the delivery vehicle. Most recently,hair cells were shown to be regenerated in adult mice vestibular neuroepithelium and restored vestibular function by math1 transfer in vivo after ototoxic damaged.So,it is possible that vestibular dysfunction will be alleviate by gene therapy.But some problems still exsist in the field of vestibular hair cell regeneration,for instances,property,resouce and function of new hair cells,and so on.These problems hamper vestibular dysfunction gene therapy in clinic presently.
     Our experiment carried out a series of researches,including preparation of vestibular dysfunction animal model and the approaches of gene transfer into vestibule and the effection of math1 in vestibular hair cells regeneration after aminoglycoside ototoxic insult.The present study can be divided into following three parts:
     Ⅰ.Research of ototoxicity of neomycin to rat vestibular hair cell
     Objective:To research neomycin ototoxicity for vestibule hair cell of rat, and provide the reference for the pharmacal vestibular dysfunction animal model developement.Methods:Fivteen mature wistar rats were divided into normal control group,neomycin group and artificial perilymph group(n=5).Right ear of the neomycin group rat was administrated 5ul 0.1%(g/100ml)neomycin through the way of drilling scale tympanic of cochlear basal turn.The artificial perilymph group did the same way.As a control,the normal group do nothing to inner ear. To evaluate animal vestibular function,the click-evoked potentials on the surface of the cervical dura mater(CDM-CEP) and swimming time were recorded in all rats after treatment 3 days,and then histological and morphologic observation were carried out after animals sacrificed.Results:Vestibular hair cells were destroied and vestibular function was severely injuried in neomycin group after treatment 3 days.The swimming time was 4.0±0.71s in normal control group, 10.2±1.64s in neomycin group,and 4.4±1.14s in artificial perilymph group.The threshold and latency of CDM-CEP was 85±3.54 dB(SPL) and 6.59±0.41s in normal control group,90±5.0 dB(SPL) and 6.68±0.31 s in artificial perilymph group,but could not induce CDM-CEP at 120dB(SPL) level still in neomycin group.Conclusions:The neomycin possess the powerful capability of eleminating vestibular hair cells of adult rat;Neomycin intracochlear administration via scale tympani can develop an ideal vestibular dysfunction animal model.
     Ⅱ.Evaluation of the best way of Gene Transfer into Vestibule and safety of Ad-Math1 to inner ear
     Objective:To explore the method that transfer gene into vestibule and observe the safety of Ad-Math1,in order to provide the base data for vestibular dysfunction gene therapy.Methods:Twenty-five mature wistar rats were divided into normal control group,the group of adenovirus(E1,E3-Deleted and carried math1 and enhanced green fluorescent protein report gene, Ad-Math1-EGFP) scale tympanic transfering group,Ad-Math1-EGFP scale vestibular transfer group.Right ears of the Ad-Math1-EGFP transfering group rats were deliveried 5ul Ad-Math1-EGFP(physical tite 2.1×10~(11)v.p./ml) into cochleas through the way of drilling scale tympanic or scale vestibular of cochlear basal turn.As a control,the normal group do nothing to inner ear.In order to estimate functional condition of vestibule and cochlea,the click-evoked potentials on the surface of the cervical dura mater(CDM-CEP) and threshold of auditory brain-stem response(ABR) and swimming time were recorded in all rats after treatment 7 days,animals were sacrificed after treatment 3,7 days respectively, and then histologic and morphologic observation were carried out after animals sacrificed.Results:All the vestibular end organs were transfected after treatment 3 days in the group of Ad-Math1-EGFP scale vestibular transfer,but could not observe the transfection in Ad-Math1-EGFP scale tympanic transfering group until 7 days after treatment,exception of cochlea.All animals' morphologic observation showed that inner ear hair cells were normal after transfer;After treatment 7 days,the swimming tim ewas 4.0±0.71s in normal control group, 4.8±0.84s in Ad-Math1-EGFP scale tympanic transfer group,and 5.0±0.71s in scale vestibular delivery group.The threshold and latency of CDM-CEP was 85±3.54 dB(SPL) and 6.59±0.41s in normal control group,91±5.48 dB(SPL) and 6.76±0.26s in Ad-Math1-EGFP scale tympanic transfering group,and 89±6.52 dB(SPL) and 6.78±0.26s in Ad-Math1-EGFP scale vestibular delivery group;ABR(auditory brain-stem response) threshold was 37±4.47 dB(SPL), 42±2.74 dB(SPL) and 40±3.54 dB(SPL) respectively in the groups above. Conclusions:The Ad(E1,E3-Deleted) is safe for vestibular and cochlea hair cells and can be used as an ideal vector of gene transfer.The cochleotomy of basal turn through scale vestibular can be served as effective way of transfering gene into vestibule.
     Ⅲ.Vestibular hair cell regeneration of adult rat induced by Math1 gene transfer in vivo
     Objective:To investigate effects and mechanisms of Math1 gene in vestibular hair cell regeneration of rats.Methods:Thirty five adult wistar rats wre divided into normal control group,neomycin group and Math1 gene transfer group.The rats of neomycin group did not transfer Math1 gene into inner ear followed neomycin intracochlear administration via scale tympani and the Math1 gene transfer group animals deliveried Math1 gene 5ul into vestibule through scale vestibuli after neomycin intracochlear injection via scale tympani two days and an adenovirus(E1,E3-Deleted and physical tite 2.1×10~(11)v.p./ml) as the delivery vector.As a control,the normal group do nothing to inner ear.In order to estimate functional condition of vestibule,the click-evoked potentials on the surface of the cervical dura mater(CDM-CEP) and swimming time were recorded in all rats after treatment 3 months.All animals were sacrificed respectively at three time points one,two and three months followed treatment, and then vestibular organs were dissected out and prepared for histological and morphologic examination.Results:Vestibular sensory epithelium did not occur hiar cell regeneration after Math1 gene transferred one month,but observe new hair cell in damaged vetibular sensory epithelium followed Math1 gene transfered two months and the similar phenomenon occured after Math1 gene transferred three months.The new hair cells were determined typeⅠnearly entire and formed intact synapsis with afference nerves by using transmission electron microscopy(TEM).Furthermore,mitosis was detected in renewal vetibular sensory epithelium.After treatment three months,the swimming time was 4.0±0.71s in normal control group,11.2±1.64s in neomycin group,and 10.4±1.52s in math1 gene transfer group.The threshold and latency of CDM-CEP was 85±3.54 dB(SPL) and 6.59±0.41s in normal control group,but could not induce CDM-CEP at 120dB(SPL) level still in neomycin and math1 gene transfer group. Conclusions:Hair cell could regenerate induced by Math1 gene transfered in ototoxicity damaged vetibular sensory epithelium of adult rat.The new hair cells is identified as typeⅠnearly entire and formed intact synapsis with afference nerves.Mitosis is involved in vestibular hair cell regeneration procedure.
     Conclusions
     1.The neomycin possess the powerful capability of eliminating vestibular hair cell of rat;Neomycin intracochlear administration via scale tympani can develop as an ideal vestibular dysfunction animal model.
     2.The Ad(E1,E3-Deleted) is safe to vestibular and cochlea hair cell and can be used as an ideal vector for gene transfer.The cochleotomy of basal turn through scale vestibuli can be served as effective way of transfer gene into vestibule system.
     3.Hair cell could regenerate induced by Math1 gene transfered in ototoxicity damaged vetibular sensory epithelium of adult rat.The new hair cells were determined with typeⅠnearly entire and formed intact synapsis with afference nerves.Mitosis is involved in vestibular hair cell regeneration procedure.
     The results above demonstrated that vestibular hair cells of rats could regeneration by math1 gene transfer and an advirus(E1,E3-Deleted) as delivery vector,and show the possibility as gene therapy for vestibular dysfunction.
引文
1.Corwin JT.& Cotanche DA.Regeneration of sensory hair cells after acoustic trauma.Science,1988;240:1772-1774.
    2.Ryals BM.& Rubel EW.Hair cell regeneration after acoustic trauma in adult Coturnix quail.Science,1988;240:1774-1776.
    3.Proctor L,Perlman H,Lindsay J,et al.Acute vestibular paralysis in herpes zoster oticus.Ann Otol Rhinol Laryngol,1979;88:303-10.
    4.Tsuji K,Velasquez VL,Rauch SD,et al.Temporal bone studies of the human peripheral vestibular system.M(?)ni(?)re's disease.Ann Otol Rhinol Laryngology,2000;181:S20-31.
    5.Wall C,Merfeld DM,Rauch SD,et al.Vestibular prostheses:the engineering and biomedical issues.J Vestib Research,2002;12:95-113.
    6.Robertson DW,Kreig CS,Rubel EW.Light microscopic evidence that direct transdifferentiation gives rise to new hair cells in regenerating avian auditory epithelium.Auditorty Neuroscience,1996;2:195-205.
    7.Adler H J,Raphael Y.New hair cells arise from supporting cell conversion in acoustically damaged chick inner ear(vol 205,pg 17,1996).Neuroscience Letters,1996;210:73-73.
    8.Baird RA,Steyger PS,Schuff NR.Mitotic and nonmitotic hair cell regeneration in the bullfrog vestibular otolith organs.Ann N Y Acad Science,1996;781:59-70.
    9.Roberson DW,Alosi JA,Cotanche DA.Direct transdifferentiation gives rise to the earliest new hair cells in regenerating avian auditory epithelium.J.Neurosci.Res,2004;78(4):461-471.
    10.Taylor R,Forge A.Hair cell regeneration in sensory epithelia from the inner ear of a urodele amphibian.J.Comp.Neurol,2005;484(1):105-120.
    11.Forge A,Li L,Corwin JT,et al.Ultrastructural evidence for hair cell regeneration in the mammalian inner ear.Science,1993;259:1616-9.
    12.Lopez I,Honrubia V,Lee SC,et al.Quantification of the process of hair cell loss and recovery in the chinchilla Crista ampullaris after gentamicin treatment.Internat J Dev Neuroscience,1997;15:447-461.
    13.Stone JS,Oesterle EC,Rubel EW,Recent insights into regeneration of auditory and vestibular hair cells.Curr.Opin.Neurol,1998;11:17-24.
    14.Meiteles LZ,Raphael Y,Scar formation in the vestibular sensory epithelium after aminoglycoside toxicity.Hear.Res,1994a;79:26-38.
    15.Warchol ME,Lambert PR,Goldstein BJ,et al.Regenerative proliferation in inner ear sensory epithelia from adult guinea pigs and humans.Science,1993;259:1619-22.
    16.Tanyeri H,Lopez I,Honrubia V.Histological evidence for hair cell regeneration after ototoxic cell destruction with local application of gentamicin in the chinchilla crista ampullaris.Hear Research,1995;89:194-202.
    17.Zine A,Aubert A,Qiu J,et al.Hesl and Hes5 activities are required for the normal development of the hair cells in the mammalian inner ear.J Neurosci,2001;21:4712-4720.
    18.Shailam R,Lanford PJ,Dolinsky CM,et al.Expression of proneural and neurogenic genes in the embryonic mammalian vestibular system.J Neurocytol,1999;28:809-819.
    19.Bermingham NA,Hassan BA,Price SD,et al.Mathl:an essential gene for the generation of inner ear hair cells.Science,1999;284:1837-1841.
    20.Zheng JL,Gao WQ.Overexpression of mathl induces robust production of extra hair cells in postnatal rat inner ears.Nat Neurosci,2000;3:580-586.
    21.Shou J,Zheng JL,Gao WQ.Robust generation of new hair cells in the mature mammalian inner ear by adenoviral expression of hath1.Mol Cell Neurosci,2003;23:169-179.
    22.Staecker H,Praetorius M,Baker K,et al.Vestibular Hair Cell Regeneration and Restoration of Balance Function Induced by Mathl Gene Transfer.Otology & Neurotology,2007;28(2):223-231.
    1.Oesterle EC,Campbell S,Taylor RR,et al.Sox2 and JAGGED1 expression in normal and drug-damaged adult mouse inner ear.J Assoc Res Otolaryngol,2008,9(1):65-89.
    2.Rubel EW,Dew LA and Roberson DW.Mammalian vestibular hair cell regeneration.Science,1995,267(5198):701-707.
    3.Lyford-Pike S,Vogelheim C,Chu E,et al.Gentamicin is primarily localized in vestibular type I hair cells after intratympanic administration.J Assoc Res Otolaryngol,2007,8(4):497-508.
    4.Guthrie OW.Aminoglycoside induced ototoxicity.Toxicology,2008,249(2-3):91-96.
    5.Staecker H,Praetorius M,Baker K,et al.Vestibular hair cell regeneration and restoration of balance function induced by math 1 gene transfer.Otol Neurotol,2007,28(2):223-231.
    6.Kawamoto K,Izumikawa M,Beyer LA,et al.Spontaneous hair cell regeneration in the mouse utricle following gentamicin ototoxicity.Hear Res,2009,247(1):17-26.
    7.Kawamoto K,Oh SH,Kanzaki S,et al.The functional and structural outcome of inner ear gene transfer via the vestibular and cochlear fluids in mice.Mol Ther,2001,4:575-585.
    8.姜泗长,翟所强主编.耳鼻咽喉科实验技术[M].北京:人民军医出版社.1999:61-65.
    9.Masuzaki M,Murofushi T.Click-evoked potentials on the neck of the guinea pig.Hear Res,2002;165(1-2):152-155.
    10.Aran JM.Current perspectives on inner ear toxicity.Otolaryngology Head and Neck Surgery,1995;1121 133-144.
    11.Halsey K,Skjonsberg A,Ulfendahl M,et al.Efferent-mediated adaptation of the DPOAE as a predictor of aminoglycoside toxicity.Hear Res,2005;201:99-108.
    12.Wu WJ,Sha SH,McLaren JD,et al.Aminoglycoside ototoxicity in adult CBA,C57BL and BALB mice and the Sprague-Dawley rat.Hear Res,2001,158(1-2):165-178.
    13.Forge A and Schacht J.Aminoglycoside antibiotics.Audiol Neurootol,2000,5(1):3-22.
    14.Matsuzaki M,Murofushi T,Mizuno M.Vestibular evoked myogenic potentials in acoustic tumor patients with normal auditory brainstem responses.Eur Arch Otorhinolaryngol,1999,256:1-4.
    15.Murofushi T,Halmagyi GM,Yavor RA,Colebatch JG.Absent vestibular evoked myogenic potentials in vestibular neurolabyrinthitis.Arch Otolaryngol Head Neck Surg,1996,122:845-848.
    16.Murofushi T,Matsuzaki M,Mizuno M.Vestibular evoked myogenic potentials in patients with acoustic neuromas.Arch Otolaryngol Head Neck Surg,1998,124:509-512.
    17.Ozeki H,Matsuzaki M,Murofushi T.Vestibular evoked myogenic potentials in patients with bilateral profound hearing loss.ORL,1999,61:81-83.
    18.Colebatch JG,Halmagyi GM.Vestibular evoked myogenic potentials in human neck muscles before and after unilateral vestibular dea! erentation.Neurology,1992,42:1635-1636.
    19.Matsuzaki M and Murofushi T.Disappearance of click-evoked potentials on the neck of the guinea pig by pharmacological and surgical destruction of the peripheral vestibular afferent system.Hear Res,2003,184(1-2):11-15.
    20.McCue MP,Guinan JJ.Acoustically responsive fibers in the vestibular nerve of the cat.J Neurosci,1994,14:6058-6070.
    21.Murofushi T,Curthoys IS,Topple AN,et al.Responses of guinea pig primary vestibular neurons to clicks.Exp Brain Res,1995,103:174-178.
    22.Murofushi T,Curthoys IS.Physiological and anatomical study of click-sensitive primary vestibular a! erents in the guinea pig.Acta Otolaryngol.Stockholm 1997,117:66-72.
    23.吴子明,郭维维,张素珍等.大鼠颈髓膜表面短声诱发电位及起源.言语及听力学疾病杂志[J],2003,12(4):244-246.
    24.Jiang H,Sha SH,Forge A,et al.Caspase-independent pathways of hair cell death induced by kanamycin in vivo.Cell Death Differ,2006,13(1):20-30.
    25.Jiang H,Sha SH and Schacht J.Kanamycin alters cytoplasmic and nuclear phosphoinositide signaling in the organ of Corti in vivo.J Neurochem,2006,99(1):269-276.
    26.Chu HQ,Xiong H,Zhou XQ,et al.Aminoglycoside ototoxicity in three murine strains and effects on NKCC1 of stria vascularis.Chin Med J(Engl),2006,119(12):980-985.
    27.Mark DR,Keiko H.Aminoglycoside ototoxicity.Current Opinion in Otolaryngology & Head and Neck Surgery.2007;15:352-357.
    1.Tsuji K,Velasquez-Villasenor L,Rauch SD,et al.Temporal bone studies of the human peripheral vestibular system.M(?)ni(?)re's disease.Ann Otol Rhinol Laryngology,2000,181:S20-31.
    2.Wall C,Merfeld DM,Rauch SD,et al.Vestibular prostheses:the engineering and biomedical issues.J Vestib Research,2002,12:95-113.
    3.Matsuzaki M,Murofushi T.Click-evoked potentials on the neck of the guinea pig.Hear Res,2002,165(1-2):152-155.
    4.Staecker H,Praetorius M,Baker K,et al.Vestibular Hair Cell Regeneration and Restoration of Balance Function Induced by Mathl Gene Transfer.Otology &Neurotology,2007,28(2):223-231.
    5.姜泗长,翟所强主编.耳鼻咽喉科实验技术[M].北京:人民军医出版社,1999:61-65.
    6.Carvalho GJ,Lalwani AK.The effect of cochleostomy and intracochlear infusion on auditory brain stem response threshold in the guinea pig.Am J Otol,1999,20:87-90.
    7.Jero J,Tseng CJ,Mhatre AN,Lalwani AK.A surgical approach appropriate for targeted cochlear gene therapy in the mouse.Hear Res,2001,151:106-114.
    8.Minoda R,Izumikawa M,Kawamoto K,et al.Strategies for replacing lost hair cells.Neuroreport,2004,15:1089-1092.
    9.Izumikawa M,Minoda R,Kawamoto K,et al.Auditory hair cell replacement and heating improvement by Atohl gene therapy in deaf animals.Nat Med,2005,11:271-276.
    10.Kawamoto K,Oh SH,Kanzaki S,et al.The functional and structural outcome of inner ear gene transfer via the vestibular and cochlear fluids in mice.Mol Ther,2001,4:575-585.
    11.Praetorius M,Knipper M,Schick B,et al.A novel vestibular approach for gene transfer into the inner ear.Audiol Neurootol,2002,7:324-334.
    12.Kawamoto K,Izumikawa M,Beyer LA,et al.Spontaneous hair cell regeneration in the mouse utricle following gentamicin ototoxicity.Hear Res,2009,247(1):17-26.
    13.Hisashi K,Komune S,Kimitsuki T,et al.Potassium circulation in the perilymph of guinea pig cochlea.Eur Arch Otorhinolaryngol,1994,251(Suppl):S48-52.
    14.Tsuprun V,Santi P.Proteoglycan arrays in the cochlear basement membrane.Hear Res,2001,157:65-76.
    15.Maiorana CR;Staecker H.Advances in inner ear gene therapy:exploring cochlear protection and regeneration.Current Opinion in Otolaryngology & Head & Neck Surgery,2005,13(5):308-312.
    16.黄文林主编.分子病毒学[M].北京:人民卫生出版社,2002:241-253.
    17.Dazert S,Battaglia A,Ryan AF.Transfection of neonatal rat cochlear cells in vitro with an adenovirus vector.Int J Dev Neurosci,1997,15:595-600.
    18.Kanzaki S,Ogawa K,Camper SA,Raphael Y.Transgene expression in neonatal mouse inner ear explants mediated by first and advanced generation adenovirus vectors.Hear Res,2002,169:112-120.
    19.Luebke AE,Steiger JD,Hodges BL,Amalfitano A.A modified adenovirus can transfect cochlear hair cells in vivo without compromising cochlear function.Gene Ther,2001,8:789-794.
    20.Praetorius M,Baker K,Weich CM,et al.Hearing preservation after inner ear gene therapy:the effect of vector and surgical approach.ORL J Otorhinolaryngol Relat Spec,2003,65:211-4.
    21.Staecker H,Li D,O'Malley BW,et al.Gene expression in the mammalian cochlea:a study of multiple vector systems.Acta Otolaryngol,2001,121:157-63.
    1.Weisleder P and Rubel EW.Hair cell regeneration in the avian vestibular epithelium.Exp Neurol,1992,115(1):2-6.
    2.Baird RA,Torres MA and Schuff NR.Hair cell regeneration in the bullfrog vestibular otolith organs following aminoglycoside toxicity.Hear Res,1993,65(1-2):164-174.
    3.Weisleder P and Rubel EW.Hair cell regeneration after streptomycin toxicity in the avian vestibular epithelium.J Comp Neurol,1993,331(1):97-110.
    4.Carey JP,Fuchs AF and Rubel EW.Hair cell regeneration and recovery of the vestibuloocular reflex in the avian vestibular system.J Neurophysiol,1996,76(5):3301-3312.
    5.Stone JS,Oesterle EC and Rubel EWa.Recent insights into regeneration of auditory and vestibular hair cells.Curr Opin Neurol,1998,11(1)(17-24.
    6.Forge A,Li L and Nevill G.Hair cell recovery in the vestibular sensory epithelia of mature guinea pigs.J Comp Neurol,1998,397(1):69-88.
    7.Lopez I,Honrubia V,Lee SC,et al.Hair cell recovery in the chinchilla crista ampullaris after gentamicin treatment:a quantitative approach.Otolaryngol Head Neck Surg,1998,119(3):255-262.
    8.Kawamoto K,Izumikawa M,Beyer LA,et al.Spontaneous hair cell regeneration in the mouse utricle following gentamicin ototoxicity.Hear Res,2009,247(1):17-26.
    9.Lue JH,Day AS,Cheng PW,et al.Vestibular evoked myogenic potentials are heavily dependent on type Ⅰ hair cell activity of the saccular macula in guinea pigs.Audiol Neurootol,2009,14(1):59-66.
    10.Staecker H,Praetorius M,Baker K,et al.Vestibular hair cell regeneration and restoration of balance function induced by mathl gene transfer.Otol Neurotol,2007,28(2):223-231.
    11.Matsuzaki M and Murofushi T.Click-evoked potentials on the neck of the guinea pig.Hear Res,2002,165(1-2):152-155.
    12.Kevetter GA,Correia MJ and Martinez PR.Morphometric studies of type Ⅰ and type Ⅱ hair cells in the gerbil's posterior semicircular canal crista.J Vestib Res,1994,4(6):429-436.
    13.Weisleder P,Tsue TT and Rubel EW.Hair cell replacement in avian vestibular epithelium:supporting cell to type I hair cell.Hear Res,1995,82(1):125-133.
    14.Ricci AJ,Rennie KJ,Cochran SL,et al.Vestibular type I and type Ⅱ hair cells.1:Morphometric identification in the pigeon and gerbil.J Vestib Res, 1997,7(5):393-406.
    15.Moravec WJ and Peterson EH.Differences Between Stereocilia Numbers on Type I and Type Ⅱ Vestibular Hair Cells.J Neurophysiol,2004,92(3153-3160.
    16.Desai SS,Zeh C and Lysakowski A.Comparative morphology of rodent vestibular periphery.I.Saccular and utricular maculae.J Neurophysiol,2005,93(1):251-266.
    17.Hasson T,Gillespie PG,Garcia JA,et al.Unconventional myosins in inner-ear sensory epithelia.J Cell Biol,1997,137(6):1287-1307.
    18.Gillespie PG,Hasson T,Garcia JA,et al.Multiple myosin isozymes and hair-cell function.Cold Spring Harb Symp Quant Biol,1996,61(309-318.
    19.Zheng JL and Gao WQ.Analysis of rat vestibular hair cell development and regeneration using calretinin as an early marker.J Neurosci,1997,17(21):8270-8282.
    20.Bermingham NA,Hassan BA,Price SD,et al.Mathl:an essential gene for the generation of inner ear hair cells.Science,1999,284(5421):1837-1841.
    21.Lo LC,Johnson JE,Wuenschell CW,et al.Mammalian achaete-scute homolog 1 is transiently expressed by spatially restricted subsets of early neuroepithelial and neural crest cells.Genes Dev,1991,5(9):1524-1537.
    22.Weintraub H,Davis R,Tapscott S,et al.The myoD gene family:nodal point during specification of the muscle cell lineage.Science,1991,251(4995):761-766.
    23.Akazawa C,Ishibashi M,Shimizu C,et al.A mammalian helix-loop-helix factor structurally related to the product of Drosophila proneural gene atonal is a positive transcriptional regulator expressed in the developing nervous system.J Biol Chem,1995,270(15):8730-8738.
    24.Ben-Arie N,Bellen HJ,Armstrong DL,et al.Mathl is essential for genesis of cerebellar granule neurons.Nature,1997,390(6656):169-172.
    25.Ben-Arie N,McCall AE,Berkman S,et al.Evolutionary conservation of sequence and expression of the bHLH protein Atonal suggests a conserved role in neurogenesis.Hum Mol Genet,1996,5(9):1207-1216.
    26.Zheng JL and Gao WQ.Overexpression of Math 1 induces robust production of extra hair cells in postnatal rat inner ears.Nat Neurosci,2000,3(6):580-586.
    27.Shou J,Zheng JL and Gao WQ.Robust generation of new hair cells in the mature mammalian inner ear by adenoviral expression of Hathl.Mol Cell Neurosci,2003,23(2):169-179.
    28.Denman-Johnson K and Forge A.Establishment of hair bundle polarity and orientation in the developing vestibular system of the mouse.J Neurocytol,1999,28(10-11):821-835.
    29.Forge A,Li L,Corwin JT,et al.Ultrastructural evidence for hair cell regeneration in the mammalian inner ear.Science,1993,259(5101):1616-1619.
    30.Stone JS and Rubel EW.Temporal,spatial,and morphologic features of hair cell regeneration in the avian basilar papilla.J Comp Neurol,2000,417(1):1-16.
    31.Meiteles LZ and Raphael Y.Scar formation in the vestibular sensory epithelium after aminoglycoside toxicity.Hear Res,1994,79(1-2):26-38.
    32.Kopke RD,Jackson RL,Li G,et al.Growth factor treatment enhances vestibular hair cell renewal and results in improved vestibular function.Proc Natl Acad Sci U S A,2001,98(10):5886-5891.
    33.Desai SS,Ali H and Lysakowski A.Comparative morphology of rodent vestibular periphery.Ⅱ.Cristae ampullares.J Neurophysiol,2005,93(1):267-280.
    34.Rusch A,Lysakowski A and Eatock RA.Postnatal development of type Ⅰ and
    type Ⅱ hair cells in the mouse utricle:acquisition of voltage-gated conductances and differentiated morphology.J Neurosci,1998,18(18):7487-7501.
    35.Lysakowski A.Synaptic organization of the crista ampullaris in vertebrates.Ann NY Acad Sci,1996,781(164-182.
    36.Boyle R,Carey JP and Highstein SM.Morphological correlates of response dynamics and efferent stimulation in horizontal semicircular canal afferents of the toadfish,Opsanus tau.J Neurophysiol,1991,66(5):1504-1521.
    37.Honrubia V,Hoffman LF,Sitko S,et al.Anatomic and physiological correlates in bullfrog vestibular nerve.J Neurophysiol,1989,61(4):688-701.
    38.Baird RA,Steyger PS and Schuff NR.Mitotic and nonmitotic hair cell regeneration in the bullfrog vestibular otolith organs.Ann N Y Acad Sci,1996,781(59-70.
    39.Taylor RR and Forge A.Hair cell regeneration in sensory epithelia from the inner ear of a urodele amphibian.J Comp Neurol,2005,484(1):105-120.
    40.Adler HJ and Raphael Y.New hair cells arise from supporting cell conversion in the acoustically damaged chick inner ear.Neurosci Lett,1996,205(1):17-20.
    41.Roberson DW,Alosi JA and Cotanche DA.Direct transdifferentiation gives rise to the earliest new hair cells in regenerating avian auditory epithelium.J Neurosci Res,2004,78(4):461-471.
    42.Li L and Forge A.Morphological evidence for supporting cell to hair cell conversion in the mammalian utricular macula.Int J Dev Neurosci,1997,15(4-5):433-446.
    43.Fekete DM,Muthukumar S and Karagogeos D.Hair cells and supporting cells share a common progenitor in the avian inner ear.J Neurosci,1998,18(19):7811-7821.
    44.Meyers JR and Corwin JT.Shape change controls supporting cell proliferation in lesioned mammalian balance epithelium.J Neurosci,2007,27(16):4313-4325.
    45.White PM,Doetzlhofer A,Lee YS,et al.Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells.Nature,2006,441(7096):984-987.
    46.姜泗长,翟所强主编.耳鼻咽喉科实验技术[M].北京:人民军医出版社.1999:61-65.
    1.Proctor L,Perlman H,Lindsay J,et al.Acute vestibular paralysis in herpes zoster oticus.Ann Otol Rhinol Laryngol 1979;88:303-10.
    2.Tsuji K,Velasquez-Villasenor L,Rauch SD,et al.Temporal bone studies of the human peripheral vestibular system.Meniere's disease.Ann Otol Rhinol Laryngology 2000;181:S20-31.
    3.Rauch SD.Vestibular histopathology of the human temporal bone.What can we learn? Ann N Y Acad Science 2001;942:25-33.
    4.Wall C Ⅲ,Merfeld DM,Rauch SD,et al.Vestibular prostheses:the engineering and biomedical issues.J Vestib Research 2002;12:95-113.
    5.Corwin,J.T.& Cotanche,D.A.Regeneration of sensory hair cells after acoustic trauma.Science 1988;240:1772-1774.
    6.Ryals,B.M.& Rubel,E.W.Hair cell regeneration after acoustic trauma in adult Coturnix quail.Science 1988;240:1774-1776.
    7.Forge A,Li L,Corwin JT,et al.Ultrastructural evidence for hair cell regeneration in the mammalian inner ear.Science 1993;259:1616-9.
    8.Warchol ME,Lambert PR,Goldstein BJ,et al.Regenerative proliferation in inner ear sensory epithelia from adult guinea pigs and humans.Science 1993;259:1619-22.
    9.Tanyeri H,Lopez I,Honrubia V.Histological evidence for hair cell regeneration after ototoxic cell destruction with local application of gentamicin in the chinchilla crista ampullaris.Hear Research 1995;89:194-202.
    10.Li L,Forge A.Morphological evidence for supporting cell to hair cell conversion in the mammalian utricular macula.Int J Devel Neurosci 1997;15:433-446.
    11.Rubel EW,Dew LA,Roberson DW.Mammalian vestibular hair cell regeneration[letter;comment].Science 1995;267:701-707.
    12.Balak KJ,Corwin JT,Jones JE.Regenerated hair cells can originate from supporting cell progeny:evidence from phototoxicity and laser ablation experiments in the lateral line system.J Neuroscience 1990;10:2502-2512.
    13.Girod DA,Duckert LG,Rubel EW.Possible precursors of regenerated hair cells in the avian cochlea following accoustic trauma.Hear Research 1989;42:175-194.
    14.Presson JC,Popper AN.Possible precursors to new hair cells,support cells,and Schwann cells in the ear of a post-embryonic fish.Hear Research 1990;46:9-21.
    15.Baird RA,Torres MA,Schuff NR.Hair cell regeneration in the bullfrog vestibular otolith organs following aminoglycoside toxicity.Hear Research 1993;65:164-174.
    16.Hashino E,Salvi R.Changing patterns of DNA replication in the noise-damaged chick cochlea.J Cell Science 1993;105:23-31.
    17.Tsue TT,Watling DL,Weisleder P,et al.Identification of hair cell progenitors and intermitotic migration of their nuclei in the normal and regenerating avian inner ear.J Neuroscience 1994;14:140-152.
    18.Raphael Y.Evidence for supporting cell mitosis in response to acoustic trauma in the avian inner ear.J Neurocytology 1992;21:663-671.
    19.Stone JS,Cotanche DA.Identification of the timing of S phase and patterns of cell proliferation during hair cell regeneration in the chick cochlea.J Compr Neurology 1994;341:50-67.
    20.Jones JE,Corwin JT.Regeneration of sensory cells after laser ablation in the lateral line system:hair cell lineage and macrophage behavior revealed by time-lapse video microscopy.J Neuroscience 1996;16:649-662.
    21.Warchol ME,Corwin JR.Regenerative proliferation in organ cultures of the avian cochlea:identification of the initial progenitors and determination of the latency of the proliferative response.J Neuroscience 1996;16:5466-5477.
    22.Presson JC,Lanford PJ,Popper AN.Hair cell precursors are ultrastructurally indistinguishable from mature support cells in the ear of a post-embryonic fish.Hear Research 1996;100:10-20.
    23.White PM,Doetzlhofer A,Lee YS,e tl.Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells.Nature.2006 441(7096):984-987.
    24.Tanyeri H,Lopez I,Honrubia V.Histological evidence for hair cell regeneration after ototoxic cell destruction with local application of gentamicin in the chinchilla crista ampullaris.Hear Research 1995;89:194-202.
    25.Kuntz AL,Oesterle EC.TGF alpha induces hair cell production in mature mammalian vestibular sensory epithelia in vivo.Assoc Res Otolaryngol Abstract 1996;19:790.
    26.Zheng JL,Gao WQ.Analysis of rat vestibular hair cell development and regeneration using calretinin as an early marker.J Neuroscience 1997;17:8270-8282.
    27.Katayama A,Corwin JT.Cochlear cytogenesis visualized through pulse labeling of chick embryos in culture.J Compr Neurology 1993;333:28-40.
    28.Steyger PS,Burton M,Hawkins JR,et al.Calbindin and parvalbumin are early markers of non-mitotically regenerating hair cells in the bullfrog vestibular otolith organs.International J Develop Neuroscience 1997;15:417-432.
    29.Robertson DW,Kreig CS,Rubel EW.Light microscopic evidence that direct transdifferentiation gives rise to new hair cells in regenerating avian auditory epithelium.Auditorty Neuroscience 1996;2:195-205.
    30.Adler HJ,Raphael Y.New hair cells arise from supporting cell conversion in acoustically damaged chick inner ear(vol 205,pg 17,1996).Neuroscience Letters 1996;210:73-73.
    31.Baird RA,Steyger PS,Schuff NR.Mitotic and nonmitotic hair cell regeneration in the bullfrog vestibular otolith organs.Ann N Y Acad Science 1996;781:59-70.
    32.Adler HJ,Komeda M,Raphael Y.Further evidence for supporting cell conversion in the damaged avian basilar papilla.International J Develop Neuroscience 1997;15:375-385.
    33.Stone JS,Leano SG,Baker LP,et al.Hair cell differentiation in chick cochlear epithelium after aminoglycoside toxicity:in vivo and in vitro observations.J Neuroscience 1996;16:6157-6174.
    34.Whitehead MC,Morest DK.The growth of cochlear fibers and the formation of their synaptic endings in the avian inner ear:a study with the electron microscope.J Neuroscience 1985;14:277-300.
    35.Forge A,Souter M,Denman Johnson K.Structural development of sensory cells in the ear.Sem Cell Devel Biology 1997;8:225-237.
    36.Burgess BJ,Adams JC,Nadol JB.Morphologic evidence for innervation of Deiters' and Hensen's cells in the guinea pig.Hear Research 1997;108:74-82.
    37.Oesterle EC,Cunningham DE,Rubel EW.Ultrastructure of hyaline,border,and vacuole cells in chick inner ear.J Compr Neurol 1992;318:64-82.
    38.Jones JE,Corwin JT.Replacement of lateral line sensory organs during tail regeneration in salamanders:identification of progenitor cells and analysis of leukocyte activity.J Neuroscience 1993;13:1022-1034.
    39.Zheng JL,Keller G,Gao WQ.Immunocytochemical and morpholoocal evidence for intracellular self-rep.ir as an important contributor tomammalian hair cell recovery,JNeuroscience,1999,19(2):161.
    40.Li HW,Liu H,Stafen H.Pluripotent stem cells from adult mouse inner ear.Nature Medicine,2003,9(1):293.
    41.Lopez I,Honrubia V,Lee SC,et al.Quantification of the process of hair cell loss and recovery in the chinchilla Crista ampullaris after gentamicin treatment.Internat J Dev Neuroscience 1997;15:447-461.
    42.Zine A,Aubert A,Qiu J,et al.Hesl and Hes5 activities are required for the normal development of the hair cells in the mammalian inner ear.J Neuroscience 2001;21:4712-20.
    43.Shailam R,Lanford PJ,Dolinsky CM,et al.Expression of proneural and neurogenic genes in the embryonic mammalian vestibular system.J Neurocytology 1999;28:809-19.
    44.Bermingham NA,Hassan BA,Price SD,et al.Math1:an essential gene for the generation of inner ear hair cells.Science 1999;284:1837-41.
    45.Zheng JL,Gao WQ.Overexpression of mathl induces robust production of extra hair cells in postnatal rat inner ears.Nat Neuroscience 2000;3:580-6.
    46.Staecker H,Praetorius M,Baker K,et al.Vestibular Hair Cell Regeneration and Restoration of Balance Function Induced by Mathl Gene Transfer.Otology & Neurotology.2007;28(2):223-231.
    47.Kawamoto K,Ishimoto S,Minoda R,et al.Mathl gene transfer generates new cochlear hair cells in mature guinea pigs in vivo.J Neurosci 2003;23:4395-400.
    48.Lambert PR.Inner ear hair cell regeneration in a mammal:identification of a triggering factor.Laryngoscope 1994;104:701-18.
    49.Shou J,Zheng JL,Gao WQ.Robust generation of new hair cells in the mature mammalian inner ear by adenoviral expression of hathl.Mol Cell Neuroscience 2003;23:169-79.
    50.Praetorius M,Baker K.,Weich CM,et al.Hearing preservation after inner ear gene therapy:the effect of vector and surgical approach.ORL J Otorhinolaryngol Relat Spec 2003;65:211-4.
    51.Staecker H,Li D,O'Malley BW,et al.Gene expression in the mammalian cochlea:a study of multiple vector systems.Acta Otolaryngol 2001;121:157-63.
    52.Lee KH,Cotanche DA.Potential role of bFGF and retinoic acid in the regeneration of chicken cochlear hair cells.Hear Research 1996;94:1-13.
    53.Oesterle EC,Tsue TT,Rubel EW.Induction of cell proliferation in avian inner ear sensory epithelia by insulin-like growth factor I and insulin.J Compr Neurology 1997;380:262-274.
    54.Warchol ME.Macrophage activity in organ cultures of the avian cochlea:demonstration of a resident population and recruitment to sites of hair cell lesions.J Neurobiology 1997;33:724-734.
    55.Navaratnam DS,Su HS,Scott SP,et al.Proliferation in the auditory receptor epithelium mediated by cyclic AMP-dependent signaling pathway.Nature Medicine 1996;2:1136-1139.
    56.Yamashita H,Oesterle EC.Induction of cell proliferation in mammalian inner-ear sensory epithelia by transforming growth factor alpha and epidermal growth factor.Proc Natl Acad Science USA 1995;92:3152-3155.
    57.Saffer LD,Gu R,Corwin JT.An RT-PCR analysis of mRNA for growth factor receptors in damaged and control sensory epithelia of rat utricles.Hear Research 1996;94:14-23.
    58.Pirvola U,Cao Y,Oellig C,Suoqiang Z,e tl.The site of action of neuronal acidic fibroblast growth factor is the organ of Corti of the rat cochlea.Proc Natl Acad Science U S A 1995;92:9269-9273.
    59.Zheng JL,Helbig C,Gao W.Induction of cell proliferation by fibroblast and insulin-like growth factors in pure rat inner ear epithelial cell cultures.J Neuroscience 1997;17:216-226.
    60.Cotanche DA.Regeneration of hair cell stereociliary bundles in the chick cochlea following severe acoustic trauma.Hear Research 1987;30:181-195.
    61.Corwin JT,Jones JE,Katayama A,et al.Hair cell regeneration:the identities of progenitor cells,potential triggers and instructive cues.Ciba Found Symp 1991;160:103-120.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700