长江滩地抑螺防病林生态系统能量平衡与水汽通量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长江流域丰富的土地资源——滩地,因其适宜的气候条件和生态环境,利于钉螺的孳生,导致血吸虫病流行,严重危害当地人民的身体健康,影响经济发展。多年实践证明抑螺防病林可以有效地抑制钉螺生长,防止血吸虫病的流行,越来越得到大家认同,已经成为积极响应的滩地开发模式,但是其抑螺防病林的抑螺机理目前尚未明确。有学者认为滩地环境改变,特别是滩地水分条件改变是其抑螺的根本原因。本论文以湖南岳阳市君山区“兴林抑螺”林业生态重点试验示范的抑螺防病林生态系统为研究对象,从土壤-植被-大气系统的角度出发,在典型调查的基础上,采用运用涡度相关法(Eddy covariance,EC)开路系统、树干液流(Sapflow)法进行定位观测,结合定量与定性分析方法,开展长江滩地抑螺防病林生态系统能量平衡、土壤水分动态变化、蒸腾耗水和水汽通量研究,旨在掌握抑螺防病林土壤水分动态变化特征、蒸腾耗水规律以及水汽通量格局,为全面深入探讨抑螺防病环境机制,揭示其抑螺防病机理奠定基础。主要研究结论如下:
     (1)长江滩地抑螺防病林生态系统,能量各平衡组分具有相似的日均变化过程规律,但不同时间尺度上,该生态系统能量平衡各组分分配比例不同,不同的季节收入量差异明显,年内的变化过程主要受季节气候的变化影响。2006年,净辐射通量全年共2471.81 MJ/m2,潜热年通量大约消耗77%的净辐射能,显热年通量占净辐射能19.79%,土壤热通量全年为负值,表现为土壤释放热量,植物体储能等部分大约占净辐射能的3.21%。不同时间尺度的能量闭合水平都较高,说明该站点的涡度相关法观测数据通量数据质量可靠,依然存在能量16%不闭合现象。
     (2)土壤水分具有显著的时空尺度特征,不同层次土壤水分含量变化差异显著。各层土壤水分月动态变化趋势基本一致。土壤含水量主要受3个典型因素(Vi,Ui)(i=1,2,3)的影响。在较强的降水的时候,表层在土壤水分变化中起着较为重要的作用;空气温度和土壤温度所起的作用相反,影响蒸发、蒸腾作用的辐射、降雨量、空气温湿度、风速等环境因子都可以明显改变土壤水分的状况。土壤蓄水量不仅与降水有关,而且跟林分的蒸散密切相关,进入林分生长期以后,随着林分生长活跃,林分蒸散的增强,土壤蓄水量持续减少。
     (3)不同生长时期、天气条件以及树干不同方向上液流速率的差异。晴天杨树液流速率日变化呈现规律的单峰曲线,表现为白天高,夜间低的昼夜节律变化趋势。雨天杨树液流速率日变化规律性不明显,不同的环境因子对树干液流的响应程度不同,光合有效辐射、空气温度与树干液流速率呈正相关,而空气湿度则与树干液流速度呈负相关。抑螺防病林生长初期(4月上旬)日蒸腾量较低,基本上在1mm以下,到7月上旬日蒸腾均值最高可达到3.0mm以上。蒸腾量季节变化过程与降雨分布时间紧密相关。
     (4)水汽通量具有规律的日变化进程,不同天气条件下(晴天和多云)水汽通量的日变化有明显区别。晴天水汽通量值要明显大大高于多云天气。各季节水汽通量大都为正值,表现为水汽源,且夏季大于春秋两季,冬季最小。2006年全年蒸散量占全年降水量的48.45%。环境因子在很大程度上制约着水汽通量的变化,以净辐射和土壤热通量地温对水汽通量的影响最大。晴天和多云影响水汽通量的环境因不完全相同,相同因子影响程度也不一样,晴天的相关性高于多云天气,晴天的逐步回归分析建立模型相关系数为0.92,而多云天气的为0.81。
As the rich land resources of the Yangtze River Basin, feasible climate conditions and ecological environment of the beach land are being advantage to multiply of the snail and infection of the schistosomiasis, and harmful to the health of the local people, and also become an obstruct for economic development. Snail control and schistosomiasis prevention forests are ecological forests, have multiple benefits such as snail control and schistosomiasis prevention, economic, ecological etc, and restrain growth of the snail effectively, prevent infection of the schistosomiasis and those effects are well recognized by people gradually. Hence, snail control and schistosomiasis prevention forests were become exploitation method of the beach land. But its snail control mechanism, such as how snail control and schistosomiasis prevention forests control the snail, is still unclear. Some researchers thought the change of beach land environment especially the changes of water cycle is the main reason of its snail control effect. From the aspect of soil-vegetation-atmospheric system, and by using open eddy covariance system and tree sap flow methods, studies were carried out in schistosomiasis prevention forests ecosystem which was the key experiment and demonstration spot of forests ecology to control snail project in Junshan district of Yueyang city, Hunan province, the ecological system energy balance and water vapor flux of the snail control and schistosomiasis prevention forests were analyzed in this paper, and also characteristics of energy distribution of energy balance components and its energy closure level, dynamics of soil moisture condition were well discussed. The purposes of this research are to understand the energy flow; characteristics of water consumption by transpiration and water vapor flux of the snail control and schistosomiasis prevention forests, and lay the foundation for further researches on environmental mechanism of snail control and schistosomiasis prevention. Main results and conclusions are the following:
     Energy partitioning components had similar diurnal variation in snail control and schistosomiasis prevention forests ecosystem. The ratio of energy partitioning in different components were not the same in different time scale. Those ratio was mainly controlled by the seasonal change. The annual net radiation was 2471.81 MJ/m2 in 2006; the latent heat flux was 77% of the net radiation, the sensible heat flux was 9.79% of the net radiation, the soil heat flux and others only took about 3.2% of net radiation. The energy closure level was high in different time scale, which showed datum observed by Eddy Covariance open path system was credible. But there still had 16% energy missed.
     Soil moisture had the feature of spatial and temporal scale, and the difference of soil water content in different soil layers is significant. The monthly dynamic changes of soil moisture in different soil layers are uniform. Three typical factors (Vi,Ui)(i=1,2,3) influenced the soil water content. Under stronger precipitation, the surface soil play more important function in water change; temperature and soil temperature took contrary action. Environmental factors affected evaporation and transpiration such as radiation, rainfall precipitation, air temperature and humidity, wind speed, etc, can change soil water status significantly. Soil water storage capacity is affected by precipitation and evapotranspiration of stand. When entering into the growth period, with the active growth of stand and enhanced evapotranspiration, soil water storage capacity gradually decreased.
     Difference of sap flow velocity during different growth stages, different weather conditions and tranks in different directions. In sunny days, Poplar sap flow density variations showed regular single-peak curve. The tendency of circadian rhythm was high in daytime, while was low at night. In wet days, Poplar sap flow velocity daily variations were irregular and different environmental factors had different influences on sap flow. It was positive correlation between photosynthetically active radiation, air temperature and sap flow velocity, while it was negative correlation between air humidity. Snail control and schistosomiasis prevention forest’s transpiration rate was low during early growth period and less than 1mm, while its mean value reached more than 3.0mm at the beginning of July. It was close correlation between transpiration rate quarterly variation and precipitation timely distribution.
     Water vapor flux had regulated diurnal process; dynamic process was different in sunny days and cloudy days. The water vapor flux in sunny was higher than that in cloudy days. Water vapor flux of the ecosystem was positive in each season, which showed the ecosystem was water sink. Water vapor flux in summer was higher than in spring and autumn, while the water vapor flux in winter is lowest whole year. The evapotranspiration was 48.45% of precipitation in 2006. Environment factor effected the water vapor flux variation. Net radiation and ground heat were key factors to affect water vapor flux. The response of environment factors was different in different weather condition, while the same factor is also has different influence in different weather condition. Correlative coefficient of stepwise regression analysis model was 0.92 in sunny days, and that was 0.81 in cloudy days.
引文
[1]刘国华,舒洪岚,张旭东.林业抑螺防病的机理与技术.世界林业研究, 2005, 18(2): 48~50.
    [2]彭镇华.林业生态工程与血吸虫病防治.科学, 2005, 57(1): 34~37.
    [3]江泽慧.兴林灭螺论文选集.北京:中国林业出版社, 1995.
    [4]彭镇华,江泽慧.中国新林种抑螺防病林研究.北京:中国林业出版社, 1989.
    [5]彭镇华,孙启祥,康忠铭.有螺滩地林农复合生态系统的建立及其效果分析.安徽农业大学学报, 1994,增刊: 1~7.
    [6]邓大清.滩地造林与钉螺分布关系的研究.湖南林业科技, 1996, 23(4): 31~36.
    [7]汤玉喜,吴敏,吴立勋.滩地林业血防工程抑螺效应及其成因研究.湿地科学与管理, 2006, 2(4): 8~13.
    [8]张旭东,彭镇华,周金星.抑螺防病林生态系统抑螺机理的研究进展.世界林业研究, 2006, 19(3): 38~43.
    [9]张旭东,吴刚,彭镇华.滩地林业生态工程与钉螺孳生关系的研究.应用生态学报, 1998, 9(5): 468~-470.
    [10]张旭东,杨晓春,彭镇华.钉螺分布与滩地环境因子的关系.生态学报, 1999, 23(2): 265~269.
    [11]马履一.国内外土壤水分研究现状与进展.世界林业研究, 1997, 5: 36~32.
    [12]王力,邵明安,王全九.林地土壤水分运动研究述评.林业科学, 2005, 41(2): 147~153.
    [13]赵玉涛,余新晓,张志强.长江上游亚高山峨眉冷杉林地被物层界面水分传输规律研究.水土保持学报, 2002, 3: 118~121.
    [14]赵玉涛,张志强,余新晓..森林流域界面水分传输规律研究述评.水土保持学报, 2002, 1: 92~95.
    [15]王力.陕北黄土高原土壤水分亏缺状况与林木生长关系.博士论文,西北农林科技大学, 2002, 18(4): 36~43.
    [16]贾志清,宋挂萍.宁南山区典型流域土壤水分动态变规律研究.北京林业大学学报, 1997, 19(3): 15~22.
    [17]张学龙,东志均.祁连山寺大隆林区土壤水分动态研究.西北林院学报, 1998, 1: 1~9.
    [18]彭熙,钱晓刚,杨滨.贵州省喀斯特峡谷花椒林地土壤水分特征研究.水土保持通报, 2007, 2: 170~173.
    [19]白光明,齐金生,刘新生.陕北丘陵区陡坡柠条林地与荒坡土壤水分变化研究.水土保持通报, 2007, 2: 45~49, 115.
    [20]胡守林,许燕玲,万素梅.南疆阿拉尔垦区海岛棉耗水规律研究.水土保持研究, 2008, 1: 100~102.
    [21]周刘宗,陈志雄.土壤水分的时间序分析研究.土壤, 1998, 4: 188~193.
    [22]朱首军.农林多合生态系统土壤水分空间变异性和时间稳定性研究.水土保持研究, 2000, 7: 23~28.
    [23] Gusev Y. M., Nasonova O.. Modeling annual dynamics of soil water storage for agro and natural ecosystems of the steppe and forest- steppe zones on a local scale. Agricultural and Forest Meteorology, 1997, 85: 3~4, 171~191.
    [24]秦永胜,于志民.密云水库上游水源保护林试验区示范区土壤水分动态初步研究.北京林业大学学报, 1998, 20(6): 65~70.
    [25]李洪建,王孟本.晋西北人工林土壤水分特点与降水的关系研究.土壤侵蚀与水土保持学报, 1998, 4: 60~65.
    [26]李洁荣,刘金文.径流林下土壤水分和土壤结构动态的变化的研究.水土保持研究, 2001, 8(3): 131~134.
    [27]王兵,崔相慧,白秀兰.大岗山人工针阔混交林与常绿阔叶林水文动态变化研究.林业科学研究, 2002, (1): 13~20.
    [28]赵晓光,吴启发.黄土高原坡耕地土壤水分主要受控因子研究.水土保持通报, 1999, 1: 10~14.
    [29] Kowalik P., Borghetti M., Busoni E., et al. Measured land simulated water relation in a Douglas–fir forest during the development of drought in the Apenines, Centrla Itlay. Forest Ecology and Management, 1998, 25: 3~4, 181~194.
    [30] Lexer M. Applying a big leaf model to simulate seasonal soil water dynamics in Norway spruce stands. Gesamte -Forestwesen, 1995, 112(4): 209~225.
    [31]黄志宏,周国逸, Morris J. ,等.桉树人工林冠层气象因子对雨季土壤水分的影响.热带亚热带植物学报, 2003, 3: 197~204.
    [32]贾志清,宋红竹,陈涛.黄家二岔小流域土壤水分空间分布特征.北京林业大学学报, 1999, 5: 88-91.
    [33]梁音,史德明,杨艳生.长江三峡区侵蚀土壤水分特征研究.土壤, 1993, 4: 201~203.
    [34]陈家宙,陈明亮,何圆球.各具特色的当代土壤水分测量技术.湖南农业科学, 2001, 3: 25~28.
    [35]司建华,冯起,张小由.植物蒸散耗水量测定方法研究.水科学进展, 2005, 16(3): 450~459.
    [36] Reginato R. J., Jackson R. D., Pinter J. R. . Evapotranspiration calculated from remote multispectraland ground station meteorological data. RemSens Environ, 1985, 18: 75~89.
    [37] Berbigier P., BonnefondJ.M, Lonstau D., et al. Transpiration of a 64-year old maritime pine stand in Portugal. 2. Evapotranspiration and canopy stomatal conductance measured by and eddy covariance technique. Oecologia, 1996, 107: 43~52.
    [38] Chen J. U, KTP, S. Ustin, et al. Net ecosystem exchanges of carbon, water and energy in young and old-growth Douglas-Fir forests. Ecosystems, 2004, 7(5): 534~544.
    [39] Dennis D.Baldocchi.Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems:past,present and future.Global Change Biology, 2003, 9: 479-492.
    [40] Granie, A, Biron, P, Lemoine, D. Water balance, transpiration and canopy conductance in two beech stands. Agric. For. Meteorol, 2000, 100: 291~308.
    [41] Granier, A, Bobay, V, Gash, JHC, et al. Vapour flux density and transpiration rate comparisons in a stand of Maritime pine(Pinus pinaster Ait. )in Les Landes forest. Agric. For. Meteorol, 1990, 51: 309~319.
    [42] Hogg, EH, Black, TA, G, dH, et al. A comparison of sap flow and eddy fluxes of water vapor from a boreal deciduous. Geophys. Res, 1997, 102: 28929~28937.
    [43] Saugier, B, Granie, A, Pontailler, JY, et al. Transpiration of a boreal pine forest measured by branch bag, sap flow and micrometerological. Tree physical, 1997, 17: 511~519.
    [44]马雪华.川西高山暗针叶林区的采伐与水土保持.林业科学, 1963, 1(1): 21~26.
    [45]王正菲,崔启武.树冠蒸散的计算.林业土壤研究集刊.北京:科学出版社, 1964.
    [46]王正菲,崔启武,林冠蒸发散的计算.中国科学院林业土壤研究所集刊第一集, 1965, 1(1): 40~45.
    [47]贺庆棠,刘祚昌.森林的热量平衡.林业科学, 1980, 21(1): 24~33.
    [48]徐德应,曾庆波.用能量平衡-波文比法测定海南岛热带季雨蒸散初试.热带亚热带森林生态系统研究, 1986, 7(3): 183~196.
    [49]满荣洲.华北油松人工林蒸腾的研究.北京林业大学学报, 1986, 18(2): 1~7.
    [50]刘奉觉,郑世楷,藏道群.杨树人工幼林的蒸腾变异与蒸腾耗水量估算方法的研究.林业科学,1987,23(1): 35~44.
    [51]余新晓.土壤动力水文学及其应用.北京:中国林业出版社, 1995.
    [52]孙长忠,黄宝龙.单株平衡法的建立.林业科学, 1996, 32(4): 378~381.
    [53]魏天兴,朱金兆,张学培.晋西南黄土区刺槐油松林地耗水规律的研究.北京林业大学学报, 1998,20(4): 36~40.
    [54]孙鹏森.京北水源保护林格局及不同尺度树种蒸腾耗水特性研究.北京林业大学博士学位论文,2000,l(l): 1~11.
    [55]熊伟,王彦辉,程积民.三种草本植物蒸散量的对比试验研究.水土保持学报, 2003, 17(1): 170~172.
    [56]聂立水,李吉跃.应用TDP技术研究油松树干液流流速.北京林业大学学报, 2004, 26(6): 49~56.
    [57]宋霞,刘允芬,徐小锋.红壤丘陵区人工林冬春时段碳、水、热通量的观测与分析.资源科学, 2004, 26(3): 98~104.
    [58]吴家兵,关德新,张弥.涡度相关法与波文比-能量平衡法测算森林蒸散的比较研究——以长白山阔叶红松林为例.生态学杂志, 2005, 24(10): 1245~1249.
    [59]王建柱,林光辉,黄建辉.稳定同位素在陆地生态系统动——植物相互关系研究中的应用.科学通报, 2004, 49(21): 2141~2147.
    [60]魏天兴,朱金兆.林分蒸散耗水量测定方法述评.北京林业大学学报,1999,21(3): 85~91.
    [61]王安志,裴铁,王番.森林蒸散测算方法研究进展与展望.应用生态学报, 2001, 12(6): 933~937.
    [62]张劲松,孟平,尹昌君.植物蒸散耗水量计算方法综述.世界林业研究, 2001, 14(2): 23~28..
    [63]刘晨峰.北京地区杨树人工林能量和水量平衡研究.北京林业大学博士论文. 2007: 9~12.
    [64]熊伟.六盘山北侧主要造林树种耗水特性研究.中国林业科学研究院森林生态环境与保护研究所博士论文, 2003.
    [65] Kaufmann, M.. Automatic determination of conductance, transpiration and environ-mental conditions in forest trees. For. Sci, 1981, 27: 817~827.
    [66] Greenwood. Evaporation from vegetation in landscape developing secondary salinity using the ventilated-chamber technique I comparative transpiration from juvenile Eucalyptus above saline ground-water seeps. Hydrol, 1979, 42: 369~382.
    [67] Francno, CM, Magalhaes, AC. Techniques for the measurement of transpiration of individual plants. Arid Zone Res, 1965, 25: 211~224.
    [68] Edwards. Precision weighing lysimeter for trees, using a simplified tared-balance design. Tree physical, 1986, 1: 127~141.
    [69] HeeMyong, R. Water use of young‘Fuji’apple trees at the soil moisture regions in drainage lysimeters. Agricultural Water Management, 2001, 50(3): 185~196.
    [70] Knight, D, Fahey, T, Running, S. Transpiration from 100yr old lodgepole pine forests estimated with whole 2 tree potometers. 62, 1981, 3: 717~726.
    [71] Roberts, J. The use of tree-cutting techniques in the study of the water relations of pinus sylvestris. J. Exp. Bot, 1977, 28: 751~767.
    [72] Dye. A comparison of heat pulse method and deuterium tracing method for measuring transpiration form Eucalyptus grandis trees. J. Exp. Bot, 1992, 43: 337~343.
    [73] Grainer, A. Evaluation in a Douglas fir stand by means of Sap flow measurements. Tree Physiology, 1987, 3: 309~320.
    [74] Smith, M. Measurement of sap flow in stems. J. Exp. Bot, 1996, 47: 1833~1844.
    [75]刘奉觉, EdwardsWRN.杨树树千液流时空动态研究.林业科学研究, 1993, 6(4): 368~372.
    [76]李海涛,陈灵芝.应用热脉冲技术对棘皮桦和五角枫树干液流的研究.北京林业大学学报, 1998, 20(1): 1~61.
    [77]高岩,张汝民,刘静.应用热脉冲技术对小美早杨树干液流的研究.西北植物学报, 2001, 21(4): 644~649.
    [78]孙慧珍,康绍忠,龚道枝.测定位点对计算梨树树干液流的影响.应用生态学报, 2006, 11: 2024~2028.
    [79]孙守家,丛张.断根程度、时间以及抑制蒸腾措施对银杏树体水分状况的影响.园林科技, 2007, 3: 15~19.
    [80]白云岗,宋郁东,周宏飞.热脉冲法对胡杨树干液流的监测与蒸腾过程模拟.水土保持学报, 2007, 3: 188~192.
    [81]马长明,翟明普.干季核桃树干液流特征及其与气象因子的关系.林业科学研究, 2007, 6: 883~886.
    [82] McNaughton K, Black T. A study of evapotranspiration from a Douglas fir forest using the energy balance approach. Water Resour Res, 1973, 9: 1579~1590.
    [83]刘昌明,唐登钱,愈超群.用零通量面法计算土壤蒸发的探讨.中国地学会第四次全国水文学术会议文集北京:测绘出版社, 1989.
    [84] Running S., Baldocchi D., Turner D.. A Global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote Sensing of Environment, 1999, 70: 108~127.
    [85] Canadell J.G., Mooney H., Baldocchi D.. Carbon Metabolism of the Terrestrial biosphere: Amulitechnique approach for improved understanding. Ecosystems, 2000, 3: 115~130.
    [86] Geider RJ, Evan H, Paul GD, et al. Primary productivity of planet earth: biological determinants and physical constraints in terrestrial and aquatic habitats. Global Change Biology, 2001, 7(8): 849~882..
    [87] Lenschow D.. Micrometeorological techniques for measuring biosphere-atmosphere trace gas exchange. London: Blackwell Science, 1995.
    [88] Verma S.B.. Micrometeorological method for measuring surface fluxes of mass and energy. Remote Sensing Review, 1990, 5: 99~115.
    [89] Baldocchi D., Wilson K.. Modeling CO2 and water vapor exchange of temperate broadleaved forest across hourly to decadal time scales. Ecological modeling, 2001, 142: 155~184.
    [90] Wofsy S.. Net exchange of CO2 in a mid-latitude forest. Science, 1993, 260: 1314~1317.
    [91]宋霞,刘允芬,徐小锋.箱法和涡度相关法测碳通量的比较研究.江西科学, 2003, 21(3): 206~210.
    [92] Kumagai T.O., M. T.. Annual water balance and seasonality of evapotranspiration in a Bornean tropical rainforest. Agricultural and Forest Meteorology, 2005, 128: 81~92.
    [93] Williams, D, Cable, W. Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agricultural and Forest Meteorology, 2004, 125: 241~258.
    [94]刘昌明.土壤-作物-大气系统水分运动实验研究.北京:气象出版社, 1997.
    [95] Falge E., Baldocchi D., Olson R., et al. Gap filling strategies for long term energy flux data sets. Agric. For. Meteorol, 2001, 107: 71~77.
    [96] Falge E., Baldocchi D.D., Olson R., et al. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric. For. Meteorol, 2001, 107: 43~69.
    [97] Gu L., Falge E., Boden T.. Objective threshold determination for nighttime eddy flux filtering. Agricultural and Forest Meteorology, 2005, 128: 179~197.
    [98] Lee X. Black T.. Carbon dioxide exchange and nocturnal processes over a mixed deciduous forest. Agricultural and Forest Meteorology, 1996, 81: 13~29.
    [99] Carrara A., Kowalski A.S., Janssens I.A., et al. Net ecosystem CO2 exchange of mixed forest in Belgium over 5 years. Agric. For. Meteorol, 2003, 119: 209~227.
    [100] H ui D., Wan.S., Su B., et al. Gap-filling missing data in eddy covariance measurements using multiple imputation(MI)for annual estimations. Agricultural and Forest Meteorology, 2004, 121: 93~111.
    [101] Papale D., Valentini A.. A new assessment of European forests carbon exchanges by eddy fluxes andartificial neural network spatialization. Global Change Biology, 2003, 9: 525~535.
    [102]郭建平,高素华.高CO2浓度和土壤干旱胁迫对柠条影响的试验研究.水土保持学报, 2002, 1: 23~26.
    [103]郭惠清,田有亮.杨幼树水分生理指标和光合强度与土壤含水量关系的研究.干旱区资源与环境, 1998, 2: 101~106.
    [104]倪文进.黄土高原南部人工植被SPAC系统水分循环模式和利用效率研究.中国水利水电科学研究院博士论文, 2004.
    [105]朱永华,许彦卿,吕海深.植物生长条件下荒漠土壤水分预报的数学模型.冰川冻土, 2001, 3: 264~269.
    [106]孟广涛,郎南军,方向京.滇中华山松人工林的水文特征及水量平衡.林业科学研究, 2001, 14(1): 78~84.
    [107]翟洪波,李吉跃,聂立水.油松栓皮栎混交林林地蒸散和水量平衡研究.北京林业大学学报, 2004, 26(2): 48~51.
    [108]邓世宗,韦炳贰.广西不同生态地理区域杉木林水量平衡的研究.林业科学, 1995, 31(1): 8~16.
    [109]余新晓,陈丽华.黄土地区防护林生态系统水量平衡研究.生态学报. 1996,16(3): 238-245
    [110]陈义群.长江滩地造林对湖北草本植物群落物种多样性的影响.南京林业大学学报, 2004, 23(2): 89~92.
    [111]彭镇华.滩地抑螺防病林的营造技术.湿地科学与管理, 2006, 2(1): 20~23.
    [112]吴刚,苏瑞平.长江中下游滩地植被与钉螺孳生关系的研究.生态学报, 1999, 1: 118~121.
    [113]吴立勋.滩地造林与灭螺防病关系的研究.湖南林业科技, 1996, 23(1): 10~18.
    [114]吴泽民.安徽长江滩地农林复合系统草本植物群落特征研究.安徽农业大学学报, 2001, 28(1): 27~31.
    [115]杨建明.长江防浪林中草丛和藻类与钉螺分布密度的调查.湖北大学学报, 2003, 3: 152~156.
    [116]张家来,刘立德.江滩林农复合生态系统与钉螺分布关系的研究.生态学报, 1995, 15(4): 442~449.
    [117] Law B., Falge E., Gu L.. Environmental controls over carbon dioxide and water vapor exchan ge of terrestrial vegetation. Agricultural and Forest Meteorology, 2002, 113: 97~120.
    [118] Song X., Yunfen L. Comparison study on Carbon dioxide, water and heat flux of the forest ecosystem in red earth hilly zone over winter and spring. Resource science, 2004, 26(3): 96~104.
    [119] Jiabing W., Dexing G.. Comparison of eddy Covariance and BREB methods in determining forestevapotranspiration—Case study on broad-leaved Korean pine forest in Changbai Mountain. Chinese Journal of Ecology, 2005, 24(10): 1245~1249.
    [120] Foken, T, Wichura, B. Tools for quality assessment of surface-based flux measurements. Agricultural and Forest Meteorology, 1996, 78: 83~105.
    [121] Massman, W, Lee, X. Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy. Agricultural and Forest Meteorology, 2002, 113 :121~144.
    [122] Berbigier P., Bonnefond J., Mellmn M., et al. CO2 and water vapor fluxes for 2 years above Euro flux forest site. Agricultural and Forest Meteorology, 2001, 108: 183~197.
    [123] Greco S., Baldocchi D.. Seasonal variations of CO2 and water vapour exchange rates over a temperate deciduous forest. Global Change Biology, 1996, 2: 183~198.
    [124]项静恬,孔楠.多种时序模型的建模比较.数理统计与管理, 1991, 2: 33~39.
    [125] Mahrt L. Flux sampling errors for aircraft and towers. Journal of atmospheric and Oceanic Technology, 1998, 15: 416~429.
    [126] Pirce D., Black T.. Effects of short-term variation in weather on diurnal canopy CO2 flux and evapotranspiration of a juvenile Douglas-fir stand. Agric For Met, 1990, 50: 139~150.
    [127]马雪华.森林水文学.北京:中国林业出版社, 1993.
    [128] Schafer K. V. R., Oren R., Tenhunen J.D.. The effect of tree height on croun level stomatal conductance. Plant, Cell and Environment, 2000, 23: 365[128]~375.
    [129] Wilson K, Goldstein A, Falge E, et al. Energy balance closure at FLUXNET sites. Agric. For Meteorol., 2002, 113: 223~243
    [130] Aubinet M.E.. Estimates of the annual net carbon and water exchange of European forests: the EUROFLUX methodology. Advances in Ecological Research, 2000, 30: 113~176.
    [131]于贵瑞,孙晓敏.陆地生态系统通量观测的原理与方法.高等教育出版社.北京, 2006.
    [132]李正泉,于贵瑞,温学发.中国通量观测网络(ChinaFLUX)能量平衡闭合状况的评价.中国科学: D辑, 2004, 34(2): 46~56.
    [133] McCaughey J H, Saxton W L, Energy balance storage terms in a mixed forest, Agric. For. Meteoral., 1988, 44: 1~18
    [134] Schmid H P. Experimental design for flux measurements: matching scales of observations and fluxes. Agric. For. Meteoral.,1997, 87: 179~200
    [135] Lee X H. On micrometeorological observations of surface-air change over tall vegetation. Agric. For.Meteoral., 1998, 91:39~
    [136]刘煊章.森林生态系统定位研究.北京:中国林业出版社, 1993.
    [137]何其华,何永华,包维楷.干早半干旱区山地土壤水分动态变化.山地学报, 2003, 21(2): 149~156.
    [138]张津林,张志强,查同刚.沙地杨树人工林生理生态特性.生态学报, 2006, 26(5): 1523~1532.
    [139]张友焱,周泽福,党宏忠.利用TDP茎流计研究沙地樟子松的树干液流.水土保持研究, 2006, 13(4): 78~80.
    [140]马玲,赵平,扰兴权.马占相思树干液流特征及其与环境因子的关系.生态学报, 2005, 9: 2145~2151.
    [141] Saugier B., Granier A., Pontaille J.Y.. Transpiration of a boreal pine forest measured by branch bag sap flow and micrometeorological methods. Tree Physiology, 1997, 17: 511~519.
    [142] Hatton T., Vertessy R.. Transpiration of plantation Pinus radiate estimated by the heat pulse method and the bowen ratio. Hydrol Proc, 1990, 4: 289~298.
    [143]王沙生,王世绩.裴保华编.杨树栽培生理研究.北京:北京农业大学出版社, 1991.
    [144]孙鹏森,马李一,马履一.油松刺槐林潜在耗水量的预测及其与造林密度的关系.北京林业大学学报, 2001, 23(2): 1~6.
    [145]李菊,刘允芬,杨晓光.千烟洲人工林水汽通量特征及其与环境因子的关系.生态学报, 2006, 26(2): 2449~2456.
    [146]王妍.长江中下游抑螺防病林生态系统碳水通量及碳贮量研究.中国林业科学研究院博士论文. 2006
    [147]吉喜斌,康尔泗,赵文智.黑河流域山前绿洲灌溉农田蒸散发模拟研究.冰川冻土, 2004, 6: 713~719.
    [148] Constatin J., lnelan M.G., Raschendorfer M.. The energy budget of a spruce forest: Field measurements and comparison with the forest. Journal of Hydrology, 1998, 213: 22~35.
    [149] Wang A.Z, Pei T. F.. Research progress on surveying and calculation of forest evapo transpiration and its prospects. Chinese Journal of Applied Ecology, 2001, 12(6): 933~937.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700